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These are expository notes on spin and complex geometry in dimension
n = 6. We will discuss how natural equations on spinors lead to the notion
of a non-Kähler Calabi-Yau threefold.
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1 Clifford Algebra

In this section, we review the basics of Clifford algebras. Some references for
this section are the lecture notes of O’Farrill [7] and Woit [12].

1.1 Spin group

Let Rn be Euclidean space with Euclidean inner product 〈·, ·〉. Let e1, . . . , en
be the standard orthonormal basis for Rn. The Clifford algebra Cliff(n) is
the R-algebra generated by e1, . . . , en subject to the relation

ei · ej + ej · ei = −2δij1. (1.1)

Here 1 is the unit in the algebra. In particular,

e2
i = −1, eiej = −ejei, i 6= j. (1.2)

So for example, elements of Cliff(2) look like R-linear combinations of

1, e1, e2, e1e2. (1.3)

In general, the R-vector space underlying Cliff(n) has dimension 2n.
The algebra Cliff(n) is independent of the choice of orthonormal basis

{ei}. In particular, a2 = −1 for any a = aiei with ‖a‖2 :=
∑

(ai)2 = 1. This
implies that for k ∈ Z≥1, the inverse of

u = a1 · a2 · · · a2k (1.4)
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is
u−1 = a2k · a2k−1 · · · a1 (1.5)

for ‖ai‖ = 1. The spin group Spin(n) is defined as

Spin(n) = {a1 · · · a2k ∈ Cliff(n) : ai ∈ Rn, ‖ai‖ = 1, k ∈ Z≥1}, (1.6)

where the group operation is Clifford multiplication. Here are some examples.

• Spin(1) ∼= {+1,−1}.
• Spin(2) ∼= U(1). Let a1 = (cos θ, sin θ) and a2 = (cosφ, sinφ), so that

a1a2 = (cos θ e1 + sin θ e2) · (cosφ e1 + sinφ e2)

= − cos θ cosφ− sin θ sinφ+ (cos θ sinφ− sin θ cosφ)e1e2

= cos(θ − φ+ π) + sin(θ − φ+ π)e1e2. (1.7)

Thus pairs a1a2 can be identified with elements of the form cosψ+sinψ e1e2.
A product of these satisfies

(cosψ1 + sinψ1 e1e2) · (cosψ2 + sinψ2 e1e2)

= cos(ψ1 + ψ2) + sin(ψ1 + ψ2) e1e2. (1.8)

Thus we can identify

(cosψ + sinψ e1e2) 7→ eiψ ∈ U(1), (1.9)

and this identification is compatible with multiplication.

• To do: Spin(3) ∼= SU(2).

Theorem 1 Let u ∈ Spin(n). The action of u on vectors v ∈ Rn given by

v 7→ uvu−1 (1.10)

is well-defined and a rotation in SO(n). This construction gives rise to a
surjective homomorphism

ϕ : Spin(n)→ SO(n), (1.11)

which is two-to-one.
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Proof: We only sketch the proof. Let a be a unit vector and v ∈ Rn. The
Clifford algebra relation implies

ava−1 = −vaa−1 − 2〈a, v〉a−1 (1.12)

and so since a−1 = −a, the conjugation action is

v 7→ −(v − 2〈a, v〉a). (1.13)

The linear transformation v 7→ v − 2〈a, v〉a is a reflection in the hyperplane
with normal a, as it fixes all vectors orthogonal to a and sends a 7→ −a.

Therefore the action of u = a1 · · · a2k ∈ Spin(n) given by v 7→ uvu−1 is
an even product of reflections, which is a matrix in SO(n). To show that
ϕ is surjective, one can use the Cartan-Dieudonné Theorem, which states
that any orthogonal transformation is a product of reflections. We leave the
computation of the kernel of ϕ, which is kerϕ = {±1}. �

Note that both u and −u give rise to the same rotation in SO(n). It can
be shown that for n ≥ 3, Spin(n) is the universal cover of SO(n).

The theorem attaches to each u ∈ Spin(n) a matrix Mu ∈ SO(n) and
gives the identity

ueiu
−1 = (Mu)

k
iek, (1.14)

where {ei} is the standard basis in Rn. Here we use the Einstein summation
convention, where an index which is repeated implies a summation.

We now prove an identity for lifting paths on SO(n) to paths on Spin(n).
Since Spin(n) is a double-cover of SO(n), there are two lifted paths, but if
we find one lift u(t) ∈ Spin(n) of A(t) ∈ SO(n), then the other lifted path is
just −u(t). Let j < k and εjk be an n×n matrix with jk entry −1, kj entry
1, and all other entries 0. A rotation by angle θ in the jk plane is given by

exp θεjk. (1.15)

We will prove the following lifting identity:

Proposition 1

ϕ

(
exp

t

2
ejek

)
= exp tεjk. (1.16)
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Proof: To be concrete, we consider j = 1 and k = 2. We must compute
the action

v 7→ exp
θ
2
e1e2v exp −

θ
2
e1e2 . (1.17)

We start with

exp

(
θ

2
e1e2

)
= 1 +

θ

2
(e1e2) +

1

2
(
θ

2
e1e2)2 +

1

3!
(
θ

2
e1e2)3 + . . . . (1.18)

Noting (e1e2)2 = −1, we obtain

exp

(
θ

2
e1e2

)
=

(
1− 1

2

(
θ

2

)2

+
1

4!

(
θ

2

)2

+ . . .

)
+

(
θ

2
− 1

3!

(
θ

2

)3

+ . . .

)
e1e2.

(1.19)
Therefore

exp

(
θ

2
e1e2

)
= cos

θ

2
+ sin

θ

2
e1e2. (1.20)

As an aside, since

cos
θ

2
+ sin

θ

2
e1e2 = (cos

θ

2
e1 + sin

θ

2
e2) · (−e1) (1.21)

we see that

exp

(
θ

2
e1e2

)
∈ Spin(n). (1.22)

Let v = v1e1 + v2e2. Then

exp
θ
2
e1e2(v1e1 + v2e2) exp −

θ
2
e1e2

= (cos
θ

2
+ sin

θ

2
e1e2)(v1e1 + v2e2)(cos

θ

2
− sin

θ

2
e1e2) (1.23)

This becomes

(cos
θ

2
v1e1 + cos

θ

2
v2e2 + sin

θ

2
v1e2 − sin

θ

2
v2e1)(cos

θ

2
− sin

θ

2
e1e2) (1.24)

which becomes

cos2 θ

2
v1e1 + cos2 θ

2
v2e2 + sin

θ

2
cos

θ

2
v1e2 − sin

θ

2
cos

θ

2
v2e1

+ sin
θ

2
cos

θ

2
v1e2 − sin

θ

2
cos

θ

2
v2e1 − sin2 θ

2
v1e1 − sin2 θ

2
v2e2.(1.25)
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Using double-angle formulas, this becomes

(cos θv1 − sin θv2)e1 + (cos θv2 + sin θv1)e2. (1.26)

Therefore, the path

u(t) = exp ((t/2)e1e2) ∈ Spin(n) (1.27)

acts by

u(t)(v1e1 + v2e2)u(t)−1 =
[
e1 e2

] [cos t − sin t
sin t cos t

] [
v1

v2

]
(1.28)

We also have that

u(t)eku(t)−1 = ek, k ≥ 3. (1.29)

Thus

ϕ(u(t)) =

cos t − sin t 0
sin t cos t 0

0 0 I

 (1.30)

and u(t) corresponds under ϕ to the path

exp (tε12) ∈ SO(n). (1.31)

For example, we note

exp

(
t

[
0 −1
1 0

])
=

[
cos t − sin t
sin t cos t

]
, (1.32)

which shows that exp (θε12) is indeed a rotation by θ in the plane spanned
by e1, e2. �

As a consequence, we can compute

ϕ∗ : spin(n)→ so(n). (1.33)

Differentiating the lifted path, we see that εjk should be identified with 1
2
ej ·ek.

ϕ∗
1

2
ejek = εjk. (1.34)
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1.2 Gamma matrices

To be concrete, in these notes we will view the Clifford algebra as an al-
gebra of matrices. By this, we mean that we will use a homomorphism
γ : Cliff(n) → Matk×k(C), and we will denote γi = γ(ei) (the gamma ma-
trices). We will build examples of gamma matrices by using the following
building blocks:

σ1 =

[
0 1
1 0

]
, σ2 =

[
0 −i
i 0

]
, σ3 =

[
1 0
0 −1

]
, (1.35)

and

τ1 = iσ1 =

[
0 i
i 0

]
, τ2 = iσ2 =

[
0 1
−1 0

]
, τ3 = iσ3 =

[
i 0
0 −i

]
. (1.36)

We note the identities:

σ2
i = I2×2, τ 2

i = −I2×2,

σiσj = −σjσi, τiτj = −τjτi for i 6= j.

σ1σ2 = iσ3, σ1σ3 = −iσ2, σ2σ3 = iσ1,

τ1τ2 = −τ3, τ1τ3 = τ2, τ2τ3 = −τ1. (1.37)

Here are some examples of Clifford algebras represented as a matrix algebra.

• γ : Cliff(1)→ Mat1×1(C). We can identify γ1 = i to obtain the complex
numbers.

• γ : Cliff(2)→ Mat2×2(C). We can identify

γ1 = τ1, γ2 = τ2. (1.38)

In other words, the algebra contains

γ1 =

[
0 i
i 0

]
, γ2 =

[
0 1
−1 0

]
, γ1γ2 =

[
−i 0
0 i

]
, I2×2 =

[
1 0
0 1

]
, (1.39)

and their R-linear combinations.

• γ : Cliff(3)→ Mat4×4(C). We can identify

γ1 = τ1 ⊗ I2×2, γ2 = τ2 ⊗ I2×2, γ3 = −τ3 ⊗ σ1. (1.40)
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Here we use the notation

A⊗B =

a11B · · · a1nB
...

. . .
...

an1B · · · annB

 (1.41)

where A,B ∈ Matn×n(C) and A ⊗ B ∈ Matn2×n2(C). The product satisfies
(A⊗B)(C ⊗D) = (AC)⊗ (BD). The algebra contains

γ1γ2 = −τ3 ⊗ I2×2, γ1γ3 = τ2 ⊗ σ1, γ2γ3 = τ1 ⊗ σ1

γ1γ2γ3 = −I2×2 ⊗ σ1, 1 = I2×2 ⊗ I2×2,

and their R-linear combinations.

The focus of these notes is Calabi-Yau threefolds, and so we omit the cal-
culation of Cliff(4) and Cliff(5), and move on to our main example: Cliff(6).

• γ : Cliff(6)→ Mat8×8(R). We can identify

γ1 = τ2 ⊗ I2×2 ⊗ σ1

γ2 = τ2 ⊗ I2×2 ⊗ σ3

γ3 = σ1 ⊗ τ2 ⊗ I2×2

γ4 = σ3 ⊗ τ2 ⊗ I2×2

γ5 = I2×2 ⊗ σ1 ⊗ τ2

γ6 = I2×2 ⊗ σ3 ⊗ τ2. (1.42)

We note that all these matrices happen to be real, which did not occur in
our previous examples. We also note that γTi = −γi is anti-symmetric.

