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1 Complex Geometry

This section is an introduction to complex geometry. For other references in the style of these notes,
see Kodaira’s book [19], Chapter 1 of Siu’s notes [24], Chapter 1 of Song-Weinkove’s notes [25], or
Chapter 1 of Szekelyhidi’s book [26].

1.1 Complex manifolds

Let Ω Ď Cn be a domain. We denote complex variables by

z “ pz1, . . . , znq,

so that
zk “ xk ` iyk, z̄k “ xk ´ iyk, k P t1, . . . , nu,

and the real variables on Ω Ď R2n are px1, y1, . . . , xn, ynq. The inverse transformation is

xk “
1

2
pzk ` z̄kq, yk “

1

2i
pzk ´ z̄kq. (1.1)

By the chain rule, for a smooth function f : Ω Ñ C, we have

Bf

Bz
“

1

2

ˆ

B

Bx
´ i

B

By

˙

f,
Bf

Bz̄
“

1

2

ˆ

B

Bx
` i

B

By

˙

f. (1.2)

Definition 1.1. Let f : Ω Ñ Ck be a C1 function with components

f “ pf1ppq, . . . , fkppqq.
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We say f is holomorphic if
Bf i

Bz̄k
“ 0

for all i, k.

Let M be a compact complex manifold. This means that M is a smooth compact manifold admiting
a finite cover by open sets M “

Ť

i Ui with homeomorphisms

zU : U Ñ U Ď Cn, zU ppq “ pz
1
U ppq, . . . , z

n
U ppqq

with the following property. For any pair pU, zU q, pV, zV q with UXV ‰ H, then we can write

zpV “ fV U
ppzU q, fV U “ zV ˝ z

´1
U

with fV U : zU pU X V q Ñ zV pU X V q a holomorphic bijective function with holomorphic in-
verse.

Example 1.2. P1 “ pC2zt0uq{ „, where points p P P1 are written as

p “ rZ0 : Z1s

and rZ0 : Z1s „ rX0 : X1s if and only if pZ0, Z1q “ λpX0, X1q for λ P C˚. Holomorphic charts are:

‚ U0 “ tZ0 ‰ 0u, with coordinate

z “
Z1

Z0
.

‚ U1 “ tZ1 ‰ 0u, with coordinate

z̃ “
Z0

Z1
.

The change of coordinates function f10 : zpU0 X U1q Ñ z̃pU0 X U1q is

f10 : C˚ Ñ C˚, z̃ “ f10pzq “
1

z
.

Example 1.3. Complex projective space in higher dimensions Pn “ pCn`1zt0uq{ „ is defined
similarly. Points are denoted

p “ rZ0 : Z1 : ¨ ¨ ¨ : Zns

and rZ0 : Z1 : ¨ ¨ ¨ : Zns „ rX0 : X1 : ¨ ¨ ¨ : Xns if and only if pZ0, Z1, . . . , Znq “ λpX0, X1, . . . , Xnq

for λ P C˚. Holomorphic charts are of the form Uk “ tZk ‰ 0u. For example, pU0, zq has coordinate

z “ pz1, . . . , znq “

ˆ

Z1

Z0
, . . . ,

Zn
Z0

˙

,

while pU1, z̃q has coordinate

z̃ “ pz̃1, . . . , z̃nq “

ˆ

Z0

Z1
,
Z2

Z1
, . . . ,

Zn
Z1

˙

,
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and the change of coordinates function is z̃ “ f10pzq with

z̃1 “
1

z1
, z̃k “

zk

z1
, k P t2, . . . , nu.

The coordinates on the other open sets Uk are defined similarly.

Example 1.4. Let P pZ0, . . . , Znq be a homogeneous polynomial of degree r, meaning P pλZ0, . . . , λZnq “
λrP pZ0, . . . , Znq. Suppose that P has the property that only the point Z0 “ ¨ ¨ ¨ “ Zn “ 0 solves
BP
BZi

“ 0 for all i. Then
X “ tx P Pn : P pxq “ 0u

defines a complex manifold of dimension n ´ 1. To see this, we look at tP “ 0u inside the local
charts Uk Ď Pn. For example, in coordinates pU0, zq, the equation defining X is

0 “ fpz1, . . . , znq “ P p1, z1, . . . , znq.

