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These are expository notes on spin and complex geometry in dimension
n = 6. We will discuss how natural equations on spinors lead to the notion
of a non-Kahler Calabi-Yau threefold.
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1 Clifford Algebra

In this section, we review the basics of Clifford algebras. Some references for
this section are the lecture notes of O’Farrill [7] and Woit [12].
1.1 Spin group

Let R™ be Euclidean space with Euclidean inner product (-,-). Let eq,... e,
be the standard orthonormal basis for R™. The Clifford algebra Cliff(n) is
the R-algebra generated by ey, ..., e, subject to the relation

e -ej+ej-e =—20;1 (1.1)
Here 1 is the unit in the algebra. In particular,
el = —1, ee;=—eje;, i#j. (1.2)
So for example, elements of Cliff(2) look like R-linear combinations of

L, €1, €2, eres. (1.3)

In general, the R-vector space underlying Cliff(n) has dimension 2".

The algebra Cliff(n) is independent of the choice of orthonormal basis
{e;}. In particular, a*> = —1 for any a = a’e; with ||a||* := > (a’)* = 1. This
implies that for k € Z>,, the inverse of

U=ap-ay---ay (1.4)
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is
U_l = a9k * A9k—1 A1 (15)

for ||a;|| = 1. The spin group Spin(n) is defined as
Spin(n) = {ay - - - ag, € Cliff(n) : a; € R", ||a;|| =1, k € Z>1}, (1.6)
where the group operation is Clifford multiplication. Here are some examples.
e Spin(1) = {+1, —1}.
e Spin(2) = U(1). Let a; = (cosf,sinf) and ay = (cos ¢, sin ¢), so that

ajas = (cosfe; +sinfey) - (cospe; + sinpes)
= —cosfcos¢ —sinfsing + (cosfsin ¢ — sinf cos P)ees
= cos(@ — ¢+ ) +sin(f — ¢+ m)eqes. (1.7)

Thus pairs ayas can be identified with elements of the form cos ) +sin v eqes.
A product of these satisfies

(cos iy + sinthy erey) - (costhy + sin i)y ege9)
= cos(t1 + o) + sin(¢y + 1) ere. (1.8)

Thus we can identify
(cost) +sinvejey) e € U(1), (1.9)

and this identification is compatible with multiplication.
e To do: Spin(3) = SU(2).

Theorem 1 Let u € Spin(n). The action of u on vectors v € R™ given by
v uvu (1.10)

is well-defined and a rotation in SO(n). This construction gives rise to a
surjective homomorphism

¢ : Spin(n) — SO(n), (1.11)

which is two-to-one.



Proof: We only sketch the proof. Let a be a unit vector and v € R™. The
Clifford algebra relation implies

ava™' = —vaa"' — 2(a,v)a"? (1.12)

1

and so since ¢~ = —a, the conjugation action is

v = —(v—2{a,v)a). (1.13)

The linear transformation v — v — 2(a, v)a is a reflection in the hyperplane
with normal a, as it fixes all vectors orthogonal to a and sends a — —a.

Therefore the action of u = ay - -+ ag, € Spin(n) given by v — wvu~! is

an even product of reflections, which is a matrix in SO(n). To show that
@ is surjective, one can use the Cartan-Dieudonné Theorem, which states
that any orthogonal transformation is a product of reflections. We leave the
computation of the kernel of ¢, which is kerp = {£1}. O

Note that both u and —u give rise to the same rotation in SO(n). It can
be shown that for n > 3, Spin(n) is the universal cover of SO(n).

The theorem attaches to each u € Spin(n) a matrix M, € SO(n) and
gives the identity
uesu™" = (M,)";ex, (1.14)
where {e;} is the standard basis in R™. Here we use the Einstein summation
convention, where an index which is repeated implies a summation.

We now prove an identity for lifting paths on SO(n) to paths on Spin(n).
Since Spin(n) is a double-cover of SO(n), there are two lifted paths, but if
we find one lift u(t) € Spin(n) of A(t) € SO(n), then the other lifted path is
just —u(t). Let j < k and €, be an n x n matrix with jk entry —1, kj entry
1, and all other entries 0. A rotation by angle # in the jk plane is given by

exp 0¢ j. (1.15)
We will prove the following lifting identity:
Proposition 1
© <exp %ejek) = expteji. (1.16)
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Proof: To be concrete, we consider 7 = 1 and k = 2. We must compute
the action

[ 2]
v = exp 2®yexp 29, (1.17)
We start with
0 0 1,6 1.6
exp (56162> =1+ 5(6162) + 5(56162)2 + 5(56162)3 +.... (1.18)
Noting (ej1e9)? = —1, we obtain
0 _1192+192+ +9193+
exp 26162 = 5\ 9 A1 5 Ce 5 30 5 ... J€e1€a.
(1.19)
Therefore
0 6 .0
exp Jaer | = cos 3 + sin Jeez. (1.20)
As an aside, since
+sinDeres = (cos 2 ey +sin & ) - (—e1) (1.21)
cos — + sin — = (cos = sin — eg) - (— )
9 111 26162 9 €1 1mn 9 €9 €1
we see that p
exp (56162) € Spin(n). (1.22)
Let v = vle; + v2ey. Then
exp serez (vlel + U262) exp —Feex
0 . 1 5 0 .0
= (cos = +sin—ejeq)(v'e; + v7ey)(cos = — sin —ejeq) (1.23)
2 2 2 2
This becomes
0 0 0 0 0
(cos 51)161 + cos 5’0262 + sin Evleg — sin 51)261)(008 3 sin 56162) (1.24)
which becomes
0 0 0 0 0
cos? —vle; + cos? —v?ey + sin — cos —v' 2

€9 — sin — cos —v7e;
2 2 2 2 2 2

6 0 0 0 0

+sin ~ cos —~v'ey — sin = cos ~v?e; — sin? ~v'e; — sin? —v?e,.(1.25)
2 2 2 2 2 2



Using double-angle formulas, this becomes
(cos Ov' — sin Gv?)e; + (cos Ov? + sin Ov')e,. (1.26)

Therefore, the path

u(t) = exp ((t/2)ere2) € Spin(n) (1.27)
acts by
a(t) (vl er +es)ult) " = [er o] [©O5F TRV (1.28)
! 2 b "l sint cost | |02 '
We also have that
u(t)epu(t) ™ =ep, k>3 (1.29)
Thus
cost —sint 0
e(u(t)) = |sint  cost 0 (1.30)
0 0 I

and u(t) corresponds under ¢ to the path
exp (teiz) € SO(n). (1.31)

For example, we note

0 —1 cost —sint
eXPp (t [1 0 1) a [Sint cost ] ' (1.32)
which shows that exp (fz12) is indeed a rotation by # in the plane spanned
by e1,es. U

As a consequence, we can compute
@, 1 spin(n) — so(n). (1.33)
Differentiating the lifted path, we see that € should be identified with %ej-ek.

1
Pr5€iCk = Eji- (1.34)
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1.2 Gamma matrices

To be concrete, in these notes we will view the Clifford algebra as an al-
gebra of matrices. By this, we mean that we will use a homomorphism
v @ Cliff(n) — Matxx(C), and we will denote v; = 7y(e;) (the gamma ma-
trices). We will build examples of gamma matrices by using the following
building blocks:

0 1 0 — 1 0
01:[1 O:|, 0'2:|:Z. O:|, 0'3:|:O _1}, (135)

and

1 :igl = |:O (Z):| , T2 :idg = |:_01 (1):| , T3 :igg = |:EI) 0:| . (136)

[ —1

We note the identities:

Uiz = Ioxa, 7'12 = —Izyxo,

0,05 = —0,04, TiTj = —T;T; for 4 7£ j

0109 = iO‘g, 0103 = —iO'g, 0903 = iOl,

T1T2 = —T3, T1T3 = T2, T273 = —T1. (1.37)

Here are some examples of Clifford algebras represented as a matrix algebra.

e v : Cliff (1) — Mat;;(C). We can identify 7; = i to obtain the complex
numbers.

e v : Cliff (2) — Matoyxo(C). We can identify
N=T, Y2 = T (1.38)

In other words, the algebra contains

0 ¢ 0 1 —1 0 10
T = |:Z 0:| y V2 = |:_1 0:| y M2 = |:0 2:| ) ]2><2 — |:0 1:| ) (139)
and their R-linear combinations.
o v : Cliff(3) — Matyx4(C). We can identify

N =T1® e, V2=T2® loxa, Y3=—-T3R 0. (1.40)
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Here we use the notation

anB cee alnB
A® B = : : (1.41)
(InlB s @nnB

where A, B € Mat,x,(C) and A ® B € Mat,2,,2(C). The product satisfies
(A® B)(C ® D) = (AC) ® (BD). The algebra contains

YY2 = T3 loxa, MYz =Te® 01, Y2Y3=T1 Q01
MY2Ys = —laxa @01, 1= Iy ® loyo,

and their R-linear combinations.

The focus of these notes is Calabi-Yau threefolds, and so we omit the cal-
culation of Cliff(4) and Cliff(5), and move on to our main example: Cliff(6).

e v : Cliff (6) — Matgys(R). We can identify

Y1 =T2 ® laxa ® 01
Yo =To ® Ioxo @ 03
13 =01 QT2 ® Iax2
Y4 =03 R To ® laxo
Vs = loxa @01 @ Ty
Y6 = Iaxo ® 03 @ To. (1.42)

We note that all these matrices happen to be real, which did not occur in
our previous examples. We also note that 7] = —~; is anti-symmetric.