Remark: This sort of explicit matrix representation of a Clifford algebra
exists in arbitrary dimension: see the Weyl-Brauer matrices.
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2 Spinors and Almost-Complex Structures

2.1 Spinor bundles

Let M be an oriented manifold of dimension n with metric g. Recall that
orientability reduces the transition functions of the tangent bundle to ma-
trices with positive determinant, and the existence of a metric reduces the
transition functions of the tangent bundle to orthogonal matrices by a Gram-
Schmidt process.

We can then choose a covering of M with transition functions ΛUV for
the tangent bundle TM such that ΛUV ∈ SO(n).

ΛUV : U ∩ V → SO(n). (2.1)

More concretely, let {eUi }ni=1 denote a local orthonormal oriented frame over
U , and {eVi }ni=1 over V . On U ∩ V , then

eUi (x) = eVk (x)ΛV U
k
i(x). (2.2)

In terms of components, an arbitrary tangent vector X = X i
Ue

U
i = X i

V e
V
i

appears as a column vector X i
U over U and as column vector X i

V over V , and
transforms as

X i
U = ΛUV

i
kX

k
V . (2.3)

The Cech data (Uα ∩ Uβ,ΛUαUβ) satisfies the cocycle condition

ΛUU = id, ΛUV ΛVWΛWU = id. (2.4)

A spin structure Spin(n)→M is a lift

Λ̃UV : U ∩ V → Spin(n), (2.5)

such that
ϕ(Λ̃UV (x)) = ΛUV (x), x ∈ U ∩ V (2.6)

where ϕ is defined as in (1.11) and

Λ̃UV = id, Λ̃UV Λ̃VW Λ̃WU = id. (2.7)

Remark: Spin structures may not exist. Their obstruction is the vanishing
of w2(M). To do: explain the w2(M) = 0 condition, give example of spin
structures on Riemann surfaces.
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As discussed in the previous section, let us make a choice and represent
the Clifford algebra by complex matrices. Let

γ : Cliff(n)→ Matk×k(C) (2.8)

be an algebra homomorphism. We will denote

ρ : Spin(n)→ Matk×k(C) (2.9)

to be the representation of the spin group which is the restriction of γ.
From a spin structure Spin(n) → M and a Clifford algebra matrix rep-

resentation γ : Cliff(n)→ Matk×k(C), we construct a rank k complex vector
bundle S →M as follows: set the transition functions on the overlap U ∩ V
to be ρ(Λ̃UV ). Sections ψ ∈ Γ(S) of this bundle will be called spinors. Con-
cretely, a spinor is defined by local functions

ψU : U → Ck (2.10)

which transform on U ∩ V by

ψU = ρ(Λ̃UV )ψV . (2.11)

We next discuss the gamma matrices in this geometric context. Let γa be the
generators chosen in (2.8) to represent the Clifford algebra. The key relation
(1.14) becomes then

ρ(Λ̃)γaρ(Λ̃)−1 = Λb
aγb. (2.12)

Let X be a vector field. The identity is then

ρ(Λ̃)γ(X)ρ(Λ̃)−1 = γ(ΛX). (2.13)

Using X, we will now define an endomorphism of spinors denoted γ(X). For
this, we use a local orthonormal frame E = {ea} over U , write the vector
field as X = Xa

Eea and a spinor locally as a column vector ψ = ψE over U ,
and write

γ(X)ψ := Xa
EγaψE. (2.14)

We will sometimes also write γ(X) locally as γ(XE) = Xa
Eγa. Here the γa

are fixed chosen generators of the Clifford matrix algebra, such as the ones
explicitly displayed in §1.2. We now prove that ψ 7→ γ(X)ψ sends sections
of S to sections of S.
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Proposition 2 The above formula defines a section γ ∈ Γ((TM)∗⊗EndS).

Proof: Suppose we have two overlapping trivializations, one with frame
E = {ea} and another with frame F = {fa}, and let Λ be the transition
function for TM on the overlap and Λ̃ the lift from the spin structure. A
spinor ψ appears as ψE in the frame E and ψF in the frame F . A tangent
vector appears as X = Xa

Eea in the frame E and X = Xa
Ffa in the frame F .

To show that γ(X)ψ produces another spinor, we need to show that it
transforms correctly, namely

γ(XE)ψE = ρ(Λ̃)γ(XF )ψF . (2.15)

Our conventions as setup earlier give the transformation laws

ψE = ρ(Λ̃)ψF , XE = ΛXF . (2.16)

Then
γ(XE)ψE = γ(ΛXF )ρ(Λ̃)ψF = ρ(Λ̃)γ(XF )ψF , (2.17)

by (2.13). This proves the formula (2.15). �

To summarize,
ψ 7→ γ(X)ψ (2.18)

is a legitimate operator on spinors. The strange thing to note here is that we
always use the same constant matrices γa, even though the vector components
Xa transform as (2.3) if we change frames. For any frame E then γ(ea) = γa
are the same constant gamma matrices multiplying local spinor components
ψE, even though the spinor components ψE transform in different frames.

2.2 Dimension n = 6

References for this section are Candelas-Horowitz-Strominger-Witten [3], Becker-
Becker-Schwarz [1] and Lawson-Michelson [6]. Our application to differential
geometry will take place in dimension n = 6.

2.2.1 Setup

Let γ1, . . . , γ6 be the 8 × 8 real matrices exhibited in (1.42) representing
generators of Cliff(6). These satisfy

{γa, γb} = −2δabI, γTa = −γa. (2.19)
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It follows that γTa γa = I. The representation of Spin(6) by matrices obtained
by using these gamma matrices, denoted ρ, is contained in the orthogonal
matrices.

ρ : Spin(6)→ O(8) (2.20)

This is because

ρ(a1 · · · a2k)ρ(a1 · · · a2k)
T = γ(a1) · · · γ(a2k)γ(a2k)

T · · · γ(a1)T = I (2.21)

for any ai ∈ Rn with ‖ai‖ = 1.
We will use the notation

γ7 := i3γ1γ2γ3γ4γ5γ6. (2.22)

We can check from the definition that

γ2
7 = I, γ†7 = γ7, (2.23)

and

γ7γa = −γaγ7, γT7 = −γ7, γ†7γ7 = I. (2.24)

Let V = C8 be the complex vector space on which the γi matrices act by
matrix multiplication. From (2.23), the eigenspaces of γ7 have eigenvalues
±1, and we may split

V = V + ⊕ V −. (2.25)

This decomposition in orthogonal, since for ψ+ ∈ V + and ψ− ∈ V −, then
ψ†+ψ− = ψ†+γ

†
7γ7ψ− = −ψ†+ψ−. We note that

γa : V + → V − (2.26)

is an isomorphism. To show γa is surjective, write v ∈ V − as v = γa(−γav)
and note that −γav ∈ V +.

2.2.2 Positive chirality spinors

Going back to the geometric setup, let (M, g) be a Riemannian manifold of
dimension n = 6 equipped with a spin structure, and use the representation
ρ : Spin(6)→ O(8) from the previous section. Let S →M be the associated
spinor bundle: it is a rank 8 complex vector bundle with transition functions
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ρ(Λ̃UV ), where Λ̃UV is the lift of the SO(n) transition functions ΛUV on the
tangent bundle. We note that given a spinor ψ, then the bilinear

ψ†ψ (2.27)

gives a well-defined function on the manifold, since on an overlap U ∩V , then

ψ†UψU = ψ†V ρ(Λ̃UV )†ρ(Λ̃UV )ψV = ψ†V ψV . (2.28)

Here the dagger notation refers to the conjugate transpose.
Next, we check that if ψ is a spinor, then γ7ψ is a well-defined spinor. For

this, just like Proposition 2, we show γ7ρ(Λ̃) = ρ(Λ̃)γ7. This can be done by
repeatedly applying ρ(Λ̃)γaρ(Λ̃)−1 = Λb

aγb and using that Λ is orthogonal
and determinant 1. Thus

γ7 ∈ Γ(EndS) (2.29)

and the spinor bundle S breaks into two subbundles S = S+ ⊕ S−. Spinors
which are sections of S+, i.e. satisfying γ7η = η, are said to have positive
chirality.

Next, we’ll need in the next section the notion of a pure spinor. For a
spinor η, let

Wη = {v ∈ (TCM) : γ(v)η = 0}. (2.30)

On a manifold of even dimension n, a spinor η is pure if at each point p then

dim (Wη)|p = n/2. (2.31)

A special property of dimension n = 6 is that

Lemma 1 Let (M, g) be a spin manifold of dimension n = 6. Let η+ be a
nowhere vanishing spinor of positive chirality. Then η+ is a pure spinor.

Proof: To do: include proof. See Lawson-Michelsohn [6]. �

Note that if v, w ∈ Wη, from

(γ(v)γ(w) + γ(w)γ(v))η = −2g(v, w)η (2.32)

we conclude g(v, w) = 0 and g(v, v) = 0. Since v is a complexified vector,
this does not imply that v = 0. (The subspace Wη is isotropic.) If we let
H(v, w) = g(v, w̄) be the induced Hermitian inner product, then

H(v, w̄) = 0 (2.33)
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for all v, w ∈ Wη. This means that for a pure spinor η, we can break the
complexified tangent bundle into two subbundles

TCM = Wη ⊕Wη, (2.34)

by taking the orthogonal complement of Wη using the inner product H(·, ·).

2.2.3 Almost-complex structure

First, some notation on orthonormal frames and coordinates: let {ea} be a
local orthonormal frame of TM in (M, g) and let xi be local coordinates. We
can write one basis in terms of the other, and we will use the notation

∂

∂xi
= eaiea, ea = eia

∂

∂xi
. (2.35)

This leads to the identities ebie
i
a = δab, e

j
ae
a
i = δij, and

gij =
∑
a

eaie
a
j, δab = eiae

j
bgij. (2.36)

We denote

γi = eaiγa. (2.37)

This notation can be confusing. When denoted with indices i, j, k, the matri-
ces γi are not constant, but the matrices γa with indices a, b, c are the explicit
constant matrices exhibited earlier in (2.19). In other words, using (2.36),
our conventions are such that

{γi, γj} = −2gijI, {γa, γb} = −2δabI. (2.38)

We use the notation

γij =
1

2
(γiγj − γjγi). (2.39)

We can also raise indices

γkj = gkiγij. (2.40)

Recall that an almost-complex structure is an endomorphism J : TM →
TM which satisfies J2 = −I. The main result of this section is the almost-
complex structure constructed by Candelas-Horowitz-Strominger-Witten [3].
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Proposition 3 Let (M, g) be a spin manifold of dimension n = 6. Let η+

be a nowhere vanishing spinor of positive chirality (such that γ7η+ = η+)
normalized by η†+η+ = 1. Then

Jkj = iη†+γ
k
jη+ (2.41)

equips M with an almost-complex structure compatible with g, meaning that

g(JX, JY ) = g(X, Y ). (2.42)

Proof: We first verify J is real using γ†a = −γa, (γkj)
† = −γkj, which

gives

iη†+γ
k
jη+ = −iη†+(γkj)

†η+ = iη†+γ
k
jη+. (2.43)

Next, we verify that J is a well-defined endomorphism. Indeed,
• γi ∈ Γ(EndS ⊗ Λ1(M))
• γij ∈ Γ(EndS ⊗ EndTM)

• η†+γijη+ ∈ Γ(EndTM).

This is because we noted in Proposition 2 that γi is an endomorphism of
spinors with cotangent bundle index i, and (2.28) allows us to form bilinears
with η+.