At a point p P tf “ 0u, there must be a coordinate zi such that Bf
Bzi ‰ 0, in other words one

of BP
BZ1

, . . . BP
BZn

must be nonzero. The assumption on P is that we cannot have BP
BZi

“ 0 for all

i P t0, . . . , nu, so we only need to rule out BP
BZ0

‰ 0 with all other partials zero. This is ruled out by
Euler’s identity

n
ÿ

i“0

Zi
BP

BZi
“ rP,

which shows that on tP “ 0u X U0 if BP
BZ0

‰ 0 then one of BP
BZi

for i ě 1 must be non-vanishing.

Euler’s identity follows from d
dt

ˇ

ˇ

t“1
P ptZq “ d

dt

ˇ

ˇ

t“1
trP pZq.

Without loss of generality, Bf
Bzn ‰ 0. By the holomorphic implicit function theorem, there exists a

holomorphic function ψ : V Ñ Op, V Ă Cn´1, p P Op Ă U0, such that

X XOp “ tpw
1, . . . , wn´1, ψpwqq : w P V u.

This defines a coordinate chart pV,wq.

There are two types of coordinate change:

‚ Suppose p P X X U0 satisfies both Bf
Bz1 ‰ 0 and Bf

Bzn ‰ 0. Then we can parametrize X in a

neighborhood of p by either (implicit function on Bf
Bzn ‰ 0)

pw1, . . . , wn´1, ψpwqq
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or (implicit function on Bf
Bz1 ‰ 0)

pψ̃pw̃q, w̃1, . . . , w̃n´1q.

The change of coordinates is

w̃1 “ w2, w̃2 “ w3, . . . w̃n´1 “ ψpwq,

which is holomorphic.

‚ Suppose p P XXpU0XU1q. Then we can use coordinates coming from either U0 or U1. As before
we denote pU0, zq and pU1, z̃q with z̃1 “ 1{z1 and z̃k “ zk{z1 for k ě 2. The submanifold appears
as the equation

0 “ P p1, z1, z2, . . . , znq

on U0, and
0 “ P pz̃1, 1, z̃2, . . . , z̃nq

on U1. Suppose BP
BZn

‰ 0. As before, the implicit function theorem gives coordinates wi and w̃i, so
that the equations become

0 “ P p1, w1, w2, . . . , ψpwqq

on U0, and
0 “ P pw̃1, 1, w̃2, . . . , ψ̃pw̃qq

on U1. The change of coordinates is

w̃1 “ 1{w1, w̃2 “ w2{w1, . . . w̃n´1 “ wn´1{w1.

Other situations when e.g. BP
BZ0

‰ 0 and BP
BZ1

‰ 0 can also be worked out in a similar way.
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1.2 Holomorphic vector bundles

1.2.1 Definitions and notation

We recall the cocycle definition of a rank r complex vector bundle. Let M “
Ť

i Ui be a finite cover-
ing of open coordinate charts, together with matrix-valued functions on the nonzero overlaps

tUV : U X V Ñ GLpr,Cq

satisfying
tUV ppq “ tUW ppqtWV ppq, p P U X V XW.

We call the tUV transition functions. They satisfy tUU “ Irˆr and t´1
UV “ tV U . We define a complex

vector bundle E by

E “

ˆ

ď

i

Ui ˆ Cr
˙

{ „,

where the relation is as follows. For pp, uq P U ˆ Cr and pp, vq P V ˆ Cr, we identify pp, uq „ pp, vq
if

u “ tUV ppqv.