Remark: This sort of explicit matrix representation of a Clifford algebra
exists in arbitrary dimension: see the Weyl-Brauer matrices.



2 Spinors and Almost-Complex Structures

2.1 Spinor bundles

Let M be an oriented manifold of dimension n with metric g. Recall that
orientability reduces the transition functions of the tangent bundle to ma-
trices with positive determinant, and the existence of a metric reduces the
transition functions of the tangent bundle to orthogonal matrices by a Gram-
Schmidt process.

We can then choose a covering of M with transition functions Ay for
the tangent bundle T'M such that Ayy € SO(n).

AUV UNnvV — SO(n) (21)

More concretely, let {e!}”; denote a local orthonormal oriented frame over
U, and {e/}1, over V. On U NV, then

eV () = e () AviFi(2). (2.2)

]

In terms of components, an arbitrary tangent vector X = Xie! = Xie!
appears as a column vector X;; over U and as column vector Xy, over V', and

transforms as ' '
X = Apv'e Xt (2.3)

The Cech data (U, N Ug, Ay,u,) satisfies the cocycle condition
Avo = id, ApvAviwAwe = id. (2.4)
A spin structure Spin(n) — M is a lift
Ayy : UNV — Spin(n), (2.5)

such that )
p(Ayv (7)) = Apv(z), zeUNV (2.6)

where ¢ is defined as in (1.11) and
AUV = ld, [\UV[\VW]\WU = id. (27)

Remark: Spin structures may not exist. Their obstruction is the vanishing
of wy(M). To do: explain the wy(M) = 0 condition, give example of spin
structures on Riemann surfaces.



As discussed in the previous section, let us make a choice and represent
the Clifford algebra by complex matrices. Let

v @ Cliff(n) — Matyxx(C) (2.8)
be an algebra homomorphism. We will denote
p : Spin(n) — Matgyx(C) (2.9)

to be the representation of the spin group which is the restriction of 7.

From a spin structure Spin(n) — M and a Clifford algebra matrix rep-
resentation 7 : Cliff (n) — Matyyx(C), we construct a rank k complex vector
bundle S — M as follows: set the transition functions on the overlap U NV
to be p(Ayy ). Sections ¢ € I'(S) of this bundle will be called spinors. Con-
cretely, a spinor is defined by local functions

Yy U — C* (2.10)
which transform on U NV by
wU = p([\Uv)’lbv. (211)

We next discuss the gamma matrices in this geometric context. Let v, be the
generators chosen in (2.8) to represent the Clifford algebra. The key relation
(1.14) becomes then

p(A)7up(R) ! = A%y, (2.12)
Let X be a vector field. The identity is then
p(A)1(X)p(A) ! = 7(AX). (2.13)

Using X, we will now define an endomorphism of spinors denoted (X). For
this, we use a local orthonormal frame E = {e,} over U, write the vector
field as X = X¢e, and a spinor locally as a column vector ¢ = g over U,
and write

V(X)) = XgvaVe. (2.14)

We will sometimes also write (X)) locally as v(Xg) = X%v,. Here the ~,
are fixed chosen generators of the Clifford matrix algebra, such as the ones
explicitly displayed in §1.2. We now prove that ¢ — (X)) sends sections
of S to sections of S.
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Proposition 2 The above formula defines a sectiony € I'((TM)*®End S).

Proof: Suppose we have two overlapping trivializations, one with frame
E = {e,} and another with frame F' = {f,}, and let A be the transition
function for TM on the overlap and A the lift from the spin structure. A
spinor 1 appears as ¥g in the frame E and ¢ in the frame F. A tangent
vector appears as X = Xfe, in the frame E and X = X f, in the frame F.

To show that (X )y produces another spinor, we need to show that it
transforms correctly, namely

V(Xp)Ys = p(R)1(Xp)tr. (2.15)
Our conventions as setup earlier give the transformation laws
Vg = p(Mp, Xp=AXp. (2.16)
Then ) }
Y Xp)e = v(AXF)p(A)Yr = p(A)Y(XF)¥r, (2.17)

by (2.13). This proves the formula (2.15). O

To summarize,
Y=y (XY (2.18)

is a legitimate operator on spinors. The strange thing to note here is that we
always use the same constant matrices ,, even though the vector components
X transform as (2.3) if we change frames. For any frame E then y(e,) = 7a
are the same constant gamma matrices multiplying local spinor components
g, even though the spinor components g transform in different frames.

2.2 Dimension n =6

References for this section are Candelas-Horowitz-Strominger-Witten [3], Becker-
Becker-Schwarz [1] and Lawson-Michelson [6]. Our application to differential
geometry will take place in dimension n = 6.

2.2.1 Setup

Let 71,...,7% be the 8 x 8 real matrices exhibited in (1.42) representing
generators of Cliff(6). These satisfy

{Vas W} = =200, Yo = —Ya (2.19)
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It follows that 7y, = I. The representation of Spin(6) by matrices obtained
by using these gamma matrices, denoted p, is contained in the orthogonal
matrices.

p : Spin(6) — O(8) (2.20)

This is because

plar - ag)plar -~ age)” = y(ar) - - y(agr)y(age)” - -y(a)" =1 (2.21)

for any a; € R™ with ||a;|| = 1.
We will use the notation

Y7 1= P Y1727374Y5 Y- (2.22)

We can check from the definition that

=1 ~ =, (2.23)

and
VVa = —YaVs W =7 W =1 (2.24)
Let V = C® be the complex vector space on which the 7; matrices act by
matrix multiplication. From (2.23), the eigenspaces of 77 have eigenvalues
+1, and we may split
V=Vtev . (2.25)

This decomposition in orthogonal, since for ¢, € V* and ¢_ € V~, then
?ﬁi?ﬁ— = wiﬁwﬂ = —wi?ﬂ,. We note that

Yo : VT = V™ (2.26)
is an isomorphism. To show 7, is surjective, write v € V= as v = Y,(—7,0)
and note that —y,v € V7.

2.2.2 Positive chirality spinors

Going back to the geometric setup, let (M, g) be a Riemannian manifold of
dimension n = 6 equipped with a spin structure, and use the representation
p : Spin(6) — O(8) from the previous section. Let S — M be the associated
spinor bundle: it is a rank 8 complex vector bundle with transition functions
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p(Ayy), where Ay is the lift of the SO(n) transition functions Ayy on the
tangent bundle. We note that given a spinor v, then the bilinear

Pl (2.27)
gives a well-defined function on the manifold, since on an overlap UNV', then
Uive = vl p(Apv) p(Apv )y = iy (2.28)

Here the dagger notation refers to the conjugate transpose.
Next, we check that if ¢ is a spinor, then 779 is a well-defined spinor. For

this, just like Proposition 2, we show 77p(A) = p(A)7y7. This can be done by
repeatedly applying p(A)y.p(A)~' = Ab.7y, and using that A is orthogonal
and determinant 1. Thus

v7 € I'(EndS) (2.29)

and the spinor bundle S breaks into two subbundles S = S, & S_. Spinors
which are sections of S, i.e. satisfying y,n = n, are said to have positive
chirality.
Next, we’ll need in the next section the notion of a pure spinor. For a
spinor 7, let
W, ={ve (ITcM):y(v)n =0} (2.30)

On a manifold of even dimension n, a spinor 7 is pure if at each point p then
dim (W,))], = n/2. (2.31)
A special property of dimension n = 6 is that

Lemma 1 Let (M, g) be a spin manifold of dimension n = 6. Let n, be a
nowhere vanishing spinor of positive chirality. Then n. is a pure spinor.

Proof: To do: include proof. See Lawson-Michelsohn [6]. [
Note that if v, w € W, from

(Y(W)y(w) +y(w)y(v))n = —2g(v,w)n (2.32)

we conclude g(v,w) = 0 and g(v,v) = 0. Since v is a complexified vector,
this does not imply that v = 0. (The subspace W, is isotropic.) If we let
H(v,w) = g(v,w) be the induced Hermitian inner product, then

H(v,w) =0 (2.33)
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for all v,w € W,. This means that for a pure spinor 7, we can break the
complexified tangent bundle into two subbundles

TcM =W, & W, (2.34)

by taking the orthogonal complement of W, using the inner product H(-,-).

2.2.3 Almost-complex structure

First, some notation on orthonormal frames and coordinates: let {e,} be a
local orthonormal frame of TM in (M, g) and let z° be local coordinates. We
can write one basis in terms of the other, and we will use the notation

0 0
B e%iCq, €q=€q—. (2.35)

oxt

This leads to the identities e%e’, = dup, €7 ,% = d;;, and
9ij = Z e%e%, Oy = €'4€"43i;. (2.36)

We denote
Yi = eai’}/a. (237)

This notation can be confusing. When denoted with indices i, j, k, the matri-
ces 7y; are not constant, but the matrices ~, with indices a, b, ¢ are the explicit
constant matrices exhibited earlier in (2.19). In other words, using (2.36),
our conventions are such that

{vi vt = 2951, {Va W} = —20ul. (2.38)
We use the notation .
Yij = 5(%’%‘ o ’Yj%‘)~ (2.39)
We can also raise indices

Recall that an almost-complex structure is an endomorphism J : TM —
TM which satisfies J?> = —I. The main result of this section is the almost-
complex structure constructed by Candelas-Horowitz-Strominger-Witten [3].
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Proposition 3 Let (M, g) be a spin manifold of dimension n = 6. Let n,
be a nowhere vanishing spinor of positive chirality (such that ymy = ny)
normalized by 77177+ = 1. Then

J*5 = inl Ayt s (2.41)
equips M with an almost-complex structure compatible with g, meaning that
g(JX,JY)=g(X,)Y). (2.42)

Proof: We first verify J is real using 7] = —v,, (7*;)7 = —+*;, which

gives
inl s me = —int (V%) ne = infy¥m.. (2.43)
Next, we verify that J is a well-defined endomorphism. Indeed,

e €'(EndS®AY(M))

e+, €'(EndS®EndTM)

o nlyim, € T(End TM).