Next, we define

T 1,0M = {v ∈ TCM : γ(v)η+ = 0}. (2.44)

We noted earlier that in this dimension, then η+ is a pure spinor, and by
(2.34) we can decompose

TCM = T 1,0M ⊕ T 1,0M. (2.45)

We claim that for v ∈ T 1,0M , then Jv = iv and Jv̄ = −iv̄. This implies the
defining identity of an almost-complex structure

Jk`J
`
p = −δkp, (2.46)

which is a long computation to check directly. To see Jv = iv, we compute

Jkjv
j = iη†γkjv

jη = iη†(γkγj + δkj)v
jη, (2.47)

using the identity
γkγj = γkj − δkj. (2.48)
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Since (γjv
j)η = 0,

Jkjv
j = i(η†η)vk = ivk, (2.49)

as desired. In fact, Jv = iv implies that γ(v)η+ = 0, so that

T 1,0M = {v ∈ TCM : Jv = iv}. (2.50)

Indeed, if Jv = iv then from (2.47) we obtain η†+γ
kγ(v)η+ = 0, and contract-

ing with vk gives η†+γ(v)γ(v)η+ = 0 which implies (γ(v)η+)†γ(v)η+ = 0 since
γ†a = −γa.

Finally, we need to verify

gmn = JkmJ
`
ngk`. (2.51)

First, we note
Jmn = −Jnm, Jmn = gnpJ

p
m, (2.52)

since
Jmn = η†+γmnη+ (2.53)

and γmn is skew-symmetric by definition. Therefore

JkmJ
`
ngk` = JkmJkn = −JnkJkm = −gnpJpkJkm = +gnm. (2.54)

Here we used J2 = −I. Therefore g satisfies

g(X, Y ) = g(JX, JY ) (2.55)

as claimed. �

We can also define
ω(X, Y ) = g(JX, Y ) (2.56)

which is a skew-symmetric 2-tensor, i.e. ω ∈ Ω2(X). In terms of the spinor
η+, this is ωjk = iη†+γjkη+.

By the identities for γ7 (see (2.23), and the equation below), many other
tensors formed by bilinears vanish.
• η†+γiη+ = 0
• ηT+γiη+ = 0
• ηT+γijη+ = 0

• η†+γijkη+ = 0.
The 3-form ηT+γijkη+ is non-zero, and later in these notes we will discuss

its properties. To show e.g. η†+γiη+ = 0, we note

η†+γiη+ = (γ7η+)†γ7γiη+ = −η†+γiη+, (2.57)

since γ7γi = −γiγ7.
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2.3 Nijenhuis tensor

In the previous section, we showed that a nowhere vanishing positive chirality
spinor η+ on (M, g) with dimM = 6 produces an almost-complex structure
J compatible with the metric g. Thus spinors have brought us into the field
of almost-complex geometry. In this section, we review some basics of the
general theory of almost-complex geometry.

Let M be a manifold of dimension 2n. An almost complex structure
J : TM → TM satisfies J2 = −I. In components, it acts on tangent vectors
V = V i∂i by

(JV )i = J ipV
p. (2.58)

Since J2 = −I, we can split

TCM = T 1,0M ⊕ T 0,1M (2.59)

where T 1,0M is the +i eigenspace of J and T 0,1M is the −i eigenspace of J .
Explicitly,

T 1,0
p M = span {X − iJX : X ∈ TpM}. (2.60)

Here TM is the real tangent bundle, and TCM = TM⊗C is the complexified
tangent bundle, where we allow linear combinations of vectors in TM with
complex coefficients. We see that an almost-complex structure produces a
complex vector bundle T 1,0M →M of rank n.

From the decomposition (2.59), we can decompose differential forms into
(p, q) type.

Λk(TC)∗ =
∑
p+q=k

Λp(T 1,0M)∗ ⊗ Λq(T 0,1M)∗ :=
∑
p+q=k

Ωp,q(M). (2.61)

In terms of local frames, if {ei} is a local frame of T 1,0M then

{e1, . . . , en, ē1, . . . , ēn} (2.62)

locally generates TCM and

ei1 ∧ · · · ∧ eip ∧ ej1 ∧ · · · ∧ ejq (2.63)

locally generates Ωp,q(M). Here {ei} is the dual frame to {ei}. For example,
a 3-form η can be written as

η = η3,0 + η2,1 + η1,2 + η0,3, (2.64)
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where

η3,0(ei, ej, ek) = η(ei, ej, ek),

η3,0(ei, ej, ek) = η3,0(ei, ej, ek) = η3,0(ei, ej, ek) = 0, (2.65)

and similarly for the other components, e.g. η2,1(ei, ej, ēk) = η(ei, ej, ēk).
Let g be a metric on M which is compatible with J , which means that

g(JV, JW ) = g(V,W ). We will denote

gij = g(ei, ej), gīj = g(ei, ej), gīj̄ = g(ei, ej). (2.66)

Compatibility with J implies that

gij = 0, gīj̄ = 0, (2.67)

and hence only the metric components gk̄j = gjk̄ are non-zero. Since g is real
and symmetric, then

gk̄j = gj̄k. (2.68)

The Nijenhuis tensor N : TM × TM → TM is defined by

N(X, Y ) =
1

4
([JX, JY ]− J [JX, Y ]− J [X, JY ]− [X, Y ]). (2.69)

The interpretation of N is that it measures the failure of T 1,0M being closed
under taking the Lie bracket: let U, V ∈ T 1,0M , so that

N(U, V ) =
1

4
(i2[U, V ]− iJ [U, V ]− iJ [U, V ]− [U, V ])

= −1

2
([U, V ] + iJ [U, V ]). (2.70)

For any vector X, we can write

X =
1

2
(X − iJX) +

1

2
(X + iJX), (2.71)

and this gives the decomposition TCM = T 1,0M ⊕ T 0,1M , i.e.

X1,0 =
1

2
(X − iJX), X0,1 =

1

2
(X + iJX). (2.72)

With this interpretation, then

N(U, V ) = −[U, V ]0,1. (2.73)
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Similarly,
N(U, V ) = 0. (2.74)

It follows that N = 0 if and only if [U, V ] ∈ T 1,0M for all U, V ∈ T 1,0M .
In a frame {ei} generating T 1,0M , then this discussion implies that N is
determined by the components N k̄

ij.
Next, let’s write

N =
1

2
Np

mn dx
m ∧ dxn ⊗ ∂p (2.75)

and look at the components of the Nijenhuis tensor. We have

4N(∂m, ∂n) = [J im∂i, J
k
n∂k]− J [J im∂i, ∂n]− J [∂m, J

i
n∂i], (2.76)

which becomes

4N(∂m, ∂n) = J im∂iJ
p
n∂p−Jkn∂kJ im∂i +J(∂nJ

p
m∂p)−J(∂mJ

i
n∂i). (2.77)

which simplifies to

4N(∂m, ∂n) = (Jqm∂qJ
p
n − Jqn∂qJpm + Jpq∂nJ

q
m − Jpq∂mJqn)∂p. (2.78)

Then

Np
mn =

1

4
(Jqm∂qJ

p
n + Jpq∂nJ

q
m − Jqn∂qJpm − Jpq∂mJqn). (2.79)

Writing
∇qJ

p
n = ∂qJ

p
n + ΓpqrJ

r
n − ΓrqnJ

p
r (2.80)

for the Levi-Civita connection, a calculation gives the expression

Np
mn =

1

4
(Jqm∇qJ

p
n + Jpq∇nJ

q
m − Jqn∇qJ

p
m − Jpq∇mJ

q
n) (2.81)

since Γkij = Γkji.

The Newlander-Nirenberg theorem relates almost-complex structures with
N = 0 to holomorphic coordinate charts. A proof can be found in e.g. [5].

Theorem 2 Let J be an almost-complex structure on a real manifold M . If
NJ = 0, then M admits a complex structure: there are holomorphic coordi-
nates making M a complex manifold.
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As a consequence of (2.81), we obtain:

Corollary 1 Let J be an almost-complex structure on a manifold (M, g). Let
∇ denote the Levi-Civita connection. If ∇J = 0, then M admits holomorphic
coordinates making M a complex manifold.

We will denote holomorphic coordinates by {zi}. The corresponding real
coordinates {(xi, yi)} will be denoted

zk = xk + iyk, z̄k = xk − iyk, (2.82)

and we denote

∂

∂zk
=

1

2

(
∂

∂xk
− i ∂

∂yk

)
,

∂

∂z̄k
=

1

2

(
∂

∂xk
+ i

∂

∂yk

)
. (2.83)

Note that the dual vector field to dzk = dxk + idyk is ∂
∂zk

. From a complex
manifold, we obtain an almost-complex structure J by setting

J
∂

∂zk
= i

∂

∂zk
, J

∂

∂z̄k
= −i ∂

∂z̄k
. (2.84)

In other words,

T 1,0
p M = Span

{
∂

∂z1

∣∣∣∣
p

, . . . ,
∂

∂zn

∣∣∣∣
p

}
(2.85)

and this is well-defined since change of coordinates are holomorphic. J is a
real endomorphism of the real tangent bundle, since in terms of real coordi-
nates {(xi, yi)} it is

J
∂

∂xk
=

∂

∂yk
, J

∂

∂yk
= − ∂

∂xk
. (2.86)

In {(xi, yi)} coordinates, the endomorphism J appears as the constant matrix

[J ij] =

[
0 −In×n

In×n 0

]
. (2.87)

From (2.79), we see that NJ = 0.
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3 Connections on Bundles

3.1 Notation

Let (M, g) be an oriented Riemannian manifold. Let E → M be a com-
plex vector bundle of rank k trivialized by coordinate charts {Uα} and with
transition matrices {(Uα ∩ Uβ, tUαUβ)}.

tUV : U ∩ V → Matk×k(C). (3.1)

Recall that this means that sections s ∈ Γ(E) appear as a collection of local
functions {Uα, sUα} with the sU : U → Ck satisfying

sU = tUV sV (3.2)

on overlaps U∩V . From the point of view of trivializing local frames {eUα}kα=1,
this means a section can be written as s = (sU)α(eU)α over U and (eU)α =
(eV )βtUV

β
α.

A connection ∇ on E is given by a collection of local matrix-valued 1-
forms {Uα, AUα}, so that AU = (AU)idx

i with (AU)i : U → Matk×k(C),
satisfying

(AU)i = tUV (AV )it
−1
UV − ∂itUV t

−1
UV , (3.3)

on overlaps U ∩ V . This definition is so that ∇ = d+A defines a derivative
of sections of E: if we define the derivative on local components by

∇isU = ∂isU + (AU)isU , (3.4)

then
∇isU = tUV∇isV . (3.5)

This transformation law implies that ∇Xs ∈ Γ(E) for any vector field X.
Here we let ∇Xs = X i∇isU where X = X i∂i over U . If α, β indices track
the column vector index, then we write the derivative on local components
(3.4) as

∇is
α = ∂is

α + Ai
α
βs

β. (3.6)

We can also understand connections from the point of view of local frames
rather than local components. Using local frames, we write s = sαeα and the
connection acts by

∇∂is = ∂is
αeα + sα∇∂ieα = (∂is

α + Ai
α
βs

β)eα, (3.7)

21



where ∇∂ieα = Ai
β
αeβ.