This is written using matrix notation. In terms of components, this is written

uk “ rtUV ppqs
k
`v
`,

where repeated indices are summed. Here we write v “ pv1, . . . , vrq and the components of the
matrix tUV are denoted tUV

i
j , e.g. for 2x2,

»

–

u1

u2

fi

fl “

»

–

tUV
1
1 tUV

1
2

tUV
2
1 tUV

2
2

fi

fl

»

–

v1

v2

fi

fl .

The Ui ˆ Cr are the trivializations of the bundle. The projection map π : E Ñ M is given by
πpp, uq “ p.
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We denote E|p “ π´1ppq to be the fiber over p, and note that E|p is a vector space of dimension r.
For two points pp, uq, pp, vq in the same trivialization Ui ˆ Cr, the vector space structure is

app, uq ` bpp, vq “ pp, au` bvq,

and one can check that this is well-defined.

‚ Note: we will call a complex vector bundle of rank 1 a line bundle.

Definition 1.5. A complex vector bundle π : E Ñ M over a complex manifold is holomorphic if
the transition functions tUV are holomorphic.

‚ Note: taking U , V to be coordinate charts, then U X V is viewed as an open set in Cn. That
tUV : U X V Ñ GLpr,Cq is holomorphic means that each entry of the matrix is a holomorphic
function of p P U X V Ď Cn.

Example 1.6. We will denote the trivial holomorphic line bundle by OX Ñ X. This means that
the transition functions are tUV “ 1.

Definition 1.7. Let E Ñ M be a rank r complex vector bundle with trivializations Ui. A smooth
section, denoted s P ΓpEq, is given by local vector-valued smooth functions tUi, sUiu with sU : U Ñ
Cr satisfying

sU “ tUV sV .
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A section s P ΓpEq defines a well-defined map s : M Ñ E such that

sppq P E|p.

Indeed, in this formalism we set sppq “ pp, sU ppqq when p P U , and the condition sU “ tUV sV
ensures that if p P U X V then pp, sU ppqq „ pp, sV ppqq.

Remark 1.8. If E Ñ M is a holomorphic bundle and the sU are holomorphic functions, then we
say s is a holomorphic section and write s P H0pM,Eq.

Remark 1.9. In components, the transformation law is

skU “ tUV
k
`s
`
V (1.3)

e.g. for 3x3, this notation means

»

—

—

—

–

s1
U

s2
U

s3
U

fi

ffi

ffi

ffi

fl

“

»

—

—

—

–

tUV
1
1 tUV

1
2 tUV

1
3

tUV
2
1 tUV

2
2 tUV

2
3

tUV
3
1 tUV

3
2 tUV

3
3

fi

ffi

ffi

ffi

fl

»

—

—

—

–

s1
V

s2
V

s3
V

fi

ffi

ffi

ffi

fl

,

on U X V .

There is another viewpoint on this from the perspective of basis vectors rather than vector compo-
nents. For a trivialization U ˆ Cr, let

eUa ppq “ pp, p0, . . . , 0, 1, 0, . . . , 0qq P U ˆ Cr,

where the 1 is at the ath position. Then teU1 ppq, . . . e
U
r ppqu is a basis for E|p, and we say that teUa u

is a local frame over U .

On an overlap U X V , the same basis vector can be written in two different ways. We note that
eUa „ eVb tV U

b
a. Instead of the „ notation, this is usually just written

eUa “ eVb tV U
b
a. (1.4)

Here is how to see this in the 2ˆ2 case and a “ 1. By definition, eU1 „ eVb tV U
b
1 if and only if

eU1 “ tUV e
V
b tV U

b
1.

which is
»

–

1

0

fi

fl “ rtUV s

¨

˚

˝

»

–

1

0

fi

fl tV U
1
1 `

»

–

0

1

fi

fl tV U
2
1

˛

‹

‚

“ rtUV s

¨

˚

˝

rtV U s

»

–

1

0

fi

fl

˛

‹

‚

and this holds since tUV tV U “ I2ˆ2.

