HOMEWORK 2: ZEROS EXISTENCE THEOREM AND DEFINITION OF DERIVATIVE

1: Evaluate the following limits:

1) \(\lim_{x \to 0} \frac{\sin(5x) \sin(3x)}{\sin(4x) \sin(2x)} \)
2) \(\lim_{x \to 1} \left(\frac{1}{1-x} - \frac{2}{1-x^2} \right) \)
3) \(\lim_{h \to 0} \frac{2(a+h)^2 - 2a^2}{h} \)
4) \(\lim_{s \to 0} \frac{1 - \sqrt{s^2 + 1}}{s^2} \).

2: [Application of zeros existence Theorem] 1) Show that \(\cos(x) = x \) has a solution in the interval \([0, 1]\). 2) Show that \(g(t) = t^2 \tan(t) \) takes value \(\frac{1}{2} \) for some \(t \) in \([0, \frac{\pi}{4}]\).

3: [Definition of derivative] 1) Carefully state the definition of the derivative of a function \(f(x) \) at a point \(x = a \). 2) Use the definition of the derivative to compute the derivative of \(f(x) = 3 - \sqrt{x + 4} \) at \(x = 6 \).

4: Find a constant \(b \) such that \(h(x) \) is continuous at \(x = 4 \), where

\[
 h(x) = \begin{cases}
 x^2 - 1 & \text{if } x < 4, \\
 b - x^3 + \sqrt{x} & \text{if } x \geq 4.
 \end{cases}
\]

[Hint: use the left hand limit and right hand limit]. With this choice of \(b \), please determine the derivative of \(h(x) \) at \(x = 4 \) exists or not. [Hint: you may use \((x^a)' = ax^{a-1}\)].