This is because we noted in Proposition 2 that v; is an endomorphism of
spinors with cotangent bundle index i, and (2.28) allows us to form bilinears
with 7,

Next, we define

TYM = {v e TcM : v(v)n, = 0}. (2.44)

We noted earlier that in this dimension, then 7, is a pure spinor, and by
(2.34) we can decompose

TeM =T"M @ TYOM. (2.45)

We claim that for v € T*°M, then Jv = iv and Jo = —iv. This implies the
defining identity of an almost-complex structure

J*e b, = =6, (2.46)
which is a long computation to check directly. To see Jv = v, we compute
kavj = inT’ykjvjn = inT(’ykfyj + 6kj)vjn, (2.47)

using the identity
7’“% = 'ykj - 5kj. (2.48)
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Since (y;07)n =0,

JE vl = i(ntn)* = ", (2.49)
as desired. In fact, Jv = iv implies that ~(v)n, = 0, so that
TYM = {v € TeM : Jv = iv}. (2.50)

Indeed, if Jv = iv then from (2.47) we obtain nifyk’y(v)n+ = 0, and contract-
ing with vy gives niy(v)’y(v)mr = 0 which implies (v(v)ny)"y(v)ny = 0 since

7:2 = ~a-
Finally, we need to verify
Imn = ka(]engkf- (251>
First, we note
Jmn = _Jmm Jmn = ganpma (252>
since
Jon = 771—7an+ (2'53>
and vy, is skew-symmetric by definition. Therefore
kajengkz = kajlm = - nkam = _gankakm = +Gnm- (254>
Here we used J? = —1I. Therefore g satisfies
9(X.Y) =g(JX,JY) (2.55)
as claimed. [
We can also define
w(X,Y)=g(JX,Y) (2.56)

which is a skew-symmetric 2-tensor, i.e. w € Q*(X). In terms of the spinor
ny, this is wi, = inl vy

By the identities for v7 (see (2.23), and the equation below), many other
tensors formed by bilinears vanish.

d 771%;77+ =0

e 7 ying =0

® 01 =0

o ni%ljkn+ =0.

The 3-form 7% v;;,m; is non-zero, and later in these notes we will discuss
its properties. To show e.g. 7]3_%7” = 0, we note

ntvine = (yne) ey = =0y, (2.57)
since 7y = =77
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2.3 Nijenhuis tensor

In the previous section, we showed that a nowhere vanishing positive chirality
spinor 1y on (M, g) with dim M = 6 produces an almost-complex structure
J compatible with the metric g. Thus spinors have brought us into the field
of almost-complex geometry. In this section, we review some basics of the
general theory of almost-complex geometry.

Let M be a manifold of dimension 2n. An almost complex structure

J : TM — TM satisfies J?> = —I. In components, it acts on tangent vectors
V =V0; by ' '
(JV) = J',VP. (2.58)
Since J% = —1I, we can split
TeM =T"M @ T"'M (2.59)

where T1M is the +i eigenspace of J and T%' M is the —i eigenspace of .J.
Explicitly,
T)°M = span{X —iJX : X € T,M}. (2.60)

Here T'M is the real tangent bundle, and Tec M = T'M ® C is the complexified
tangent bundle, where we allow linear combinations of vectors in T'"M with
complex coefficients. We see that an almost-complex structure produces a
complex vector bundle T%°M — M of rank n.

From the decomposition (2.59), we can decompose differential forms into

(p, q) type.

AN (Te) = > A(TOM) @ AT M) = Y QPiM).  (2.61)

p+q=k p+q=k
In terms of local frames, if {e;} is a local frame of T*°M then
{e1, ... €en€1,...,En} (2.62)
locally generates TcM and
A AEP AN A Aeda (2.63)

locally generates QP4(M). Here {e'} is the dual frame to {e;}. For example,
a 3-form 7 can be written as

n =130 Pl b2 4 03, (2.64)
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where
77370(61’7 €j, ek) = 77(% €5, 6k)7
7]3’0(6_1'7 6j7 ek) - 773’()(6_1') e_ju ek) - 7]3’0(6_727 e_ja a) - 07 (265>
and similarly for the other components, e.g. n*!(e;, e;,éx) = n(e;, €5, €x).
Let g be a metric on M which is compatible with J, which means that
g(JV, JW) = g(V,W). We will denote
gij = 9(%%’)» Gi; = g(éh@j), gi; = g(éiaéj)- (2-66)
Compatibility with J implies that

and hence only the metric components gj; = g, are non-zero. Since g is real
and symmetric, then

Ikj = Yik- (2.68)
The Nijenhuis tensor N : TM x TM — T M is defined by

N(X,Y) = i([JX, JY] = J[JX,Y] = J[X,JY] - [X,Y]). (2.69)

The interpretation of N is that it measures the failure of 71°M being closed
under taking the Lie bracket: let U,V € T*°M, so that

1

NUV) = Z(iQ[U, V] —iJ[U, V] —iJ[U, V] = [U,V])
_ —%([U, V] 4 iU, V). (2.70)
For any vector X, we can write
X = %(X _iIX)+ %(X +iJX), (2.71)
and this gives the decomposition TeM = TOM @ T M, i.e.
XM = %(X —iJX), X% = %(X +iJX). (2.72)

With this interpretation, then

N(U,V) = —[U, V% (2.73)
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Similarly,
N(U,V)=0. (2.74)

It follows that N = 0 if and only if [U, V] € T"YM for all U,V € T*OM.
In a frame {e;} generating 7'M, then this discussion implies that N is
determined by the components NZ»’;.

Next, let’s write

N = %Npmn dz™ N dz" ® 0, (2.75)
and look at the components of the Nijenhuis tensor. We have
4N (O, 0p) = [J'n0i, J* 0] — T[T n0i, 0p) — J [0, J 03], (2.76)
which becomes
AN (O, On) = J'n 03 J7 00y — J* Ok 100 + J (00 P10 0,) — J (0 J 0 0;). (2.77)
which simplifies to
AN (O, Op) = (J9m 04 0, — J104 I i + JP (0nJy — JP 01 J %) 0. (2.78)
Then
NP = i(qu(?qun + JP 0 — J1004 I — JP 0 ). (2.79)

Writing
VP =030 + T8 . J" — T4, T (2.80)

for the Levi-Civita connection, a calculation gives the expression
1
NP, = Z(quVqun + PNV — TN I — TP N ) (2.81)

since I'}; = '
The Newlander-Nirenberg theorem relates almost-complex structures with
N =0 to holomorphic coordinate charts. A proof can be found in e.g. [5].

Theorem 2 Let J be an almost-complex structure on a real manifold M. If
N; =0, then M admits a complex structure: there are holomorphic coordi-
nates making M a complex manifold.
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As a consequence of (2.81), we obtain:

Corollary 1 Let J be an almost-complez structure on a manifold (M, g). Let
V denote the Levi-Civita connection. If V.J = 0, then M admits holomorphic
coordinates making M a complex manifold.

We will denote holomorphic coordinates by {z'}. The corresponding real
coordinates {(z*,y*)} will be denoted

K=ok ik 2 =ab iy (2.82)

and we denote

0 1/ 0 0 0 1/ 0 .0
o = a\aw o) am s\ Tla ) W)

Note that the dual vector field to dz* = da* + idy* is 8%6. From a complex
manifold, we obtain an almost-complex structure J by setting
0 .0 0 0

R A
o2k~ oz Yoz T ok

} (2.85)

and this is well-defined since change of coordinates are holomorphic. J is a
real endomorphism of the real tangent bundle, since in terms of real coordi-
nates {(z%,y")} it is

(2.84)

In other words,

9
.

p

0
Tpl’OM = Span{ 51

0 0 0 0

In {(2%, ")} coordinates, the endomorphism .J appears as the constant matrix

%] = { InOXn _ng”} . (2.87)

From (2.79), we see that N; = 0.
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3 Connections on Bundles

3.1 Notation

Let (M, g) be an oriented Riemannian manifold. Let £ — M be a com-
plex vector bundle of rank k trivialized by coordinate charts {U,} and with
transition matrices {(Us N Ug, ty,u,)}

tuy - unv — Mathk((C). (31)

Recall that this means that sections s € I'(E) appear as a collection of local
functions {U,, sy, } with the sy : U — C* satisfying

Sy = tUVsV (32)

k

on overlaps UNV. From the point of view of trivializing local frames {e¥ }*_,

this means a section can be written as s = (sy)*(eV), over U and (e¥), =
(e")stova.