For a section s P ΓpEq, we will sometimes make the frame explicit and write

s “ saea.
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In the 2ˆ 2 case, this notation means

»

–

s1ppq

s2ppq

fi

fl “ s1ppq

»

–

1

0

fi

fl` s2ppq

»

–

0

1

fi

fl .

Note that on U X V , then
saUe

U
a “ saV e

V
a

so we simply write s “ saea. Indeed, substituting the transformation laws (1.3), (1.4) gives

saUe
U
a “ rtUV

a
bs
b
V sre

V
c tV U

c
as “ δcbs

b
V e

V
c “ sbV e

V
b .

In terms of linear algebra, this is just the statement that the same vector v will appear in different
components va using different bases ea.

Example 1.10. Let M “
Ť

i Ui be a complex manifold with holomorphic coordinate charts pU, zq.
The holomorphic tangent bundle T 1,0M Ñ M is the holomorphic bundle defined by transition
matrices

tUV
k
i “

BzkU
BziV

.

Sections X P ΓpT 1,0Mq are denoted

X “ Xppzq
B

Bzp
.

On an overlap of coordinate charts pU, zq, pŨ , z̃q, components transform as

X̃p “
Bz̃p

Bz`
X`

while the basis transforms as
B

Bz̃k
“
Bzp

Bz̃k
B

Bzp
.

It follows that

Xp B

Bzp
“ X̃p B

Bz̃p

on overlaps.

Let E Ñ M , F Ñ M be two holomorphic vector bundles with transition functions tUV , t̃UV with
respect to a trivialization M “

Ť

i Ui. An isomorphism of holomorphic bundles h : E Ñ F is given
by a collection thU : U Ñ GLpr,Cqu of holomorphic invertible matrices satisfying

hU “ t̃UV hV t
´1
UV . (1.5)

This definition is such that h is a well-defined isomorphism from fibers of E to fibers of F .

hppq : E|p Ñ F |p

This amounts to the statement that if v „ w in E, then hv „ hw in F . Indeed, if vU “ tUV wV
then

hUvU “ pt̃UV hV t
´1
UV qptUV wV q “ t̃UV phV wV q.
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Example 1.11. We return to the example M “ P1 “ U0YU1. There are two charts pU0, zq, pU1, z̃q
and z̃ “ z´1. Therefore

B

Bz
“
Bz̃

Bz

B

Bz̃
“ ´

1

z2

B

Bz̃
“ ´z̃2 B

Bz̃
.

Said otherwise, a section of T 1,0M may be written on U0 X U1 as vpzq B
Bz or ṽpz̃q B

Bz̃ with

ṽ “ ´z̃2v.

so that the transition function is t10 “ ´z̃
2.

For example, defining B
Bz over U0 extends to a global vector field V over M by setting ´z̃2 B

Bz̃ over

U1. However, even though B
Bz is nowhere vanishing over U0, this vector field must acquire a zero at

z̃ “ 0 in U1. In component notation, this vector field V is given by the data

V “ tpU0, vpzqq, pU1, ṽpz̃qqu P H
0pM,T 1,0Mq

with
vpzq “ 1, ṽpz̃q “ ´z̃2.

Example 1.12. Let k P Z. Define the bundle Opkq Ñ P1 with trivializations pU0, zq, pU1, z̃q by
setting t10 “ z̃k, so that sections transform as

s̃ “ z̃ks.

The previous example, combined with (1.5) and suitable choice of hU0
, hU1

, shows that T 1,0P1 –

Op2q. Let k ą 0.

‚ There are no holomorphic sections of Op´kq. Suppose such a section appears as a holomorphic
function spzq over the trivialization U0. Then over U1, that same section takes the form s̃ “ z̃´ks,
which in the z̃ coordinates belonging to U1 is

s̃pz̃q “ z̃´kspz̃´1q.

Writing spzq “
ř8

i“0 aiz
i, we see that s̃pz̃q must have a pole and cannot be holomorphic.