Here is how this notation appears in the case of the tangent bundle.
Let ∇ be a metric compatible covariant derivative such as the Levi-Civita
connection. In a coordinate chart {xi} a vector field V = V i ∂

∂xi
has covariant

derivative
∇∂kV = (∇kV

i) ∂i, ∇kV
i = ∂kV

i + ΓikpV
p, (3.8)

and the connection coefficients are denoted by Γkij rather than Ai
k
j. We will

also use trivializations of the tangent bundle which do not come from local
coordinates, but instead from a local orthonormal frame {ea}. Let ea = eia∂i
be an orthonormal frame of TM and write vector fields as V = V aea.

∇∂iV = (∂iV
b + ωi

b
aV

a)eb (3.9)

where ∇∂iea = ωi
b
aeb denote the connection coefficients in this frame. Let ωi

be the matrix with entries [ωi]
b
a = ωi

b
a. Since ∇ is metric compatible with

g, it follows that ωi
b
a = −ωiab. Indeed, metric compatibility means

0 = g(∇∂iea, eb) + g(ea,∇∂ieb), ωi
b
a = g(∇∂iea, eb). (3.10)

This is one difference from working with an orthonormal frame {ea} and ωi
b
a

rather than a coordinate frame {∂i} and Γkij. Thus we can write ωi in terms
of a basis of skew-symmetric matrices. For example, in dimension n = 3 then

ωi = ωi
2

1

0 −1 0
1 0 0
0 0 0

+ ωi
3

1

0 0 −1
0 0 0
1 0 0

+ ωi
3

2

0 0 0
0 0 −1
0 1 0

 (3.11)

and in general we have

ωi =
∑
a<b

ωi
baεab. (3.12)

Here εij with i < j is the n× n matrix with a −1 at the (ij) entry and 1 at
the (ji) entry, and εii = 0. The coefficients ωi

ba in this matrix sum are just
ωi
ba = ωi

b
a. If we let εba = −εab for a < b, then we can write this using the

full sum over all a, b:

ωi =
1

2

∑
a,b

ωi
baεab. (3.13)

In parallel with the notation in (3.4), in an orthonormal frame the Levi-
Civita connection can be written as acting on components of vector fields
by

∇iV = ∂iV +
1

2
ωi
baεab V. (3.14)
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We now motivate the definition of the spin connection. Let (M, g) be a man-
ifold of dimension n with spin structure Spin(n)→M and let γ : Cliff(n)→
Matk×k(C) be a matrix representation. As discussed earlier, this produces a
spinor bundle S → M . Since the double cover ϕ : Spin(n) → SO(n) iden-
tifies εab with 1

2
γaγb via ϕ∗ (1.34), we guess that the connection induced by

the Levi-Civita connection on sections ψ of the spin bundle S →M acts on
components by

∇iψ = ∂iψ +
1

4
ωi
abγbγaψ. (3.15)

Recall γa denotes the fixed γ-matrices γ1, . . . , γn corresponding to the stan-
dard basis of Rn in the representation γ : Cliff(n) → Matk×k(C). We will
verify that this formula gives a well-defined connection on spinors in the
following section.

But before that, we introduce more notation. It will sometimes be useful
to write the spin connection using curved, varying gamma matrices. Recall
our conventions for coefficients relating the orthonormal frame {ea} and the
coordinate frame {∂i}: ea = eia∂i and ∂i = eaiea. We write γi = eaiγa for
the curved gamma matrices which vary from point to point. We also write
ωi
jk = ejae

k
bωi

ab. Then the spin connection in coordinates {xi} is

∇iψ = ∂iψ +
1

4
ωi
jkγkγjψ. (3.16)

Verifying this is a straight-forward calcultion using ebie
i
a = δba.

3.2 Spin connection

Let’s verify that the spin connection

∇iψ = ∂iψ +
1

4
ωi
abγbγaψ. (3.17)

is a legitimate connection. Here the indices a, b represent an orthonormal
frame. Let

A(X) =
1

4
ωba(X)γaγb. (3.18)

Let (U, {eUa }na=1), (V, {eVa }na=1) be an overlap of trivializations by orthonormal
frames of TM . We need to show

AU = ρAV ρ
−1 − dρ ρ−1. (3.19)
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Here ρ : U ∩ V → GL(k,C) is given by ρ(x) = γ(Λ̃(x)), where

Λ : U ∩ V → SO(n), eUa = eVb Λb
a (3.20)

is the transition function for TM , and the spin structure gives us lifts Λ̃(x) ∈
Spin(n). If ωU is the local connection form of the Levi-Civita connection over
U , then we have

ωU = ΛωV ΛT − dΛΛT . (3.21)

Therefore

AU =
1

4
(ΛωV ΛT − (dΛ)ΛT )baγaγb. (3.22)

The defining identity for the spin group lift of Λ is (1.14), which we rewrite
here

ργaρ
−1 = Λb

aγb. (3.23)

We start by proving

1

4
(ΛωV ΛT )baγaγb = ρAV ρ

−1. (3.24)

Converting matrix multiplication to index notation, we have

1

4
(ΛωV ΛT )baγaγb =

1

4
ωV

cd Λa
dγa Λb

cγb. (3.25)

From (3.23), we obtain

1

4
(ΛωV ΛT )baγaγb =

1

4
ωV

ba(ργaρ
−1) (ργbρ

−1) (3.26)

and hence (3.24) follows. Next, we need to show

1

4
(dΛΛT )baγaγb = dρ(Λ)ρ(Λ)−1. (3.27)

Let Λ ∈ SO(n), and recall TΛSO(n) = {ΛX : X ∈ Lie(SO(n))}. Any path
Λ(t) ∈ SO(n) with Λ(0) = Λ has tangent vector of the form Λ̇(0) = ΛXabεab
where εab is the basis of skew-symmetric matrices given in (3.12). So we must
show

1

4

([
d

dt

∣∣∣∣
t=0

Λ

]
Λ(0)T

)ba
γaγb =

[
d

dt

∣∣∣∣
t=0

ρ(Λ(t))

]
ρ(Λ(0))−1 (3.28)
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for a path with Λ̇(0) = Λεcd. A possible such path is

Λ(t) = Λetεcd ∈ SO(n), (3.29)

and by Proposition 1 and c < d

ρ(Λ(t)) = ρe(t/2)γcγd . (3.30)

Write δ = d
dt
|t=0, so that

δΛ = Λεcd, δρ =
1

2
ργcγd. (3.31)

We compute
1

4
(δΛΛT )baγaγb =

1

4
Λb

`(εcd)
`
qΛ

a
qγaγb (3.32)

which becomes by (3.23)

1

4
(δΛΛT )baγaγb =

1

4
ρ(εcd)

`
qγqγ`ρ

−1 =
1

4
ρ(−γdγc + γcγd)ρ

−1. (3.33)

Therefore
1

4
(δΛΛT )baγaγb =

[
1

2
ργcγd

]
ρ−1 = δρρ−1 (3.34)

by (3.31). This concludes the derivation of (3.28).

3.3 Derivative of gamma matrices

Denote the spin connection by ∇ + A. Recall that γ ∈ Γ(T ∗M ⊗ End(S)).
For a vector field X, then γ(X) ∈ Γ(End(S)). The covariant derivative is
defined on Γ(End(S)) such that it satisfies the product rule

∇i(γ(X)η) = ∇i(γ(X))η + γ(X)∇iη. (3.35)

The right definition for this is

∇iγ(X) = ∂iγ(X) + Aiγ(X)− γ(X)Ai. (3.36)

In components, the induced connection on a endomorphism-valued 1-form is

∇iγa = ∂iγa − ωibaγb + Aiγa − γaAi. (3.37)
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Recall that γa are the constant components of γ = γa e
a in an orthonormal

frame {ea}. Therefore the first ∂i term in the above formula vanishes. In
fact, this geometry is setup such that

∇iγb = 0. (3.38)

Another way to write this identity (without indices) is

∇(γ(X)η) = γ(∇X)η + γ(X)∇η. (3.39)

To check ∇iγa = 0, we expand

Aγc − γcA =
1

4
(ωbaγaγbγc − ωbaγcγaγb) (3.40)

We have

γaγbγc = γa(−γcγb − 2δcb) = γcγaγb + 2δacγb − 2δcbγa, (3.41)

hence

ωbaγaγbγc = ωbaγcγaγb + 4ωacγa. (3.42)

Therefore, since ωac = ωac in an orthonormal frame,

Aγc − γcA = ωacγa (3.43)

Since γb is a constant matrix, then ∂iγb = 0 and putting everything together
shows

∇iγb = 0. (3.44)

3.4 Holonomy

For further details relating to this section, see [9].
Let E →M be a vector bundle with connection ∇. Let γ : [0, 1]→M be

a curve with γ̇ 6= 0. The pullback bundle γ∗E is a vector bundle over [0, 1].
It can be described as follows. Let E be trivialized by a cover M =

⋃
Uµ

with transition functions tµν . Then γ∗E is trivialized by
⋃
γ−1(Uµ) with

transition functions tµν ◦ γ. If ∇ = d+ A, then the pullback connection is

γ∗∇ = d+ γ∗A. (3.45)
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Let s be a local section of E. Then s ◦ γ is a local section of γ∗E. We say s
is parallel along γ if

(γ∗∇)(s ◦ γ) = 0. (3.46)

In a local trivialization, then

s ◦ γ =

s
1(t)
...

sk(t)

 (3.47)

and this condition reads

ṡα + γ̇iAi
α
βs

β = 0. (3.48)

This is an ODE for s(t), which admits a unique solution given initial condi-
tions. If the path γ(t) crosses two trivializations of E, we can stop the ODE
on the overlap and restart the corresponding ODE in the next trivialization.

Let e be a point in the fiber over γ(0). We define the parallel transport
map Pγ by

Pγ(e) = s(1), (3.49)

where s(t) is the unique section of γ∗E such that (γ∗∇)s(t) = 0 and s(0) = e.

Remark: parallel transport allows us to add/subtract sections at differ-
ent basepoints and make sense of expressions such as s(q)−s(p) evaluated at
p. To do this, connect p and q by a geodesic γ. Choose a frame {ea(p)} for
the fiber E|p and parallel transport this frame along γ. We can write s in this
basis so that s(q) = s(q)aea(q) and s(p) = s(p)aea(p). To parallel transport
s(q) along γ means to write s(t) = s(q)aea(t), so transporting s(q)aea(t) to p
produces s(q)aea(p) and we can interpret

s(q)− s(p) := (sa(q)− sa(p))ea(p). (3.50)

Next, we define holonomy. Let p ∈M . We define

Holp(∇) = {Pγ with γ : [0, 1]→M such that γ(0) = γ(1) = p}. (3.51)

The claim is this is a group with the operation being composition PγPη =
Pγ ◦ Pη. Furthermore, Pγ is an endomorphism of Ex, so after choosing a
trivialization we can view

Holp(∇) ⊆ GL(r,R). (3.52)
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Here r is the rank of E. A different choice of trivialization will produce a
different subgroup of GL(r,R), but these two groups agree up to conjuga-
tion by the change of basis formula. Also, we will omit the basepoint p in
the notation from now on, since it can be verified that different choices of
basepoints only change the group by conjugation of a matrix in GL(r,R).

To summarize our conventions, if we find a point p and a choice of trivi-
alization of E around p such that

Holp(∇) = G ⊆ GL(r,R), (3.53)

we will say that Hol(∇) = G, where G is an explicit group of matrices.