A connection V on E is given by a collection of local matrix-valued 1-
forms {U,, Ap,}, so that Ay = (Ay)idx’ with (Ay); : U — Matg,(C),
satisfying

(Av)i = tov (Av)ityy — dituviyy, (3.3)
on overlaps U N V. This definition is so that V = d + A defines a derivative
of sections of E: if we define the derivative on local components by

Visu = Oisu + (Av)isu, (3.4)
then
viSU = tUVVisV. (35)

This transformation law implies that Vxs € T'(E) for any vector field X.
Here we let Vys = X'V,sy where X = X'0; over U. If o, 3 indices track
the column vector index, then we write the derivative on local components
(3.4) as

V;s% = 6i8a + Aiaﬁsﬁ. (36)

We can also understand connections from the point of view of local frames
rather than local components. Using local frames, we write s = s“¢, and the
connection acts by

Vo, s = 0;5%q + sV, 60 = (0;5" + Aio‘gsﬂ)ea, (3.7)
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where Vj.e, = Aiﬁaeg.

Here is how this notation appears in the case of the tangent bundle.
Let V be a metric compatible covariant derivative such as the Levi-Civita
connection. In a coordinate chart {2’} a vector field V = V-2 has covariant
derivative

Vo,V =(ViV) 0, ViV'=0V' +TI},V?, (3.8)
and the connection coefficients are denoted by Ffj rather than A;*;. We will
also use trivializations of the tangent bundle which do not come from local

coordinates, but instead from a local orthonormal frame {e,}. Let e, = €',0;
be an orthonormal frame of T'M and write vector fields as V' = V%,

Vaiv = (&Vb —+ wibaV“)eb (39)

where Vy,e, = w;’,e;, denote the connection coefficients in this frame. Let w;
be the matrix with entries [wi]ba = w;?,. Since V is metric compatible with
g, it follows that w;%, = —w;%. Indeed, metric compatibility means

0= g(Va.earer) + glea, Va,ep), wi’a = g(Vo,ea,es). (3.10)

This is one difference from working with an orthonormal frame {e,} and w;®,
rather than a coordinate frame {9;} and I'};. Thus we can write w; in terms
of a basis of skew-symmetric matrices. For example, in dimension n = 3 then

0 -1 0 00 —1 00 0
wi=w? |1 0 0] 4+w’ [0 0 0] +w |00 —1 (3.11)
0 0 0 10 0 01 0

and in general we have
wi=Y weaw. (3.12)
a<b
Here ¢;; with i < j is the n x n matrix with a —1 at the (ij) entry and 1 at
the (ji) entry, and ; = 0. The coefficients w;"* in this matrix sum are just
W' = w;%,. If we let ey, = —eg4p for a < b, then we can write this using the
full sum over all a, b:

1 ba
wi =3 Xb:wi Eab- (3.13)

In parallel with the notation in (3.4), in an orthonormal frame the Levi-
Civita connection can be written as acting on components of vector fields

by
1
V.V =0,V + §wiba5ab V. (3.14)
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We now motivate the definition of the spin connection. Let (M, g) be a man-
ifold of dimension n with spin structure Spin(n) — M and let 7 : Cliff(n) —
Matg«,(C) be a matrix representation. As discussed earlier, this produces a
spinor bundle S — M. Since the double cover ¢ : Spin(n) — SO(n) iden-
tifies €45 with %%% via ¢, (1.34), we guess that the connection induced by
the Levi-Civita connection on sections 1) of the spin bundle S — M acts on
components by

1
Vi = 0 + sz‘ab%%ﬂ)- (3.15)

Recall 7, denotes the fixed y-matrices 7, . ..,7, corresponding to the stan-
dard basis of R" in the representation v : Cliff(n) — Matxx(C). We will
verify that this formula gives a well-defined connection on spinors in the
following section.

But before that, we introduce more notation. It will sometimes be useful
to write the spin connection using curved, varying gamma matrices. Recall
our conventions for coefficients relating the orthonormal frame {e,} and the
coordinate frame {0;}: e, = €',0; and 9; = e%e,. We write v; = €%, for
the curved gamma matrices which vary from point to point. We also write
wi? = el eFyw;%. Then the spin connection in coordinates {z'} is

1 .

Verifying this is a straight-forward calcultion using e%e?, = §%,.

3.2 Spin connection

Let’s verify that the spin connection

1
Vi = 0 + sz’ab%%w- (3.17)

is a legitimate connection. Here the indices a, b represent an orthonormal
frame. Let

AX) = ;lwba(X)’ya”yb. (3.18)

Let (U, {eV}_)), (V,{eY}"_,) be an overlap of trivializations by orthonormal
frames of TM. We need to show

Ay = pAyp~t —dpp". (3.19)
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Here p: UNV — GL(k,C) is given by p(z) = v(A(x)), where
A:UNV = SOn), Y =elA, (3.20)

is the transition function for 7'M, and the spin structure gives us lifts /N\(.%') €
Spin(n). If wy is the local connection form of the Levi-Civita connection over
U, then we have
wy = Awy AT — dAAT. (3.21)
Therefore
1 T T\ba

Ay = Z(AwVA — (dN)A)* Y. (3.22)
The defining identity for the spin group lift of A is (1.14), which we rewrite
here

pYap~t = Mo (3.23)
We start by proving

1
Z—l(AwVAT)b“%% = pAyp L. (3.24)

Converting matrix multiplication to index notation, we have

1 1
Z(AwVAT)b“”ya’yb = Z—leCd A%va Aboyp. (3.25)
From (3.23), we obtain
1 T\ba 1 ba -1 -1
1 Awv A ) yam = Zov™ (prap™) (P00 ™) (3.26)

and hence (3.24) follows. Next, we need to show
1
L (AANT Y5, = dp(A)p(A) (3.27)
Let A € SO(n), and recall TASO(n) = {AX : X € Lie(SO(n))}. Any path
0)

A(t) € SO(n) with A(0) = A has tangent vector of the form A(0) = AX%e,,
where £, is the basis of skew-symmetric matrices given in (3.12). So we must

show
L] pTayr) v = [
4\ dt|,_, T =
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for a path with A(0) = Ae.y. A possible such path is
A(t) = Aefet € SO(n), (3.29)

and by Proposition 1 and ¢ < d

p(A(t)) = pelt/Pera, (3.30)
Write § = 4,_, so that
1
0N = Aey, Op= 3PN (3.31)
We compute
1 1
Z(éAAT)ba’Ya’Yb = ZAbﬁ(gcd)éqAaq'Va'Vb (3.32)
which becomes by (3.23)
1 T\ba 1 ¢ -1 1 -1
7 OAAT oy = 2 p(eca) ¢vgmep™ = p(=vave + eva)p™ (3.33)
Therefore . .
7 (OAAT) gy = bmm] pt=0dpp~" (3.34)

by (3.31). This concludes the derivation of (3.28).

3.3 Derivative of gamma matrices

Denote the spin connection by V + A. Recall that v € T'(T*M ® End(S5)).
For a vector field X, then «(X) € I'(End(S)). The covariant derivative is
defined on I'(End(S)) such that it satisfies the product rule

Vi(y(X)n) = Vi(v(X))n +v(X)Vin. (3.35)

The right definition for this is
Viy(X) = 0y(X) + Ay(X) — v(X)A. (3.36)
In components, the induced connection on a endomorphism-valued 1-form is
Vite = 00 — WM + AiYa — YaAi- (3.37)
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Recall that v, are the constant components of v = 7, e® in an orthonormal
frame {e,}. Therefore the first 0; term in the above formula vanishes. In
fact, this geometry is setup such that

Vi = 0. (3.38)
Another way to write this identity (without indices) is
V(X)) = v(VX)n +~(X)Vn. (3.39)

To check V;v, = 0, we expand

Aye — A = i(wb“%ﬂb% — W YeYa ) (3.40)
We have
VoW Ve = Ya( =YW = 20) = YeVa Vo + 200V — 20t Vas (3.41)
hence
W Ya Vs Ye = WY Ya Vs + 4 Ya- (3.42)

Therefore, since w® = w®. in an orthonormal frame,
AYe — YA = W, (3.43)

Since 7, is a constant matrix, then 0;v, = 0 and putting everything together
shows

3.4 Holonomy

For further details relating to this section, see [9].

Let E — M be a vector bundle with connection V. Let 7 : [0, 1] — M be
a curve with 4 # 0. The pullback bundle v*E is a vector bundle over [0, 1].
It can be described as follows. Let E be trivialized by a cover M = (JU,
with transition functions ¢,,. Then 7*E is trivialized by (J7'(U,) with
transition functions t,, oy. If V.= d + A, then the pullback connection is

vV =d+y*A. (3.45)
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Let s be a local section of E. Then s o+ is a local section of v*E. We say s
is parallel along ~ if

(v*V)(son) =0. (3.46)
In a local trivialization, then
s'(t)
soy=| (3.47)
s*(t)
and this condition reads
§% + 41 A;%55" = 0. (3.48)

This is an ODE for s(t), which admits a unique solution given initial condi-
tions. If the path ~y(t) crosses two trivializations of E, we can stop the ODE
on the overlap and restart the corresponding ODE in the next trivialization.

Let e be a point in the fiber over v(0). We define the parallel transport
map P, by
Py(e) = s(1), (3.49)

where s(t) is the unique section of v*FE such that (7*V)s(t) = 0 and s(0) = e.