‚ Holomorphic sections of Opkq correspond to homogeneous polynomials P pZ0, Z1q of degree k: any
section σ P H0pP1,Opkqq is σ “ tpU0, sq, pU1, s̃qu locally the form s “ P pZ0, Z1q{Z

k
0 over U0, and

of the form s̃ “ P pZ0, Z1q{Z
k
1 over U1. Indeed, let σ P H0pP1,Opkqq be an arbitrary holomorphic

section. Then spzq, s̃pz̃q are both holomorphic and

s̃pz̃q “ z̃kspz̃´1q. (1.6)

After writing s̃ “
ř8

k“0 bkz̃
k, s “

ř8

k“0 akz
k and comparing coefficients, we see that spzq “

a0 ` a1z ` ¨ ¨ ¨ ` akz
k. It follows that

s “
1

Zk0

„

a0Z
k
0 ` a1Z

k´1
0 Z1 ` ¨ ¨ ¨ ` akZ

k
1



since on U0 “ tZ0 ‰ 0u the coordinate is z “ Z1{Z0. The transformation (1.6) implies

s̃ “
1

Zk1

„

a0Z
k
0 ` a1Z

k´1
0 Z1 ` ¨ ¨ ¨ ` akZ

k
1



since on U1 “ tZ1 ‰ 0u the coordinate is z̃ “ Z0{Z1. Therefore the homogeneous polynomial
corresponding to this section is P “ a0Z

k
0 ` a1Z

k´1
0 Z1 ` ¨ ¨ ¨ ` akZ

k
1 .
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Example 1.13. In higher dimensional projective space, define Opkq Ñ Pn by pUi, tijq where
Ui “ tZi ‰ 0u and tij : Ui X Uj Ñ C˚ is

tij “

ˆ

Zj
Zi

˙k

For example on Op1q Ñ P2, with coordinates pU0, zq, pU1, z̃q with z “ pZ1{Z0, Z2{Z0q and z̃ “
pZ0{Z1, Z2{Z1q, then t10 “ Z0{Z1 “ z̃1.

1.2.2 Bundle constructions

We now describe some bundle constructions. Let E Ñ M be a complex vector bundle of rank r
with trivializations tUV .

‚ Conjugate bundle. The complex vector bundle Ē Ñ M has trivializations tUV . Note that if
E Ñ M is a holomorphic vector bundle, then Ē is not a holomorphic bundle. However, the next
constructions do produce holomorphic bundles if E is holomorphic.

‚ Dual bundle. Define E˚ ÑM to be the bundle of rank r defined by trivializations pt´1
UV q

T . We use
the following index notation: components of sections s P ΓpM,Eq are denoted si, and components
of sections ϕ P ΓpM,E˚q are denoted ϕi, so that the transformation laws reads

siU “ tUV
i
ks
k
V , ϕUi “ ϕVk tV U

k
i.

This is the dual bundle because sections s P ΓpM,Eq and ϕ P ΓpM,E˚q can be paired together to
form a function

ϕpsq :“ pϕis
iq P C8pM,Rq.

This is because the transformation laws imply

ϕUi s
i
U “ ϕVi s

i
V

and so pϕis
iqppq is independent of the choice of trivialization. In matrix notation Q “ rtUV s, the

transformation laws for s P ΓpEq and ϕ P ΓpE˚q are

s ÞÑ Qs, ϕ ÞÑ rQ´1sTϕ, ϕpsq “ ϕT s.

In terms of local frames, if teiu is a local frame for E, we denote the corresponding dual frame on
E˚ by teiu. This is defined as eipejq “ δij , and a section ϕ P ΓpE˚q is written as

ϕ “ ϕie
i.

The pairing ϕpsq can then be seen by the formula for the dual frame: ϕpsq “ pϕie
iqpskekq “

ϕjs
j .

‚ Determinant bundle. The line bundle detE ÑM is defined by the trivializations det tUV .