3.4.1 Orthogonal group

Let (M, g) be Riemannian manifold of dimension n. If ∇ is a connection on
TM satisfying ∇g = 0, then

Hol(∇) ⊆ O(n). (3.54)

Indeed, let V ∈ TpM such that g(V, V ) = 1 and let γ be a loop based at p.
We parallel transport V to obtain a section of γ∗TM denoted V (t). We also
obtain a section g◦γ of γ∗(T ∗M⊗T ∗M) denoted gij(t). Since (γ∗∇)V (t) = 0
and ∇g = 0 imply

d

dt
(gij(t)V

i(t)V j(t)) = 0, (3.55)

we conclude
g(PγV, PγV ) = 1. (3.56)

If we choose coordinates at p such that gij(p) = δij, then Pγ : Rn → Rn is an
orthogonal transformation.

3.4.2 Unitary group

Let (M, g) be equipped with an almost-complex structure J compatible with
g and a connection ∇ such that

∇g = 0, ∇J = 0. (3.57)

Let γ be a loop in M with γ(0) = p. Choose coordinates at p so that we
have

Pγ : R2n → R2n, gij(p) = δij, J =

[
0 In
−In 0

]
, (3.58)
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where In is the n×n identity matrix. We want to show that Pγ is J-invariant,
which means PγJ = JPγ. This is true since if V (t) satisfies (γ∗∇)V = 0, so
does

(γ∗∇)(JV ) = 0, (3.59)

so the transport of JV (0) is given by JV (t), as claimed. This implies that
Pγ can be identified with a complex matrix in GL(n,C) via

ι : GL(n,C)→ GL(2n,R), ι(A+ iB) =

[
A B
−B A

]
. (3.60)

(Check ι is a well-defined isomorphism.) By the previous section

Holp(∇) ⊆ O(2n). (3.61)

A direct check shows that if P ∈ O(2n) and PJ = JP then ι−1(P ) ∈ U(n),
where U(n) is the set of n× n unitary matrices. Indeed, expanding

[
A B
−B A

]T [
A B
−B A

]
=

[
In 0
0 In

]
(3.62)

yields

(A+ iB)†(A+ iB) = In. (3.63)

Thus

Hol(∇) ⊆ U(n). (3.64)

Here is another way to view this. If V ∈ T 1,0
p M , then PγJ = JPγ implies

that PγV ∈ T 1,0
p M . This means parallel transport descends to

Pγ : T 1,0
p M → T 1,0

p M. (3.65)

This is represented by a matrix [Pγ] ∈ GL(n,C), and since we showed earlier
that

H(PγV, PγV ) = H(V, V ), H(v, w) = g(v, w̄), (3.66)

then [Pγ] ∈ U(n).
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3.4.3 Special unitary group

Let (M, g) be equipped with a complex structure J and a nowhere vanishing
smooth (n, 0) form Ψ. Let ∇ be a connection on TM such that

∇g = 0, ∇J = 0, ∇Ψ = 0. (3.67)

Let p ∈ M . Choose complex coordinates at p, and possibly rescale Ψ, such
that

g|p =
∑

dzk ⊗ dz̄k, Ψ|p = dz1 ∧ · · · ∧ dzn. (3.68)

Let γ be a loop based at p. Let U1, . . . , Un ∈ T 1,0
p M be the tangent vectors

which appear as the standard basis in Cn in the complex coordinates above.
Let U1(t), . . . , Un(t) denote their parallel transport along γ(t). We showed
previously that

U1(t), . . . , Un(t) ∈ T 1,0
p M (3.69)

at all times t. We also have

d

dt
Ψ(U1(t), . . . , Un(t)) = 0. (3.70)

It follows that

1 = (dz1 ∧ · · · ∧ dzn)(PγU1, . . . , PγUn) = det [Pγ]. (3.71)

Here Pγ : T 1,0
p M → T 1,0

p M is parallel transport on T 1,0M . In the previous
section, we showed that [Pγ] ∈ U(n), and so

Hol(∇) ⊆ SU(n). (3.72)
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4 Calabi-Yau Geometry

4.1 From spinors to complex manifolds

4.1.1 Candelas-Horowitz-Strominger-Witten

We return to the setup of §2.2. Let (M, g) be a spin manifold of dimension
n = 6 with spinor bundle S → M . Let η ∈ Γ(S) be a nowhere vanishing
spinor of positive chirality satisfying

∇η = 0, η†η = 1. (4.1)

Let Jpq = iη†γpqη be the almost complex structure defined in §2.2. A calcu-
lation (given below) gives

∇J = 2iη†γpq∇η. (4.2)

From ∇η = 0, it follows that
∇J = 0. (4.3)

By (2.81) and the Newlander-Nirenberg theorem, it follows that M can be
given the structure of a complex manifold.

In string theory, equation (4.1) arises from supersymmetry conditions on
R3,1 ×M6. It was Candelas-Horowitz-Strominger-Witten [3] who observed
that M6 can be then be given the structure of a complex manifold, and this
brought string theory into the world of complex geometry. In fact, [3] further
showed that Ωijk = η̄Tγijkη̄ defines a nowhere vanishing holomorphic section
of the canonical bundle (we will discuss this in §4.4 below), making M6 a
Calabi-Yau threefold.

To do: add discussion on a converse. If M is complex manifold with
trivial canonical bundle, does M admit a spin structure? How to recover the
spinor η from the holomorphic volume form Ω? Related reference: [Atiyah:
Riemann surfaces and spin structures]

We now discuss the derivation of (4.2), which follows from the fact that
∇ obeys the Leibniz rule under Clifford multiplication by γ matrices. We
showed earlier that ∇γpq = 0. Then

∇J = i∇η†γpqη + iη†γpq∇η = 0. (4.4)

Next, we note η† ∈ Γ(S∗) and ∇η† is the induced connection on the dual
bundle S∗. If η is locally the column vector ηa, then η† is locally the row
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vector ηa = ηa, and

∇ηa = dηa − ηbAba. (4.5)

The spin connection is A = 1
4
ωbaγaγb. It satisfies

A† =
1

4
ωbaγ†bγ

†
a =

1

4
ωbaγbγa = −A. (4.6)

Here we used γ†a = −γa and ωab = −ωba. Therefore

∇ηa = dηa + Āabηb = dηa + Aabηb. (4.7)

It follows that ∇η† = (∇η)†.

4.1.2 Strominger

We will study a generalization of the above result, which is due to Strominger
[11]. Let (M, g) be a spin manifold of dimension n = 6. Let H be a 3-form.
We will encode this differential form into our geometry by introducing the
connection

∇̂ = ∇+
1

2
g−1H. (4.8)

Here ∇ denotes the Levi-Civita connection. If we write ∇̂ = d + A, the
connection forms are

Akij = Γkij +
1

2
gkpHpij. (4.9)

We also write Hk
ij = gkpHpij. The torsion of this connection is

Akij − Akjk =
1

2
Hk

ij −
1

2
Hk

ji = Hk
ij. (4.10)

We can induce ∇̂ on all associated bundles as usual. We note that ∇̂g = 0
for any 3-form H. Indeed,

∇̂igkj = ∇igkj −
1

2
Hm

ikgmj −
1

2
Hm

ijgkm = 0, (4.11)

since Hijk is skew-symmetric. Let η be a nowhere vanishing spinor of positive
chirality satisfying

∇̂η = 0. (4.12)
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Written out in more detail, the induced spin connection is

∇̂iη = (∇i +
1

8
Ha

i
bγbγa)η = 0. (4.13)

using the constant frame gamma matrices, and

∇̂iη = (∇i +
1

8
Hjikγ

kγj)η = 0. (4.14)

using curved coordinate gamma matrices. If we let Jpq = iη†γpqη as before,
then

∇̂J = 0, g(JX, JY ) = g(X, Y ). (4.15)

Unlike for the Levi-Civita connection, ∇̂J = 0 does not imply that J is
integrable for a non-zero 3-form field H. Strominger [11] proved that J is in
fact integrable for non-zero H provided the dilatino equation

(H + 2dφ) · η = 0, (4.16)

holds for some function φ (this function is called the dilaton function).

In Candelas-Horowitz-Strominger-Witten’s model, the 3-form field strength
H was set to zero and the scalar field φ set to a constant. Strominger proved
that we can arrive at complex geometry from the supersymmetric equations
∇̂η = 0, (H+2φ) ·η = 0 even with non-zero 3-form field H and non-constant
scalar field φ. We will present the derivation of this result in the following
sections. For another exposition of Strominger’s integrability theorem aimed
at mathematicians, see [8].

4.2 Connections in almost-complex geometry

The study of connections of the form ∇̂ = ∇ + H satisfying ∇̂J = 0 on
almost-complex manifolds can be found in Chapter VI.8 of Yano’s book [13].
We note that the condition ∇̂J = 0 implies that ∇̂ defines a connection on
the complex vector bundle T 1,0M . Before returning to spinors, we will need
the following lemma in the general setting of almost-complex geometry.

Lemma 2 Let J be an almost-complex structure on a Riemannian manifold
(M, g). Suppose J is compatible with g, meaning g(JX, JY ) = g(X, Y ). Let
H be a real 3-form and ∇̂ = ∇+ 1

2
g−1H. Suppose

∇̂J = 0. (4.17)
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If we let ω(X, Y ) = g(JX, Y ), then we must have

H = i(∂ − ∂̄)ω +H3,0 +H0,3, (4.18)

where H3,0 = H0,3 is given by the Nijenhuis tensor: if {ei} is a frame for
T 1,0M , then

Hijk = Nijk (4.19)

in components of this frame.

We note that H0,3 = 0 implies that M is a complex manifold, and can
thus be interpreted as an integrability condition similar to F 0,2 = 0 on
holomorphic vector bundles. We also note the notation ∂ω = (dω)2,1 and
∂̄ω = (dω)1,2.

Proof: Let xµ be local coordinates and write ∇̂ = d+A. Then if we write

ω =
1

2
ωµνdx

µ ∧ dxν , (4.20)

we have

dω =
1

2
∂αωµν dx

α ∧ dxµ ∧ dxν , (4.21)

which is

dω =
1

2
(∇̂αωµν + Aβαµωβν + Aβανωµβ) dxα ∧ dxµ ∧ dxν . (4.22)

We note that ∇̂ω = 0 since ∇̂g = 0 and ∇̂J = 0. Hence skew-symmetrizing
Aβαµωβν in α, µ, ν and then again for the second term, we obtain

dω =
1

3!
(Aβαµωβν + Aβναωβµ + Aβµνωβα)dxα ∧ dxµ ∧ dxν

+
1

3!
(Aβανωµβ + Aβµαωνβ + Aβνµωαβ)dxα ∧ dxµ ∧ dxν , (4.23)

and since Hβ
αµ = Aβαµ − Aβµα (4.10), then

dω =
1

3!
(Hβ

αµωβν +Hβ
ναωβµ +Hβ

µνωβα)dxα ∧ dxµ ∧ dxν . (4.24)

Since g is metric compatible, we have ω(X, Y ) = −g(X, JY ). We write this
as

ωαβ = −gα,Jβ. (4.25)
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Then

dω =
1

3!
(−Hβ

αµgβ,Jν −Hβ
ναgβ,Jµ −Hβ

µνgβ,Jα)dxα ∧ dxµ ∧ dxν , (4.26)

and in components

(dω)(∂α, ∂µ, ∂ν) = −(H(J∂α, ∂µ, ∂ν) +H(J∂ν , ∂α, ∂µ) +H(J∂µ, ∂ν , ∂α)).
(4.27)