Remark: parallel transport allows us to add/subtract sections at differ-
ent basepoints and make sense of expressions such as s(q) — s(p) evaluated at
p. To do this, connect p and ¢ by a geodesic y. Choose a frame {e,(p)} for
the fiber E|, and parallel transport this frame along 7. We can write s in this
basis so that s(q) = s(q)%e.(q) and s(p) = s(p)®eq.(p). To parallel transport
s(q) along v means to write s(t) = s(q)%,(t), so transporting s(q)%e,(t) to p
produces s(q)%e,(p) and we can interpret

s(q) — s(p) := (s"(q) — 5"(p))ea(p)- (3.50)
Next, we define holonomy. Let p € M. We define
Hol, (V) = {P, with v : [0,1] — M such that v(0) = (1) =p}. (3.51)

The claim is this is a group with the operation being composition P, P, =
P, o P,. Furthermore, P, is an endomorphism of F,, so after choosing a
trivialization we can view

Hol,(V) € GL(r,R). (3.52)
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Here r is the rank of E. A different choice of trivialization will produce a
different subgroup of GL(r,R), but these two groups agree up to conjuga-
tion by the change of basis formula. Also, we will omit the basepoint p in
the notation from now on, since it can be verified that different choices of
basepoints only change the group by conjugation of a matrix in GL(r, R).

To summarize our conventions, if we find a point p and a choice of trivi-
alization of E around p such that

Hol,(V) = G C GL(r,R), (3.53)

we will say that Hol(V) = G, where G is an explicit group of matrices.

3.4.1 Orthogonal group

Let (M, g) be Riemannian manifold of dimension n. If V is a connection on
T M satistying Vg = 0, then

Hol(V) C O(n). (3.54)

Indeed, let V' € T,M such that g(V,V) =1 and let v be a loop based at p.
We parallel transport V' to obtain a section of v*T'M denoted V' (¢). We also
obtain a section goy of v*(T*M ®@T*M) denoted g;;(t). Since (v*V)V (t) =0
and Vg = 0 imply

OV V) =0 (3.55)

we conclude
g(PV,P,V) = 1. (3.56)

If we choose coordinates at p such that g;;(p) = d;;, then P, : R” — R™ is an
orthogonal transformation.

3.4.2 Unitary group

Let (M, g) be equipped with an almost-complex structure J compatible with
g and a connection V such that

Vg=0, V.J=0. (3.57)

Let v be a loop in M with 7(0) = p. Choose coordinates at p so that we
have

P, :R™ 5 R™,  gy(p) =8y, J= {_Oln ﬂ , (3.58)
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where I, is the n xn identity matrix. We want to show that P, is J-invariant,
which means P, J = JP,. This is true since if V (¢) satisfies (y*V)V =0, so
does

(VW) (JV) = 0, (3.59)

so the transport of JV(0) is given by JV(¢), as claimed. This implies that
P, can be identified with a complex matrix in GL(n,C) via

L GL(n,C) = GL2n,R), (A+iB) = [_AB ﬂ | (3.60)
(Check ¢ is a well-defined isomorphism.) By the previous section
Hol,(V) C O(2n). (3.61)

A direct check shows that if P € O(2n) and PJ = JP then . }(P) € U(n),
where U(n) is the set of n X n unitary matrices. Indeed, expanding

N (5.62)

yields
(A+iB) (A +iB) = I,. (3.63)

Thus
Hol(V) C U(n). (3.64)

Here is another way to view this. If V € Tpl’OM , then P,J = JP, implies
that P,V € Tpl’OM . This means parallel transport descends to

Py T)°M — T°M. (3.65)

This is represented by a matrix [P,] € GL(n,C), and since we showed earlier
that

H(P,V.P,V)=H(V,V), H(v,w)=g(v, ), (3.66)

then [P,] € U(n).
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3.4.3 Special unitary group

Let (M, g) be equipped with a complex structure J and a nowhere vanishing
smooth (n,0) form V. Let V be a connection on T'M such that

Vg=0, VJ=0, V=0 (3.67)

Let p € M. Choose complex coordinates at p, and possibly rescale ¥, such
that
qlp :Zdzkébdék, |, =dz" Ao A d2" (3.68)

Let ~ be a loop based at p. Let Uy,...,U, € Tpl’OM be the tangent vectors
which appear as the standard basis in C" in the complex coordinates above.
Let Uy(t),...,U,(t) denote their parallel transport along ~(t). We showed

previously that
Ui(t),...,Un(t) € T,°M (3.69)

at all times t. We also have

d
ZUUL),.. . Uu(1)) = 0. (3.70)

It follows that
1= (dz" A+~ ANd2")(PUy, ..., P,U,) = det [P,]. (3.71)

Here P, : Tpl’OM — T;’OM is parallel transport on TH°M. In the previous
section, we showed that [P,] € U(n), and so

Hol(V) C SU(n). (3.72)
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4 Calabi-Yau Geometry

4.1 From spinors to complex manifolds
4.1.1 Candelas-Horowitz-Strominger-Witten

We return to the setup of §2.2. Let (M, g) be a spin manifold of dimension
n = 6 with spinor bundle S — M. Let n € I'(S) be a nowhere vanishing
spinor of positive chirality satisfying

V=0, nn=1. (4.1)

Let J?, = in'y?,n be the almost complex structure defined in §2.2. A calcu-
lation (given below) gives

VJ = 2in'y?, V. (4.2)

From V7 =0, it follows that
VJ=0. (4.3)

By (2.81) and the Newlander-Nirenberg theorem, it follows that M can be
given the structure of a complex manifold.

In string theory, equation (4.1) arises from supersymmetry conditions on
R*»! x M. It was Candelas-Horowitz-Strominger-Witten [3] who observed
that M® can be then be given the structure of a complex manifold, and this
brought string theory into the world of complex geometry. In fact, [3] further
showed that §;, = 7777 defines a nowhere vanishing holomorphic section
of the canonical bundle (we will discuss this in §4.4 below), making M°® a
Calabi-Yau threefold.

To do: add discussion on a converse. If M is complex manifold with
trivial canonical bundle, does M admit a spin structure? How to recover the
spinor 7 from the holomorphic volume form Q7 Related reference: [Atiyah:
Riemann surfaces and spin structures|

We now discuss the derivation of (4.2), which follows from the fact that
V obeys the Leibniz rule under Clifford multiplication by v matrices. We
showed earlier that V4%, = 0. Then

VJ =iVniy?m +in'y?,Vn = 0. (4.4)

Next, we note 5 € T'(S*) and Vn' is the induced connection on the dual
bundle S*. If 7 is locally the column vector n¢, then n' is locally the row
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vector 1, = n%, and
vna = dna - nbAba- (45)

The spin connection is A = iwb"%%. It satisfies

1 1

Al = —wb“'ygﬂ = Wy, = —A. (4.6)
4 4
Here we used ! = —v, and w® = —w’. Therefore
Ve = dng + A%y, = dn® + Aanp. (4.7)

It follows that V! = (Vn)'.

4.1.2 Strominger

We will study a generalization of the above result, which is due to Strominger
[11]. Let (M, g) be a spin manifold of dimension n = 6. Let H be a 3-form.
We will encode this differential form into our geometry by introducing the
connection

- 1
V=V+ §g’1H. (4.8)

Here V denotes the Levi-Civita connection. If we write V = d + A, the
connection forms are

1
Af] = Ff] + §gkapij. (49)

We also write Hkij = gkap,-j. The torsion of this connection is

1 1
Aryy — Ary = QHkij - §ijz' = H";. (4.10)

We can induce V on all associated bundles as usual. We note that @g =0
for any 3-form H. Indeed,
= 1 m 1 m
Vigr; = Vigrj — §H ikGmj — §H ijGkm = 0, (4.11)
since H;j, is skew-symmetric. Let n be a nowhere vanishing spinor of positive
chirality satisfying
Vn =0. (4.12)
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Written out in more detail, the induced spin connection is

. 1
Vit = (Vi+ S H* )0 = 0. (4.13)

using the constant frame gamma matrices, and
A 1 .
Vin= (Vi + gHjik’Yk’yj)n =0. (4.14)

using curved coordinate gamma matrices. If we let J?, = in'y?,n as before,
then X
VJ=0, ¢g(JX,JY)=g(X,Y). (4.15)

A

Unlike for the Levi-Civita connection, V.J = 0 does not imply that J is
integrable for a non-zero 3-form field H. Strominger [11] proved that J is in
fact integrable for non-zero H provided the dilatino equation

(H +2d¢) - = 0, (4.16)

holds for some function ¢ (this function is called the dilaton function).

In Candelas-Horowitz-Strominger-Witten’s model, the 3-form field strength
H was set to zero and the scalar field ¢ set to a constant. Strominger proved
that we can arrive at complex geometry from the supersymmetric equations
@77 =0, (H+2¢)-n = 0 even with non-zero 3-form field H and non-constant
scalar field ¢. We will present the derivation of this result in the following
sections. For another exposition of Strominger’s integrability theorem aimed
at mathematicians, see [8].

4.2 Connections in almost-complex geometry

The study of connections of the form V=V+H satisfying VJ = 0 on
almost-complex manifolds can be found in Chapter VI.8 of Yano’s book [13].
We note that the condition V.J = 0 implies that V defines a connection on
the complex vector bundle T1°M. Before returning to spinors, we will need
the following lemma in the general setting of almost-complex geometry.

Lemma 2 Let J be an almost-complex structure on a Riemannian manifold
(M, g). Suppose J is compatible with g, meaning g(JX,JY) = g(X,Y). Let
H be a real 3-form and V =V + %g‘lH. Suppose

VJ=0. (4.17)
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If we let w(X,Y) = g(JX,Y), then we must have
H=i(0— 0w+ H* + H*?, (4.18)

where H3® = HOY3 4s given by the Nijenhuis tensor: if {e;} is a frame for
TYOM, then

in components of this frame.
We note that H%3 = 0 implies that M is a complex manifold, and can
thus be interpreted as an integrability condition similar to F%? = 0 on

holomorphic vector bundles. We also note the notation dw = (dw)*! and
Ow = (dw)'2.