‚ Tensor product. If E Ñ M , Ẽ Ñ M are vector bundles, then the bundle E b Ẽ Ñ M has
trivializations tUV b t̃UV . In components, if indices i, j denotes indices on E and indices α, β
indices on Ẽ, then

siαU “ tUV
i
j t̃UV

α
βsV

jβ .
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‚ Endomorphism bundle. We will later encounter sections of E˚bE “ EndE˚, and our convention
for h P ΓpEndE˚q will be

h “ hα
β eα b eβ

so that the transformation law for components reads

rhU sα
β “ tV U

µ
αrhV sµ

νtUV
β
ν ,

which in matrix notation Q “ rtUV s, for u P ΓpEq and h P ΓpEndE˚q, is

u ÞÑ Qu, h ÞÑ rQT s´1hQT . (1.7)

Note that h defines a map h|p : E˚|p Ñ E˚|p by hα
βϕβ . Verifying that this map is well-defined is

a similar calculation as (1.5).

In fact, h P ΓpEndE˚q also defines an endomorphism of E by acting on the right as uTh, or in
index notation uαhα

β . That uTh transforms like a section follows from

puThq ÞÑ pQuqT ppQT q´1hQT q “ uThQT “ QpuThq.

Thus uTh P ΓpEq. Thus, we will sometimes view h P ΓpEndE˚q with h “ hα
β as h P ΓpEndEq.

‚ Divisor bundle. Let Y Ă X be an analytic hypersurface. This means that near each p P Y , there
is neighborhood U such that U X Y is locally given by the vanishing set of a holomorphic function.
The theory of holomorphic functions (see e.g. [13]) implies that there exists the notion of a local
defining function: this means that f is holomorphic with

U X Y “ tf “ 0u

and any other local holomorphic function g vanishing on Y factors as gpzq “ hpzqfpzq with h a local
holomorphic function. The notion of local defining function is not unique: if f1 and f2 are local
defining functions, then f1 “ hf2 where h is a holomorphic function non-vanishing on U .

We can associate a line bundle OpY q Ñ X in the following way. In a coordinate chart U , the
submanifold Y appears as Y X U “ tfU pzq “ 0u where fU pzq is a local holomorphic function. The
transition function of OpY q is given by tUV “ fU{fV on U X V . If Y X U “ H, we can take
fU “ 1.

‚ Note: if another choice of local defining function is taken, by (1.5) it follows that this defines an
isomorphic bundle.

‚ Note: there is a global section s P H0pOpY qq given by the local data pU, sU q with sU “ fU , since
sU “ tUV sV is tautology.

Example 1.14. Let P pZ0, . . . , Znq be a homogeneous polynomial of degree k, and let Y “ tP “
0u Ă Pn. Then OpY q “ Opkq. To see this, in the local chart U0 Ă Pn the equation in coordinates
pU0, zq is 0 “ P pZ0, . . . , Znq{Z

k
0 “ s0 and in the local chart U1 the equation in coordinates pU1, z̃q

is 0 “ P pZ0, . . . , Znq{Z
k
1 “ s1. The transition function t10 is then

t10 “
P pZ0, . . . , Znq{Z

k
1

P pZ0, . . . , Znq{Zk0
“

„

Z0

Z1

k

which matches with the transition functions of Opkq.
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Let Y Ď X be a smooth analytic hypersurface. This means that at p P U , the local defining function
U XY “ tfpzq “ 0u has the property that Bifppq ‰ 0 for some coordinate direction Bi. In this case,
there exists new holomorphic local coordinates tz̃iu such that (after possibly shrinking U)

U X Y “ tz̃n “ 0u.

To see this, let tziu be the original holomorphic coordinates and suppose after relabeling that
Bf
Bzn ppq ‰ 0. By the holomorphic implicit function theorem, after possibly shrinking U we have

U X Y “ tpw1, . . . , wn´1, ψpwqq : w P V u

where ψ : V Ñ C is a holomorphic function and V Ď Cn´1. New coordinates are then given
by

z̃1 “ z1, . . . , z̃n´1 “ zn´1, z̃n “ zn ´ ψpzq,

and these satisfy z̃npqq “ 0 if and only if q P V .