Let ∂ω = (dω)2,1 and ∂̄ω = (dω)1,2, so that

dω = ∂ω + ∂̄ω + (dω)(3,0)+(0,3). (4.28)

Let {ei} be a local frame spanning T 1,0M . We then have

(∂ω)(ei, ej, ek̄) = −H(Jek̄, ei, ej)−H(Jej, ek̄, ei)−H(Jei, ej, ek̄), (4.29)

which becomes

(∂ω)(ei, ej, ek̄) = iH(ek̄, ei, ej)− iH(ej, ek̄, ei)− iH(ei, ej, ek̄), (4.30)

and we write this as which gives

Hk̄ij = i(∂ω)k̄ij. (4.31)

Since H̄ = H and ω̄ = ω, taking conjugates gives

Hk̄ ¯̀j = −i(∂̄ω)k̄ ¯̀j. (4.32)

This proves
H = i(∂ − ∂̄)ω +H3,0 +H0,3. (4.33)

Next, we use ∇̂J = 0 to relate H to N . The definition of ∇̂J in {xµ}
coordinates is

∇̂µJ
α
β = ∇µJ

α
β +

1

2
Hα

µνJ
ν
β −

1

2
JανH

ν
µβ, (4.34)

which implies

∇µJ
α
β = −1

2
Hα

µνJ
ν
β +

1

2
JανH

ν
µβ. (4.35)

By (2.81), we obtain

4Nα
µν = Jγµ(−1

2
Hα

γσJ
σ
ν +

1

2
JασH

σ
γν) + Jαγ(−

1

2
Hγ

νσJ
σ
µ +

1

2
JγσH

σ
νµ)

−Jγν(−
1

2
Hα

γσJ
σ
µ +

1

2
JασH

σ
γµ)− Jαγ(−

1

2
Hγ

µσJ
σ
ν +

1

2
JγσH

σ
µν)
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This is

4Nα
µν = −Hα

Jµ,Jν +HJα
Jµ,ν −Hα

νµ −HJα
Jν,µ. (4.36)

In a frame for T 1,0M denoted {ei} with indices i, j, k, we have

4N k̄
ij = −(i)2H k̄

ij + (−i)(i)H k̄
ij −H k̄

ji − (−i)(i)H k̄
ji. (4.37)

Lowering the index, we obtain

Nkij = Hkij (4.38)

as required. �

If we assume that the 3-form field strength satisfies H0,3 = 0, then by
(2.74) and N k̄

ij = H k̄
ij = 0, we conclude that N = 0 and the Newlander-

Nirenberg theorem gives the existence of holomorphic coordinates. In holo-
morphic coordinates {zi}, we write ω = igjk̄dz

j ∧ dz̄k, and the theorem gives
the expression

H = i2∂igjk̄dz
i ∧ dzj ∧ dz̄k − i2∂īgjk̄dz̄i ∧ dzj ∧ dz̄k (4.39)

which is

H =
1

2
(−∂igjk̄+∂jgik̄)dz

i∧dzj∧dz̄k+
1

2
(−∂īgjk̄+∂k̄gjī)dz

j∧dz̄i∧dz̄k (4.40)

Our conventions are

H =
1

2
Hijk̄dz

i ∧ dzj ∧ dz̄k +
1

2
Hjīk̄dz

j ∧ dz̄i ∧ dz̄k, (4.41)

so that

Hijk̄ = −∂igjk̄ + ∂jgik̄, (4.42)

and the other components of H are determined by taking conjugates or skew-
symmetry.

To do: derive the expression for ∇̂ in complex coordinates in terms of the
metric gk̄j and the Chern connection.
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4.3 Complex geometry with H-flux

The references for this section are [1, 11].

Let us recall the setup. Let (M, g) be a manifold of dimension n = 6 with
positive chirality spinor η with η†η = 1, let H be a 3-form and φ a scalar
function. Suppose this geometry satisfies the supersymmetric equations

∇̂η = 0, (H + 2dφ) · η = 0. (4.43)

Here we use the notation

(H + 2dφ) · η =
1

3!
Hαβγγ

αβγη + 2∂µφγ
µη, (4.44)

where

γijk =
1

3!
(γiγjγk + γkγiγj + γjγkγi − . . . ). (4.45)

We showed earlier that this structure equips M with an almost-complex
structure Jkj = iη†γkjη. In this section, we will follow Strominger’s [11]
calculation that N = 0, which implies that M admits the structure of a
complex manifold.

First, we noted in (2.44) that if the index i denote a frame {ei} of T 1,0M ,
then

γiη = γ īη = 0. (4.46)

The gamma matrix identity {γµ, γν} = −2gµνI in real coordinates xµ be-
comes in the frame {ei, ei}:

γ2
i = 0, γiγj = −γjγi, γiγ

j̄ = −γ j̄γi (4.47)

and

{γi, γj̄} = −2gij̄I, {γi, γj} = −2δij, (4.48)

since gij = gīj̄ = 0. These relations will be frequently used. We also note the
following gamma matrix identities.

Lemma 3

[γmn, γ
r] = 2(δm

rγn − δnrγm) (4.49)

{γmnp, γr} = −2(δrmγnp + δrpγmn + δrnγpm). (4.50)
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Proof: This follows from repeated application of

γmγ
n + γnγm = −2δm

n. (4.51)

Indeed

γmnγ
r =

1

2
(γmγn − γnγm)γr

=
1

2
(−γmγrγn + γnγ

rγm − 2δrnγm + 2γnδ
r
m), (4.52)

and applying it again gives

[γmn, γ
r] =

1

2
(2δrmγn − 2δrnγm − 2δrnγm + 2γnδ

r
m) (4.53)

which gives the first identity. For the second, we start with

γmγnγpγ
r = −γmγnγrγp − 2γmγnδ

r
p

= γmγ
rγnγp + 2γmδ

r
nγp − 2γmγnδ

r
p

= −γrγmγnγp − 2δrmγnγp + 2γmδ
r
nγp − 2γmγnδ

r
p. (4.54)

Therefore

{γmγnγp, γr} = 2(−δrmγnγp + δrnγmγp − δrpγmγn). (4.55)

Skew-symmetrizing gives

{γmnp, γr} =
1

3
(−δr [mγnγp] + δr [nγmγp] − δr [pγmγn]) (4.56)

and so
{γmnp, γr} = −δr [mγnγp]. (4.57)

This is

{γmnp, γr} = −δrmγnγp− δrpγmγn− δrnγpγm + δrnγmγp + δrpγnγm + δrmγpγn.
(4.58)

and so
{γmnp, γr} = −2(δrmγnp + δrpγmn + δrnγpm). (4.59)

�

The main result of this section is:
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Corollary 2 Let (M, g,H, φ) be as before, solving

η†η = 1, ∇̂η = 0, (H + 2φ) · η = 0. (4.60)

The almost-complex structure Jkj = iη†γkjη is integrable: M admits the
structure of a complex manifold. The 3-form field H satisfies H0,3 = 0 and
is given by H = i(∂ − ∂̄)ω. In holomorphic coordinates, H satisfies the
constraint

gpq̄Hq̄pk = 2∇kφ. (4.61)

Remark: we note the similarity with the Hermitian-Yang-Mills equations
for a 2-form field strength F on a complex manifold, which is gpq̄Fpq̄ = 0 and
F 0,2 = 0. This is because the HYM equation can be derived from a similar
supersymmetric equation F · η = 0.

Proof: In this calculation, indices i, j, k etc represent a local frame {ei}
for T 1,0M . The full tangent bundle TCM is then generated by the frame
{ei, ei}. In this frame, the dilatino equation (H + 2φ) · η = 0 becomes

1

6
Hijkγ

ijkη+
1

6
Hīj̄k̄γ

īj̄k̄+
3

6
(Hījkγ

ījk+Hīj̄kγ
īj̄k)η = −2(∂iφγ

i+∂īφγ
ī)η. (4.62)

Since γ īη = γiη = 0, we have

Hīj̄k̄γ
īj̄k̄η = 0. (4.63)

We also have

γrHīj̄kγ
īj̄kη = Hīj̄k{γr, γ īj̄k}η

= Hīj̄k(−2)(δ īrγ
j̄k + δkrγ

īj̄ + δj̄ rγ
kī)η

= 0. (4.64)

Therefore
Hīj̄kγ

īj̄kη = 0. (4.65)

The dilatino equation then reduces to

1

6
Hijkγ

ijkη +
3

6
Hījkγ

ījkη = −2(∂iφ)γiη. (4.66)

We multiply through by γr to obtain

1

6
Hijk{γr, γijk}η +

1

2
(Hījk{γr, γ ījk})η = −2∂iφγrγ

iη. (4.67)
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Applying (4.50)

1

6

[
Hijk(−2)(δirγ

jk + δkrγ
ij + δjrγ

ki)

]
η

+
1

2

[
Hījk(−2)(δ īrγ

jk + δkrγ
īj + δjrγ

kī)

]
η

= −2(∂iφ)γrγ
iη (4.68)

Simplifying and using γ īη = γiη = 0, we obtain

−Hrjkγ
jkη + (−Hījrγ

īj −Hīrkγ
kī)η = −2(∂iφ)(0− 2δir)η. (4.69)

This becomes
−Hrjkγ

jkη −Hījrγ
īγjη = (4∂rφ)η (4.70)

which, by γjγ ī + γ īγj = −2gjī is

−Hrjkγ
jkη + 2Hījrg

jīη = (4∂rφ)η. (4.71)

We now multiply through by γs, and use γsη = 0 to obtain

−Hrjk[γs, γ
jk]η = 0. (4.72)

By (4.49),
Hrjk(δ

j
sγ

k − δksγj)η = 0 (4.73)

which implies
Hrskγ

kη = 0. (4.74)

Multiplying by γq implies

0 = Hrskγqγ
kη = −2Hrskδ

k
qη, (4.75)

hence Hrsq = 0. Therefore the dilatino equation (4.71) implies

gkīHīkr = 2∂rφ, Hijk = 0. (4.76)

We note that taking the conjugate gives the barred version Hīj̄k̄ = 0 and

2∂¯̀φ = gpq̄Hq̄p` = gqp̄Hqp̄¯̀ = −Hp
p¯̀. (4.77)

Next, we use ∇̂η = 0, which implies that ∇̂J = 0. The relevant discussion
is already contained in §4.2: by Lemma 2 we have that Hijk = 0 implies
H = i(∂ − ∂̄)ω and Nijk = 0. �
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4.4 Holomorphic volume form

The references for this section are [1, 11].
In the previous section, we entered the realm of complex geometry starting

from equations on spinors. In this section, we will show that the complex
manifold M6 is also equipped with a holomorphic volume form. We say
that Ω ∈ Ω(n,0)(M) on a complex manifold of complex dimension n is a
holomorphic volume form if locally

Ω = f(z)dz1 ∧ · · · ∧ dzn (4.78)

for a non-vanishing holomorphic local function f(z). If M admits a holomor-
phic volume form, we say that M has trivial canonical bundle.

Theorem 3 Let (M, g) be a compact spin manifold of dimension n = 6. Let
η be a positive chirality nowhere vanishing spinor satisfying

η†η = 1, ∇̂η = 0, (4.79)

(H + 2dφ) · η = 0, (4.80)

where H is a 3-form and φ is a function, and ∇̂ = ∇ + 1
2
g−1H. Then M

admits the structure of a complex manifold with holomorphic volume form Ω
and non-Kähler hermitian metric g satisfying

d(|Ω|gω2) = 0. (4.81)

The structure (M, g,Ω) on the complex manifold M can be viewed as a
non-Kähler Calabi-Yau structure. The standard definition in the literature
of a Calabi-Yau manifold requires a complex manifold with trivial canonical
bundle and Kähler metric g satisfying dω = 0. Here we obtain a complex
manifold with trivial canonical bundle with d(|Ω|gω2) = 0.