Proof: Let z* be local coordinates and write V = d+ A. Then if we write

1
W= §wm,d:1:“ A dz”, (4.20)
we have )
dw = 5(9@%” dx® A dx" A dx”, (4.21)
which is
1 -
dw = E(Vaw,w + AP ws, + AP pwg) de® A dat A da. (4.22)

We note that Vw = 0 since @g =0 and V.J = 0. Hence skew-symmetrizing
Aﬁwwﬁu in o, p, v and then again for the second term, we obtain

dov = %(Aﬂwwgy + Aﬁmwﬂu + Aﬁwwﬁa)dxo‘ A dx* A dz”
—l—%(ABal,wﬂg + Aﬁﬂaw,,g + Aﬁyﬂwa[g)dm“ Adzt A dz¥, (4.23)
and since H?,, = A®,, — A, (4.10), then
dw = %(Hﬁauwg,, + Hﬁyaww + H’Bu,,wﬁa)dxa A dz? A dz”. (4.24)

Since g is metric compatible, we have w(X,Y) = —g(X, JY). We write this
as

Wap = —Ya,JB- (425)
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Then

1
— 3!
and in components

(dw)(Oa, Dy 0,)) = —(H(J 0o, 0,,0,) + H(JD,, D, ) + H(JO,1, 0y, 00)).
(4.27)

dw (—Hﬂaugg,(h, — Hﬁyag[-}’J“ — Hﬁwgﬁ,h)dwa Adz" Ndx”,  (4.26)

Let 0w = (dw)*! and Ow = (dw)'?, so that
dw = dw + 0w + (dw)BO+03), (4.28)
Let {e;} be a local frame spanning 7'M . We then have
(Ow)(es, €5, e) = —H(Jeg, e;,e5) — H(Jej, ex,e;) — H(Jei,ej,e5),  (4.29)
which becomes
(Ow)(es, €4, ez) = iH (e, €, €j) —iH (ej, ex, €;) — iH (e;, €5, €5), (4.30)

and we write this as which gives

Since H = H and @ = w, taking conjugates gives
Hig; = —i(0w)iz;. (4.32)
This proves B
H=i(0 - 0)w+ H* + H"?. (4.33)

Next, we use VJ = 0 to relate H to N. The definition of V.J in {z#}
coordinates is

A 1 1
vﬂjaﬁ = Vujaﬁ + §Ha;wjyﬂ - §JGI/HVM57 (434)

which implies
1

S H s (4.35)

1
V,J% = —§HQWJ”5 +
By (2.81), we obtain
«a Y 1 «a o 1 «a o «a 1 ¥ o 1 ¥ o
4N®,, = J “<_§H vod ,,+§J oH )+ J 7(_§H vod M+§J +Hy,)
1 (6% g 1 « (e (03 1 (e 1 g
—J”l,(—gH vodd M+§J oH ) — J 7(—EHVWJ ,,+§J70H uv)
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This is
AN®,, = —H" 550+ H* 5, — H*,, — H'® 5. (4.36)
In a frame for TV°M denoted {e;} with indices 4, j, k, we have
AN, = (1) H"j + (=) () H* 35 — H" ji — (=) (1) H" 5. (4.37)
Lowering the index, we obtain
Niij = Hyij (4.38)

as required. [

If we assume that the 3-form field strength satisfies H** = 0, then by
(2.74) and N} = H*;; = 0, we conclude that N = 0 and the Newlander-
Nirenberg theorem gives the existence of holomorphic coordinates. In holo-
morphic coordinates {2}, we write w = igj,;dzj AdZz*, and the theorem gives
the expression

H = 0;,g;3d2" N dz? N dzh — i°0,g,3d2" A d2? A dZ (4.39)
which is
1 i i _k 1 ] =t sk
H= 5(—aigj,5+8jgi,;)dz Ndz? Ndz —|—§(—3;gﬂ;+8,;gj;)dz3/\dz Adz" (4.40)

Our conventions are

1 . ‘ 1 ‘ ‘
H = S Hypd2' Nd2? A dzF + 5 Hiwd=" N dz" A dz*, (4.41)

so that
Hz‘jl% = —8igj1’c + ajgﬁm (4-42>

and the other components of H are determined by taking conjugates or skew-
symmetry.

To do: derive the expression for Vin complex coordinates in terms of the
metric gi; and the Chern connection.
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4.3 Complex geometry with H-flux

The references for this section are [1, 11].

Let us recall the setup. Let (M, g) be a manifold of dimension n = 6 with
positive chirality spinor 7 with nfp = 1, let H be a 3-form and ¢ a scalar
function. Suppose this geometry satisfies the supersymmetric equations

Vn=0, (H+2d¢)-n=0. (4.43)

Here we use the notation

1 «
(H +2d9) -0 = 55 Hopn P + 20,07, (4.44)
where )
Yijk = 5(%%‘% VRV T VY — ) (4.45)

We showed earlier that this structure equips M with an almost-complex
structure J¥; = inTy*;n. In this section, we will follow Strominger’s [11]
calculation that N = 0, which implies that M admits the structure of a
complex manifold.

First, we noted in (2.44) that if the index i denote a frame {e;} of T M,
then

yin =~'n=0. (4.46)
The gamma matrix identity {v,,7} = —2g,,/ in real coordinates z* be-
comes in the frame {e;, &}:
W=0, wy=-%%m W =-7"% (4.47)
and
{vi,vit = —2951, {m, v} =20, (4.48)

since g;; = g;; = 0. These relations will be frequently used. We also note the
following gamma matrix identities.

Lemma 3
h/mn7 ’YT] = 2(5mT/yn - 6nr7m) (449>

{Vmnps Y} = =2(6"mVnp + 6 pYimn + 0”0 Vpm)- (4.50)
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Proof: This follows from repeated application of
YY"+ Y = —20m"

Indeed

1

’Ymn’yr = 5(’7771771 - 7n’7m)7r

1 r r T r
= 5(—%7 Yo + VY Ym — 20" 0 Ym + 200" ),

and applying it again gives
1 T T
[me /VT] - 5(25Tm'7n - 25Tn’7m - 25 nYm + 2%15 m)
which gives the first identity. For the second, we start with

7m7n7p7r = _IVm'Yn’YT’Yp - 2’7m’7n6rp
= 7m7r7n7p + 2'7m5Tn7p - 2'7m7n5Tp

= _7r7m7n7p - 25Tm7n7p + 27marn7p — 2% Yn0"

Therefore
{'7m7n’Yp7 ’YT} = 2(_6Tm7n7p + 5Tn7m7p - 5Tp7m7n)'
Skew-symmetrizing gives
'S 1 T T T
{’anpa Y } = g(_(s [m YnYp] T 0 [nYmYp] — d [p7m7n])

and so
{’anpa ’Vr} = _5r[m’7n7p}
This is

(4.51)

(4.52)

(4.53)

b (4.54)

(4.55)

(4.56)

(4.57)

{'Ymnpa ’VT} = _(Vm%ﬂ/p - (Vp%n’}/n - 6Tn'7p7m + 5Tn7m'7p + 5Tp7n7m + 6Tm7p’7n-

and so
{Vmnp: 7} = —2(0" 1 Ynp + 8" pYimn + 6 0 Vpm)-
O

The main result of this section is:
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Corollary 2 Let (M, g, H, ) be as before, solving
np=1, Vn=0, (H+2¢)-n=0. (4.60)

The almost-complex structure J*; = in'~*;n is integrable: M admits the
structure of a complex manifold. The 3-form field H satisfies H% =0 and
is given by H = i(0 — O)w. In holomorphic coordinates, H satisfies the

constraint i
9" Hapl, = 2V 9. (4.61)

Remark: we note the similarity with the Hermitian-Yang-Mills equations
for a 2-form field strength F' on a complex manifold, which is g?F,; = 0 and
F%2 = (. This is because the HYM equation can be derived from a similar
supersymmetric equation F -7 = 0.

Proof: In this calculation, indices i, j, k etc represent a local frame {e;}
for T%°M. The full tangent bundle TcM is then generated by the frame
{e;,€;}. In this frame, the dilatino equation (H + 2¢) - n = 0 becomes

1 ik, 1 Gk, O % 7 i i
& Higey et = Higry V4 2 (Hipy 7+ Higey V" )n = =2(0i07'+ 057" ). (4.62)
Since 7577 = v,n =0, we have
HgpyFn = 0. (4.63)
We also have
WHy ™ = Hgdy, v
= Hfjk(_2) (5ir7jk + 5kr71j + 5j7“7ki)77

= 0. (4.64)
Therefore N
Hiv7 n = 0. (4.65)
The dilatino equation then reduces to
1 ij 3 ij i
& Higey™n + = Hij Wy = —2(0:6)7'n. (4.66)
We multiply through by ~, to obtain
1 g 1 - .
& Higed e 77 0 + 5 (Hijpd{e, 17" Hn = =207, (4.67)
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Applying (4.50)

[Hijk(—Q)(ijk + 0,47 + 5”}7“)1 n

D~
—_

g [H 2@+ 8507+ 5,59
= _2(8i¢)7r7i77

Simplifying and using 7577 = vn = 0, we obtain

—H, 3" n + (= Hijy™ — Hipy)n = —2(0,0)(0 — 26°, ).

This becomes A o
—Hiy""n — Hyjpy'y'n = (40,0)n
which, by 1777 + 797 = —2¢77 is
—H,jy"*n + 2Hyj,6"'n = (40,0)n.
We now multiply through by v, and use vy,n7 = 0 to obtain
_Hrjkh/sa ij]n = 0.