Recall that our conventions are ∇+
αη = ∇αη + 1

8
Hµανγ

νγµη, and by our
work so far, we know that M is a complex manifold, and

Hp
pk = 2∇kφ, Hp

pk̄ = −2∇k̄φ, (4.82)

Hk̄ij = −∂igk̄j + ∂jgk̄i. (4.83)

We now show that M has trivial canonical bundle by writing down the holo-
morphic volume form.

Ω = (e−2φη̄Tγijkη̄) dzi ∧ dzj ∧ dzk. (4.84)

This is well-defined by a similar argument to the one which shows J is well-
defined.
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Proposition 4 Ω is a nowhere vanishing holomorphic (3, 0) form with norm

|Ω|g = e−2(φ+φ0) (4.85)

for some constant φ0.

Proof: We compute in complex coordinates

∇¯̀Ωijk = ∇¯̀(e−2φη̄Tγijkη̄) = −2(∇¯̀φ)Ωijk + 2e−2φη̄Tγijk∇¯̀η̄. (4.86)

This used γTijk = γijk, ∇ηT = (∇η)T , and

((∇η)Tγijkη)T = ηTγijk∇η. (4.87)

The equation ∇̂η = 0 (4.14) gives

∇¯̀η̄ = −1

8
Hα¯̀βγ

βγαη̄, (4.88)

where α, β are real coordinates. Since γ īη = 0 and H0,3 = 0, in complex
coordinates this is

∇¯̀η̄ = −1

8
Hp̄¯̀qγ

qγ p̄η̄. (4.89)

Using γqγ p̄ + γ p̄γq = −2gqp̄, we obtain

∇¯̀η̄ =
1

4
Hp̄¯̀qg

qp̄η̄, (4.90)

which is by (4.77)

∇¯̀η̄ =
1

2
(∇¯̀φ)η̄. (4.91)

Substituting into (4.86) gives

∇¯̀Ωijk = −(∇¯̀φ)Ωijk. (4.92)

On the other hand, by definition

∇¯̀Ωijk = ∂¯̀Ωijk − Γα¯̀iΩαjk − Γα¯̀jΩiαk − Γα¯̀kΩijα, (4.93)

where α denotes real coordinates. Since Ω is type (3, 0) in complex dimension
3, this implies

∇¯̀Ωijk = ∂¯̀Ωijk − Γp¯̀pΩijk. (4.94)
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The Christoffel symbols are

Γp¯̀p =
gpr̄

2
(−∂r̄g¯̀p + ∂¯̀gr̄p + 0), (4.95)

which is by (4.40) and (4.77)

Γp¯̀p =
gpr̄

2
Hpr̄ ¯̀ = ∇¯̀φ. (4.96)

Therefore
∇¯̀Ωijk = ∂¯̀Ωijk − (∇¯̀φ)Ωijk (4.97)

Combining (4.92) and (4.97), we obtain

∂¯̀Ωijk = 0. (4.98)

This proves that ∂̄Ω = 0, and so Ω is holomorphic. We can also compute the
unbarred derivative

∇`Ωijk = −2(∇`φ)Ωijk + 2e−2φη̄Tγijk

[
− 1

8
Hα`βγ

βγαη̄

]
, (4.99)

using real α, β. In holomorphic coordinates, this is

∇`Ωijk = −2(∇`φ)Ωijk+2e−2φη̄Tγijk

[
− 1

8
Hp̄`qγ

qγ p̄η̄− 1

8
Hp̄`q̄γ

q̄γ p̄η̄

]
. (4.100)

The last term is zero. Indeed,

γijkγ
q̄γ p̄η̄ = γ q̄γ p̄γijkη̄ = Ψijkγ

q̄γ p̄η = 0 (4.101)

where Ψijk = η̄Tγijkη̄ are scalar 3-form components. The identity γijkη̄ =
Ψijkη will be shown later in (4.131). We use it directly for now, and conclude

∇`Ωijk = −2(∇`φ)Ωijk + 2e−2φη̄Tγijk

[
1

4
Hp̄`qg

p̄qη̄

]
. (4.102)

Thus

∇`Ωijk =

[
− 2∇`φ−

1

2
Hp

p`

]
Ωijk = [−3∇`φ]Ωijk. (4.103)

Therefore, using the induced metric on (3, 0) forms,

|Ω|2g = gip̄gjq̄gkr̄ΩijkΩ̄p̄q̄r̄ (4.104)
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∇`|Ω|2g = 〈∇`Ω,Ω〉+ 〈Ω,∇¯̀Ω〉 = −4∇`φ‖Ω‖2 (4.105)

and
∇`( log |Ω|g + 2φ) = 0, (4.106)

which on a compact manifold implies that log |Ω|g = −2φ−2φ0 for a constant
φ0. �

It remains to show d(|Ω|gω2) = 0. This identity was observed by Li-Yau
[10]. Expanding d(|Ω|gω2) = 0, we must equivalently show that

∂ log |Ω|g ∧ ω2 + 2∂ω ∧ ω = 0. (4.107)

A computation with Hijk̄ = −∂igjk̄ + ∂jgik̄ shows

2∂ω ∧ ω = θ ∧ ω2, θ = θidz
i, θi = gik̄Hk̄ij. (4.108)

Since ∂j log |Ω|g = −2∂jφ (4.106) and Hp
pj = 2∂jφ (4.61), then ∂ log |Ω|g =

−θ, which proves (4.107).

4.5 Holonomy in SU(3)

Let (M, g) be a spin manifold of dimension n = 6 with 3-form H, function
φ, and positive chirality spinor η. To summarize, we showed that the spinor
constraints η†η = 1, ∇̂η = 0 and (H + 2dφ) · η = 0 imply the existence of
(g, J,Ψ) such that

∇̂g = 0, ∇̂J = 0, ∇̂Ψ = 0, (4.109)

where

Ψ =
Ω

|Ω|g
. (4.110)

In fact, J and Ψ are explicitly constructed by

Jαβ = iη†γαβη, Ψijk = e−2φ0 η̄Tγijkη̄, (4.111)

where φ0 is a constant. It follows that

Hol(∇̂) ⊆ SU(3). (4.112)

Note that for a general complex manifold (M, g, J), the condition Hol(∇̂) ⊆
SU(3) does not imply that M has holomorphically trivial canonical bundle.
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The holonomy constraint gives the existence of a parallel smooth section of
KM , but it need not be holomorphic.

If we set H = 0 and φ = const, then

Hol(∇LC) ⊂ SU(3). (4.113)

In this case, the structure (M, g, J,Ψ) is a Kähler Calabi-Yau structure: g is
a Kähler Ricci-flat metric and Ψ is a holomorphic volume form with |Ψ|g =
const. The SU(3) structure satisfying (4.109) is a generalization of this
geometry to the non-Kähler setting.

4.6 Special Lagrangian submanifolds

In this section, we give an exposition of the calculation of Becker-Becker-
Strominger [2] (see [1] for a textbook reference). The study of special La-
grangians in the non-Kähler setting can be found in joint work [4] with T.
Collins, S. Gukov and S.-T. Yau.

Let (M, g, η+) be a manifold of dimension 6 with nowhere vanishing pos-
itive chirality spinor η+ with 3-form field H and scalar field φ. Suppose the
supersymmetric equations of Theorem 3 are satisfied, so that M admits an
integrable complex structure Jpq = iη†+γ

p
qη+ and holomorphic volume form

Ωijk = e−2φη̄Tγijkη̄. We will also use the ∇̂ parallel 3-form Ψ:

Ψ =
1

|Ω|g
Ω, Ψijk = η̄Tγijkη̄, |Ψ|g = 1. (4.114)

Let
X : L3 →M6 (4.115)

be a parametrized submanifold of real dimension 3. In local coordinates,
X = (X1, . . . , X6) with X i(u1, u2, u3). The metric g induces a volume form
on L denoted

µ = dvolL ∈ Λ3(L,R). (4.116)

From the submanifold X : L3 → M6, we can construct an operator Γ on
spinors given by

Γη :=
1

3!
µαβγ∂αX

M∂βX
N∂γX

PγMNPη. (4.117)

Here α, β, γ are coordinate indices on L3 and M,N,P are real coordinates
on M6. It turns out that Γ† = Γ and Γ2 = I; we will discuss some aspects of
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this calculation in Lemma 4. Then Γ breaks the spinor bundle into +1 and
−1 eigenspaces. Thus the submanifold defines another notion of “chirality”
of spinors, and we look for positive pairs (L3, η):

Γη = η. (4.118)

This equation arises in string theory from supersymmetry, and it will lead
to the equation for special Lagrangian cycles [1]. Using the projection P− =
1
2
(I − Γ) to the (−1) eigenspace, it can also be written as P−η = 0.

We now fix the spinor η+ inducing the complex structure as before, and
look for special submanifolds solving

P−(ηθ) = 0, ηθ = eiθη+ + e−iθη− (4.119)

on L, where P− ∈ Γ(X∗EndS) is given by

P− =
1

2

(
I − 1

3!
µαβγ∂αX

M∂βX
N∂γX

PγMNP

)
. (4.120)

We use the notation η− = η+ for the corresponding spinor of negative chiral-
ity. We will denote

AMNP = µαβγ∂αX
M∂βX

N∂γX
P , (4.121)

which is anti-symmetric in MNP . Our goal is to understand the implications
of the equation P−(ηθ) = 0 on the geometry of L. We start by simplifying
the expression

P−(ηθ) = eiθη+ − eiθ
AMNP

3!
γMNPη+ + e−iθη− − e−iθ

AMNP

3!
γMNPη−. (4.122)

Since γiη+ = 0, if i, j, k denote indices for complex coordinates then

1

3!
AMNPγMNPη+ =

(
1

2
Aijk̄γijk̄ +

1

2
Aij̄k̄γij̄k̄ +

1

3!
Aīj̄k̄γīj̄k̄

)
η+. (4.123)

We compute each of these terms one by one.

• The term γijk̄η+ contributes zero, since

γijk̄η+ =
1

3!
(γiγjγk̄ − γjγiγk̄)η+ = 0 (4.124)
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using {γj, γk̄} = −2gk̄jI and γiη+ = 0.

• Next, we compute

γij̄k̄η+ =
1

6
(γiγj̄γk̄ − γj̄γiγk̄ − γiγk̄γj̄ + γk̄γiγj̄)η+. (4.125)

Commuting the γi to annihilate η+ gives

γij̄k̄η+ = (−gj̄iγk̄ + gk̄iγj̄)η+. (4.126)

The symmetry Aij̄k̄ = −Aik̄j̄ implies

Aij̄k̄γij̄k̄η+ = −2Aij̄k̄gj̄iγk̄η+. (4.127)

• The last term is γīj̄k̄η+. We start by noting that

span {η−, γ1̄η+, γ2̄η+, γ3̄η+} = S− (4.128)

Indeed, we observed in (2.26) that these vectors all lie in S−, and at a point
where gk̄j = δkj they are orthogonal. For example (η†−γīη+)T = −(η†−γīη+)

and (γīη+)†γj̄η+ = −η†+γiγj̄η+ = 2gj̄i.