By (4.49), o
(67" = 059 )n =0

which implies
H,~"n = 0.

Multiplying by v, implies
0= Hrsk7q7kn = _2Hrsk5kq777
hence H,s, = 0. Therefore the dilatino equation (4.71) implies

gkgHEkT = 287«@5, Hz'jk = 0

(4.68)

(4.69)

(4.70)

(4.71)

(4.72)

(4.73)

(4.74)

(4.75)

(4.76)

We note that taking the conjugate gives the barred version Hy; = 0 and

2036 = G Hyp = g7y = —H7

iz pt-

(4.77)

Next, we use @n = 0, which implies that VJ = 0. The relevant discussion
is already contained in §4.2: by Lemma 2 we have that H;;, = 0 implies

H=1i(0—0)wand Nyjjz =0. O
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4.4 Holomorphic volume form

The references for this section are [1, 11].

In the previous section, we entered the realm of complex geometry starting
from equations on spinors. In this section, we will show that the complex
manifold M?® is also equipped with a holomorphic volume form. We say
that Q € QMO(M) on a complex manifold of complex dimension n is a
holomorphic volume form if locally

Q= f(2)dz A Ad2" (4.78)
for a non-vanishing holomorphic local function f(z). If M admits a holomor-

phic volume form, we say that M has trivial canonical bundle.

Theorem 3 Let (M, g) be a compact spin manifold of dimension n = 6. Let
1 be a positive chirality nowhere vanishing spinor satisfying
nn=1, Vn=0, (4.79)
(H +2d¢)-n=0, (4.80)
where H is a 3-form and ¢ is a function, and V = V + %gilH. Then M

admits the structure of a complex manifold with holomorphic volume form
and non-Kahler hermitian metric g satisfying

d(|Q,w?®) = 0. (4.81)

The structure (M, g,2) on the complex manifold M can be viewed as a
non-Kahler Calabi-Yau structure. The standard definition in the literature
of a Calabi-Yau manifold requires a complex manifold with trivial canonical
bundle and Kahler metric g satisfying dw = 0. Here we obtain a complex
manifold with trivial canonical bundle with d(|Q|,w?) = 0.

Recall that our conventions are VIn = V,n + %H uarY YN, and by our
work so far, we know that M is a complex manifold, and

prk = 2vk¢7 pr]} = _2vl}¢7 (482)
Hyi; = —0igr; + 095 (4.83)

We now show that M has trivial canonical bundle by writing down the holo-
morphic volume form.

Q= (e 27 yun) dz' A dzd A d2F. (4.84)
This is well-defined by a similar argument to the one which shows J is well-

defined.
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Proposition 4 () is a nowhere vanishing holomorphic (3,0) form with norm
], = e~ e Fd0) (4.85)
for some constant ¢q.
Proof: We compute in complex coordinates
Vi = Vile 0 i) = —2(Vid) Qji + 2627 iV i), (4.86)
This used 7£k = Yijk, V' = (Vn)T, and
(V) yigwm)” = 0" i V. (4.87)

The equation Vi = 0 (4.14) gives

VZF] =3 a[ﬁ’yﬂf}/aﬁa (488)

where «, 8 are real coordinates. Since v'n = 0 and H% = 0, in complex
coordinates this is

Vi = — 2 Hy v (4.89)

Vi = Hyigg™ 1, (4.90)
which is by (4.77)
Vil = 5(Vio) (1.91)
Substituting into (4.86) gives
Viiik = —(V7d)Qiji. (4.92)
On the other hand, by definition
Ve = 0k — T'Q%% — Tk — T3 Qija, (4.93)

where « denotes real coordinates. Since 2 is type (3, 0) in complex dimension
3, this implies
VZQijk — agQZ‘jk - ngﬂwk (494)
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The Christoffel symbols are

g
I = =5 (=0rgz, + 99y +0), (4.95)

which is by (4.40) and (4.77)

g
ng = THPFZ = V;o. (4.96)
Therefore
Vilije = 0ihije — (Vi) Qiji, (4.97)

Combining (4.92) and (4.97), we obtain
07, = 0. (4.98)

This proves that 992 = 0, and so € is holomorphic. We can also compute the
unbarred derivative

1
VeQiji, = —2(Ved) Qi + 26720 v { 3 awyﬁvan} ) (4.99)

using real «, 8. In holomorphic coordinates, this is

1 _ 1 o
Vi = —2(Ved)Qijr+2e 20" yiji {—g pzq’Yq”Ypﬁ—ngmq’Vpﬁ} . (4.100)

The last term is zero. Indeed,
ViV IV = VIV = Wiy = 0 (4.101)

where W, = 7777 are scalar 3-form components. The identity 7;jx7] =
WU,;xn will be shown later in (4.131). We use it directly for now, and conclude

1 _
Ve = —2(Ved)Qujr + 26720 vin [ZHPqupqﬁ] ) (4.102)

Thus .
VZQijk = - QVZ(b - inpg:| Qijk = [-3V@¢]ka (4103)

Therefore, using the induced metric on (3,0) forms,
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VAIQP = (V,2,Q) + (2, V&) = —4V,0]|? (4.105)

and

Vi(log|Q, +2¢) =0, (4.106)
which on a compact manifold implies that log |}|, = —2¢—2¢, for a constant
¢o. O

It remains to show d(|Q2|,w?) = 0. This identity was observed by Li-Yau
[10]. Expanding d(|Q|,w?) = 0, we must equivalently show that

dlog |y A w? + 20w Aw = 0. (4.107)
A computation with H,;; = —0;g;; + 0;9;5 shows
20w Aw=0Aw 0=0d', 0;= gikH,;ij. (4.108)
Since 0;log ||, = —20;¢ (4.106) and H?,; = 20;¢ (4.61), then Olog|$}|, =
—0, which proves (4.107).

4.5 Holonomy in SU(3)

Let (M, g) be a spin manifold of dimension n = 6 with 3-form H, function
¢, and positive chirality spinor n. To summarize, we showed that the spinor
constraints nin = 1, Vi = 0 and (H 4 2d¢) - n = 0 imply the existence of
(g,J, V) such that

Vg=0, VJ=0, V¥ =0, (4.109)
where Q
U=_. (4.110)
€2

In fact, J and ¥ are explicitly constructed by
J% = in'yan, Wi = e 2P0 v, (4.111)

where ¢q is a constant. It follows that

A

Hol(V) C SU(3). (4.112)

~

Note that for a general complex manifold (M, g, J), the condition Hol(V) C
SU(3) does not imply that M has holomorphically trivial canonical bundle.
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The holonomy constraint gives the existence of a parallel smooth section of
K}y, but it need not be holomorphic.
If we set H = 0 and ¢ = const, then

Hol(VX%) ¢ SU(3). (4.113)

In this case, the structure (M, g, J, ¥) is a Kéhler Calabi-Yau structure: g is
a Kéhler Ricci-flat metric and WU is a holomorphic volume form with |¥|, =
const. The SU(3) structure satisfying (4.109) is a generalization of this
geometry to the non-Kéahler setting.

4.6 Special Lagrangian submanifolds

In this section, we give an exposition of the calculation of Becker-Becker-
Strominger [2] (see [1] for a textbook reference). The study of special La-
grangians in the non-Kéhler setting can be found in joint work [4] with T.
Collins, S. Gukov and S.-T. Yau.

Let (M, g,n+) be a manifold of dimension 6 with nowhere vanishing pos-
itive chirality spinor n, with 3-form field H and scalar field ¢. Suppose the
supersymmetric equations of Theorem 3 are satisfied, so that M admits an
integrable complex structure J?;, = z'niqumr and holomorphic volume form

Qijr = e 297 y,477. We will also use the V parallel 3-form W:
1 T _
= WQ Wik = 0" Yigril,  |¥]g = 1. (4.114)
g

Let
XL — M° (4.115)

be a parametrized submanifold of real dimension 3. In local coordinates,
X = (X', ..., X% with X%(u!,u? u?). The metric g induces a volume form
on L denoted

p = dvoly, € A*(L,R). (4.116)

From the submanifold X : L? — M5, we can construct an operator I' on
spinors given by

1
I'n:= g,uo‘maaXMaﬁXNayXPVMNPU (4.117)

Here «, 3,7 are coordinate indices on L? and M, N, P are real coordinates
on MS. Tt turns out that I'" = I" and I'? = I; we will discuss some aspects of
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this calculation in Lemma 4. Then I' breaks the spinor bundle into +1 and
—1 eigenspaces. Thus the submanifold defines another notion of “chirality”
of spinors, and we look for positive pairs (L3, n):

I'n=n. (4.118)

This equation arises in string theory from supersymmetry, and it will lead
to the equation for special Lagrangian cycles [1]. Using the projection P_ =
(I —T) to the (—1) cigenspace, it can also be written as P_n = 0.

We now fix the spinor 7, inducing the complex structure as before, and
look for special submanifolds solving

P_(ng) =0, m5=e"n, +e . (4.119)

on L, where P_ € I'(X*End S) is given by

1 1
P = (1 — gmﬁvaaXM@ﬁXNaWXPWNP). (4.120)

2
We use the notation 17— = 771 for the corresponding spinor of negative chiral-
ity. We will denote

AMNE — 2579, XM XN o, X7 (4.121)

which is anti-symmetric in M N P. Our goal is to understand the implications
of the equation P_(ny) = 0 on the geometry of L. We start by simplifying
the expression

AMNP AMNP

30 YMNPN+ + e_ien_ —e 3l

P_(ng) = e“ny — " e (4.122)

Since v;n+ = 0, if 7, 7, k denote indices for complex coordinates then

1 1 ..z 1 - 1 =
gAMNPVMNPm = <§Al]k'7ijk + 514%%315 + 5!“’“%‘@) N+ (4.123)

We compute each of these terms one by one.

e The term ,;;n4 contributes zero, since

1
Vil = 57 (0% — RN+ =0 (4.124)
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using {7, } = —2¢x;1 and yin;. = 0.
e Next, we compute

1
ViR = g(’mm — VYT — VVRYG + VRV )+ (4.125)

Commuting the 7; to annihilate n, gives
Vil = (=957 + 977) 1+ (4.126)
The symmetry AF = — A% implies
ATy = =247 gy (4.127)
e The last term is ;1. We start by noting that

span {1_, Y11+, ¥al+, Val+ ; = S- (4.128)

Indeed, we observed in (2.26) that these vectors all lie in S_, and at a point
where g; = 0x; they are orthogonal. For example (' ym )T = —(n )

and (yin) e = —nlyvivgne = 295
Commuting 7 with 7;, we see that 15;5m74+ € S_. Taking the inner product
with 7n_ gives
nvgane = Vi (4.129)
by definition of the 3-form W. Therefore

3
Var = YR + Z Qi Yil+- (4.130)
i=1

Acting by 77 gives zero since v is the skew-symmetrization of 717573 and
*y% = 0. Therefore 0 = asy1y3n+ + as¥ivsn., and acting by 5 gives az = 0.
Similarly a; = as = 0. We thus have

Vil = Yigan-- (4.131)
Altogether,

| 1
5 A aveny = =AY gy + 5 AV g (4.132)
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and
2P_(ng) = e’9n++ezez4”kgjm77+—ezegAUk‘I’ﬁW—
‘ - 1
e P 4 e P AT gy — e_wyAwk‘I’z‘jkm' (4.133)

To understand the condition P_(ng) = 0, we now set the coefficient of
each independent component in (4.133) to zero.

e Setting the coefficient of each v;n. to zero gives

Aitkg =0, for all k. (4.134)
This expands to ) )
19, X905 X70, X" g5 = 0, (4.135)
which implies ) )
O0aX'05X7g;5 — 0 X'0,X"g;5 = 0. (4.136)

The (1,1) form associated to the metric is w = igy;dz" A dz7. It follows that
0X' 90X 9X7  9X'

X*W)ap = i o = 0. 4.137
(X*w)as due I uP * due T 9y ( )
e Setting the part involving 1, to zero gives
) o1 .
e — e—wgmﬂ’ﬂpm =0. (4.138)
This implies
L 0, X0, X7 0, X W, = ¢
g 0aX 05 X0, X W5, = e (4.139)
Therefore '
(X W)apy = €t (4.140)
Altogether, the condition P_(ny) = 0 is equivalent to
X*'w=0, X*'U=_c*dvol (4.141)

which in the Kéhler Calabi-Yau case (dw = 0, d¥ = 0) is the special La-
grangian condition. In the non-Kahler case, in terms of the holomorphic
volume form this condition is

wlp =0, Q| =e*Q|,dvol, (4.142)

since ¥ = [Q]_1Q where Q is the holomorphic volume form.
We end this section with a computation showing that P_ can be viewed
as a projection.
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Lemma 4 The operator P_ = %(I - %AMNPWMNP) satisfies
Pl =P, P%py= Py, (4.143)
Proof: Let
1
r = 5AMNPWNP. (4.144)

Then it suffices to show I't = I" and I'?ny = ny. That I'" = I follows from
vl = —v,. We now compute the square. By (4.132),

1 P 1 =
T2, = gAMNPVMNP(—A ”kgjmzm + 514 ]k‘lfzjlé??—) = (I) + (). (4.145)

The first term, in dimension 3 with vis37; = 0, is
1 map At k 1 mnp At k
I) = —514 A Ymap VRN — §A A" Y ying = (La) + (ID).  (4.146)

We compute using {;, 73} = —2g;; to commute 7,,, and v,ny = 0,:

1 mnp Ai k
(la) = _5‘4 P A" F (VYo Ve — Yaym Yo Ve + Va¥e Ym Ve ) Nt
1 mnp Ai k
- _gA PA ik(—%ﬁ%n%ﬁ%‘g — 20am Y5 Ve T Y Vp Ym Vi
+295m Va Yk = 20mEYa Vp) 1+ (4.147)

Commuting -, again:

1 map At k
(Ia) = —=A™PAM(=29,:7% + 205m Ve Vi — 29am V5 Ve — 295m ¥ Vs
3!
+295mVa Yk = 29mk VaVp) N+ (4.148)

Regrouping and relabeling, this is

(Ia) = AmﬁﬁAiim’Yﬁ%ﬁnJr + AmmpAiik”)/ﬁ’Y]}n+- (4.149>
The second term is zero by symmetry ;7 = —V&7p, SO
(fa) = AmﬁﬁAiim’Yﬁ’VﬁnJr- (4.150)
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We move on to the next term. We compute using v;n; = 0 and {y;,7;} =

]' mnp Ai k
(W:=—@§ﬁ P A" F (VYo Ve — Y ¥ ¥n Ve + VoY Y Ve ) Nt

]' mnp Ai k
= —WA PA ik<_4gmﬁgnk + 49npGmi — 49mﬁ9n12)77+
= —2AT"Amy. (4.151)

This term is zero by symmetry. Indeed, by the definition of A and the
definition of the pullback (4.137), and the identification w;; = ig;z, wp; =
—igz, it is

A A, = ”aﬁwaanaﬁXEng%avXnNMVpauXiaVXigiZapXmgnm
3
¢ « v * * *
= uH PP (X W) (X W) (X" W) (4.152)

Since X*w is a 2-form on a manifold L? of dimension 3, and p!'?? and its signed
permutations are the only non-zero contributions of pu, all contributions to
the term (/b) cancel. Thus

(1) = A" Aty (4.153)

Next, we analyse the second group of terms given by

1 - '

Since v;;x1- = W,ikn4, the first term is

1 —
(Ila) = —(3,)2Am"p/4”k‘1’mnp‘1’zjm+
aBy poT
p . P
Y (X \D)QBVT(X ) por )+

X*U X*U
= N+
2 2

= | X Uk ns- (4.155)

We normalized such that |¥|, =1, so

(I1a) =n;. (4.156)
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The next term is

1

(11b) = WAmnpAzjk’ymnp‘Ifgﬁn,. (4.157)
We use (4.127) to obtain
Amnpf}/ﬁlnpnf = m
= 24P gnn Vel
= 2A"" g pn-
= +2A",Pyn_. (4.158)
Thus
R YL L jn p 47k
(1) = G AP AT Wi = S AP AT e (4.159)

By skewsymmetry, and relabeling p,n, this is

Lo n ik
(11b) = 5 AP AT Y i - (4.160)
Commuting 7, gives
1 p n pijk
(I10) = p A% AV = 35k — 290377760+

1 .
= g AnA [ = 20k Y5V 2005 ViV — 2gmﬂw+]
This adds up to .
(I1b) = —AP " A, yiyimy (4.161)
Therefore ﬁ
(IT) = 1y — 42,7 A, Ty, (1.162)
Adding (4.153) and (4.162) together, we obtain
D2, =y + (AP, ALY — AP A, D), (4.163)

We will show below that the second term vanishes by symmetry, and so
I'?n, = n,. The identity I'?r_ = n_ follows by taking the conjugate, since
the gamma matrices from §1.2 are real.
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It remains to understand the vanishing of
2

A i noA i ¢ o ov * * i j
(A7 AT = AP, A, 5) = P (X w) o (X )00, X0, X0, (4.164)

The pullback of w appears by definition of A and (4.137). That this quantity
vanishes can be seen by direct computation using that X*w is a 2-form on a
manifold L? of dimension 3 and the only nonzero components are (X*w)i,
(X*w)13, (X*w)a3, u!?3 and signed permutations. [

4.6.1 Extremizing property

We now look for extremizing properties of X : L3 — M®. The square term
which will give us the inequality is

| P_ng|” = nh PLP_ng = njP_mp. (4.165)
Here we used properties of P_ derived in the previous section. Substituting
(4.133) and using orthogonality of the basis of S, S_ gives
1 1
3! 3!

Multiplying through by [Q|su and using the definition of A and ¥ = Q|10
implies

!P—779|2 =1—¢? Aijkqjijk — %t Am\lfgj;;. (4.166)

(1P-moP[Qgm) ]2 = (1) — ™ — >0 . (4.167)
Integrating over L gives
[0+ 0w = [l [ Pl (4.168)
L L L
Therefore, for any submanifold L3, we have
/ (7290 4 *7Q)) < / Q| (4.169)
L L

with equality if and only if (4.142) is satisfied. Since d2 = 0 defines a
cohomology class [Q] € H3(M, C), we can rewrite this inequality as

2Re {7 #[Q] - [L]} < /L 12| jdvol. (4.170)
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We conclude that a 3-cycle L minimizes
L~ / 12| dvoly, (4.171)
L

in its homology class [L] € H3(M,R) if and only if
wlp =0, e Q| =|Q|,dvoly, (4.172)

for an optimal phase € satisfying e=*%[Q)] - [L] € R. Thus special La-
grangian submanifolds are optimal representatives of their homology class
[L] € HS(M7 R)
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