Commuting γ7 with γī, we see that γīj̄k̄η+ ∈ S−. Taking the inner product
with η− gives

η†−γīj̄k̄η+ = Ψīj̄k̄. (4.129)

by definition of the 3-form Ψ. Therefore

γīj̄k̄η+ = Ψīj̄k̄η− +
3∑
i=1

aiγīη+. (4.130)

Acting by γ1̄ gives zero since γīj̄k̄ is the skew-symmetrization of γ1̄γ2̄γ3̄ and
γ2

1̄ = 0. Therefore 0 = a2γ1̄γ2̄η+ + a3γ1̄γ3̄η+, and acting by γ2̄ gives a3 = 0.
Similarly a1 = a2 = 0. We thus have

γīj̄k̄η+ = Ψīj̄k̄η−. (4.131)

Altogether,

1

3!
AMNPγMNPη+ = −Aij̄k̄gj̄iγk̄η+ +

1

3!
Aīj̄k̄Ψīj̄k̄η−, (4.132)
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and

2P−(ηθ) = eiθη+ + eiθAij̄k̄gj̄iγk̄η+ − eiθ
1

3!
Aīj̄k̄Ψīj̄k̄η−

+e−iθη− + e−iθAījkgījγkη− − e−iθ
1

3!
AijkΨijkη+. (4.133)

To understand the condition P−(ηθ) = 0, we now set the coefficient of
each independent component in (4.133) to zero.

• Setting the coefficient of each γk̄η+ to zero gives

Aij̄k̄gij̄ = 0, for all k. (4.134)

This expands to
µαβγ∂αX

i∂βX
j̄∂γX

k̄gij̄ = 0, (4.135)

which implies
∂αX

i∂βX
j̄gij̄ − ∂βX i∂αX

j̄gij̄ = 0. (4.136)

The (1, 1) form associated to the metric is ω = igkj̄dz
k ∧ dz̄j. It follows that

(X∗ω)αβ =
∂X i

∂uα
ωij̄

∂X j̄

∂uβ
+
∂X j̄

∂uα
ωj̄i

∂X i

∂uβ
= 0. (4.137)

• Setting the part involving η+ to zero gives

eiθ − e−iθ 1

3!
AijkΨijk = 0. (4.138)

This implies
1

3!
µαβγ∂αX

i∂βX
j∂γX

kΨijk = e2iθ (4.139)

Therefore
(X∗Ψ)αβγ = e2iθµαβγ. (4.140)

Altogether, the condition P−(ηθ) = 0 is equivalent to

X∗ω = 0, X∗Ψ = e2iθdvolL (4.141)

which in the Kähler Calabi-Yau case (dω = 0, dΨ = 0) is the special La-
grangian condition. In the non-Kähler case, in terms of the holomorphic
volume form this condition is

ω|L = 0, Ω|L = e2iθ|Ω|g dvolL (4.142)

since Ψ = |Ω|−1
g Ω where Ω is the holomorphic volume form.

We end this section with a computation showing that P− can be viewed
as a projection.
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Lemma 4 The operator P− = 1
2
(I − 1

3!
AMNPγMNP ) satisfies

P †− = P−, P 2
−ηθ = P−ηθ. (4.143)

Proof: Let

Γ =
1

3!
AMNPγMNP . (4.144)

Then it suffices to show Γ† = Γ and Γ2ηθ = ηθ. That Γ† = Γ follows from
γ†a = −γa. We now compute the square. By (4.132),

Γ2η+ =
1

3!
AMNPγMNP (−Aij̄k̄gj̄iγk̄η+ +

1

3!
Aīj̄k̄Ψīj̄k̄η−) = (I) + (II). (4.145)

The first term, in dimension 3 with γ1̄2̄3̄γk̄ = 0, is

(I) = −1

2
Amn̄p̄Aii

k̄γmn̄p̄γk̄η+ −
1

2
Amnp̄Aii

k̄γmnp̄γk̄η+ = (Ia) + (Ib). (4.146)

We compute using {γi, γj̄} = −2gij̄ to commute γm, and γmη+ = 0,:

(Ia) = − 1

3!
Amn̄p̄Aii

k̄(γmγn̄γp̄γk̄ − γn̄γmγp̄γk̄ + γn̄γp̄γmγk̄)η+

= − 1

3!
Amn̄p̄Aii

k̄(−γn̄γmγp̄γk̄ − 2gn̄mγp̄γk̄ + γn̄γp̄γmγk̄

+2gp̄mγn̄γk̄ − 2gmk̄γn̄γp̄)η+ (4.147)

Commuting γm again:

(Ia) = − 1

3!
Amn̄p̄Aii

k̄(−2gmk̄γn̄γp̄ + 2gp̄mγn̄γk̄ − 2gn̄mγp̄γk̄ − 2gk̄mγn̄γp̄

+2gp̄mγn̄γk̄ − 2gmk̄γn̄γp̄)η+. (4.148)

Regrouping and relabeling, this is

(Ia) = Amn̄p̄Aiimγn̄γp̄η+ + Amm
p̄Aii

k̄γp̄γk̄η+. (4.149)

The second term is zero by symmetry γp̄γk̄ = −γk̄γp̄, so

(Ia) = Amn̄p̄Aiimγn̄γp̄η+. (4.150)
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We move on to the next term. We compute using γiη+ = 0 and {γi, γj̄} =
−2gij̄,

(Ib) = − 1

(2)(3)
Amnp̄Aii

k̄(γmγnγp̄γk̄ − γmγp̄γnγk̄ + γp̄γmγnγk̄)η+

= − 1

(2)(3)
Amnp̄Aii

k̄(−4gmp̄gnk̄ + 4gnp̄gmk̄ − 4gmp̄gnk̄)η+

= −2Ajj
nAiinη+. (4.151)

This term is zero by symmetry. Indeed, by the definition of A and the
definition of the pullback (4.137), and the identification ωjk̄ = igjk̄, ωk̄j =
−igjk̄, it is

Ajj
nAiin = µαβγ∂αX

j∂βX
k̄gjk̄∂γX

nµµνρ∂µX
i∂νX

l̄gil̄∂ρX
m̄gnm̄

=
i−3

23
µαβγµµνρ(X∗ω)αβ(X∗ω)γρ(X

∗ω)µν (4.152)

Since X∗ω is a 2-form on a manifold L3 of dimension 3, and µ123 and its signed
permutations are the only non-zero contributions of µ, all contributions to
the term (Ib) cancel. Thus

(I) = Amn̄p̄Aiimγn̄γp̄η+. (4.153)

Next, we analyse the second group of terms given by

(II) =
1

(3!)2
AmnpAīj̄k̄γmnpΨīj̄k̄η− +

1

(2)(3!)
Am̄npAīj̄k̄γm̄npΨīj̄k̄η− (4.154)

Since γijkη− = Ψijkη+, the first term is

(IIa) =
1

(3!)2
AmnpAīj̄k̄ΨmnpΨīj̄k̄η+

=
µαβγ

3!
(X∗Ψ)αβγ

µρστ

3!
(X∗Ψ)ρστη+

=
X∗Ψ

µ

X∗Ψ

µ
η+

= |X∗Ψ|2X∗gη+. (4.155)

We normalized such that |Ψ|g = 1, so

(IIa) = η+. (4.156)
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The next term is

(IIb) =
1

(2)(3!)
Am̄npAīj̄k̄γm̄npΨīj̄k̄η−. (4.157)

We use (4.127) to obtain

Am̄npγm̄npη− = Amn̄p̄γmn̄p̄η+

= −2Amn̄p̄gmn̄γp̄η+

= −2Am̄npgm̄nγpη−

= +2Ann
pγpη−. (4.158)

Thus

(IIb) =
1

3!
Ann

pAīj̄k̄Ψīj̄k̄γpη− =
1

3!
Ann

pAīj̄k̄γpγīj̄k̄η+. (4.159)

By skewsymmetry, and relabeling p,n, this is

(IIb) =
1

3!
App

nAīj̄k̄γnγīγj̄γk̄η+. (4.160)

Commuting γn gives

(IIb) =
1

3!
App

nAīj̄k̄
[
− γīγnγj̄γk̄η+ − 2gnīγj̄γk̄η+

]
=

1

3!
App

nAīj̄k̄
[
− 2gnk̄γīγj̄η+ + 2gnj̄γīγk̄η+ − 2gnīγj̄γk̄η+

]
This adds up to

(IIb) = −AppnAnīj̄γīγj̄η+. (4.161)

Therefore
(II) = η+ − AppnAnīj̄γīγj̄η+ (4.162)

Adding (4.153) and (4.162) together, we obtain

Γ2η+ = η+ + (App
n̄An̄

īj̄ − AppnAnīj̄)γīγj̄η+. (4.163)

We will show below that the second term vanishes by symmetry, and so
Γ2η+ = η+. The identity Γ2η− = η− follows by taking the conjugate, since
the gamma matrices from §1.2 are real.
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It remains to understand the vanishing of

(App
n̄An̄

īj̄ − AppnAnīj̄) =
i−2

2
µαβγµσνρ(X∗ω)αβ(X∗ω)γσ∂νX

ī∂ρX
j̄. (4.164)

The pullback of ω appears by definition of A and (4.137). That this quantity
vanishes can be seen by direct computation using that X∗ω is a 2-form on a
manifold L3 of dimension 3 and the only nonzero components are (X∗ω)12,
(X∗ω)13, (X∗ω)23, µ123 and signed permutations. �

4.6.1 Extremizing property

We now look for extremizing properties of X : L3 → M6. The square term
which will give us the inequality is

|P−ηθ|2 = η†θP
†
−P−ηθ = η†θP−ηθ. (4.165)

Here we used properties of P− derived in the previous section. Substituting
(4.133) and using orthogonality of the basis of S+, S− gives

|P−ηθ|2 = 1− e−2iθ 1

3!
AijkΨijk − e2iθ 1

3!
Aīj̄k̄Ψīj̄k̄. (4.166)

Multiplying through by |Ω|gµ and using the definition of A and Ψ = |Ω|−1
g Ω

implies

(|P−ηθ|2|Ω|gµ)|L = (|Ω|gµ)|L − e−2iθΩ|L − e2iθΩ|L. (4.167)

Integrating over L gives∫
L

(e−2iθΩ + e2iθΩ) =

∫
L

|Ω|gµ−
∫
L

|P−ηθ|2|Ω|gµ. (4.168)

Therefore, for any submanifold L3, we have∫
L

(e−2iθΩ + e2iθΩ) ≤
∫
L

|Ω|gµ (4.169)

with equality if and only if (4.142) is satisfied. Since dΩ = 0 defines a
cohomology class [Ω] ∈ H3(M,C), we can rewrite this inequality as

2Re {e−2iθ[Ω] · [L]} ≤
∫
L

|Ω|gdvolL. (4.170)
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We conclude that a 3-cycle L minimizes

L 7→
∫
L

|Ω|gdvolL (4.171)

in its homology class [L] ∈ H3(M,R) if and only if

ω|L = 0, e−iϕ̂Ω|L = |Ω|gdvolL (4.172)

for an optimal phase eiϕ̂ satisfying e−iϕ̂[Ω] · [L] ∈ R. Thus special La-
grangian submanifolds are optimal representatives of their homology class
[L] ∈ H3(M,R).
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