‚ Canonical bundle. The canonical bundle of a complex manifold is KX “ pdet T 1,0Mq˚. The tran-
sition functions on pU, zq an overlap pŨ , z̃q are pdet Bz̃

Bz q
´1. Sections Ω P ΓpKXq are denoted

Ω “ f dz1 ^ ¨ ¨ ¨ ^ dzn,

and the transformation law is f̃ “ detp Bz
p

Bz̃q qf .

Proposition 1.15. (Adjunction formula) Let Y Ď X be a smooth analytic hypersurface.

KY “ pKX bOpY qq|Y

Proof. Locally Y is given by tzn “ 0u for suitable holomorphic coordinates pz1, . . . , znq. On an
overlap of open sets, suppose both z̃n “ 0 and zn “ 0 carve out Y . Then z̃npzq is a holomorphic
function of z which vanishes on zn “ 0, and so the theory of holomorphic functions implies that we
can write

z̃npzq “ znfpzq

for a holomorphic function f . For i ď n´ 1, we compute

Bz̃n

Bzi
“ zn

Bf

Bzi
,

Bz̃n

Bzn
“ f ` zn

Bf

Bzn
.

The transition function for T 1,0X restricted to Y “ tzn “ 0u is then

Bz̃

Bz

ˇ

ˇ

ˇ

ˇ

Y

“

»

–

A ˚

0 f

fi

fl (1.8)

where A is transition function for T 1,0Y using coords z1, . . . , zn´1. Therefore

det
Bz̃

Bz
“ pdet Aqf (1.9)

and the transition functions give the bundle isomorphism

detpT 1,0Xq|Y “ pdetT 1,0Y q b L,

where the line bundle L has transition function f . We can take the inverse to get the formula with
KY “ pdet T 1,0Y q´1. Note that L has the same transition function as OpY q. By definition, if
locally zn “ 0 and z̃n “ 0 carve out Y , the transition function of OpY q is z̃n{zn which in this case
is fpzq.
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1.2.3 Constructions from the tangent bundle

We now list some bundle constructions which come from the holomorphic tangent bundle T 1,0M .

‚ Complexified tangent bundle. The conjugate of T 1,0M is denoted T 0,1M :“ T 1,0M . A local
frame is given by

"

B

Bz̄1
, . . . ,

B

Bz̄n

*

,

and sections denoted V ī B
Bz̄i . We can write the px, yq coordinate basis in terms of the pz, z̄q coordinate

basis by the change of variables zk “ xk ` iyk, z̄k “ xk ´ iyk and the chain rule:

B

Bxk
“

B

Bzk
`

B

Bz̄k
,

B

Byk
“ i

„

B

Bzk
´

B

Bz̄k



.

It follows that the complexified tangent bundle TCM can be written as a direct sum

TCM “ T 1,0M ‘ T 0,1M.

Example 1.16. We will sometimes use the notion of a complex structure J : TCM Ñ TCM . Given
a complex manifold, the complex structure J is defined by setting

J |T 1,0M “ `iId, J |T 0,1M “ ´iId,

or in other words, J B
Bzk

“ i B
Bzk

and J B
Bz̄k

“ ´i B
Bz̄k

. In components,

Jpq “ iδpq, J p̄q̄ “ ´iδ
p
q, Jpq̄ “ J p̄q “ 0,

in complex coordinates.

‚ Complexified cotangent bundle. We denote smooth sections of the dual of the holomorphic cotan-
gent bundle pT 1,0Mq˚ by Λ1,0pMq, and holomorphic sections of this bundle by H0pM, pT 1,0Mq˚q.
A local frame is given by

tdz1, . . . , dznu

meaning dzkpBziq “ δkj , and so that a section α P Λ1,0pMq is written α “ αidz
i and αpV q “ αiV

i

for V “ V iBzi P ΓpM,T 1,0Mq. Transformation laws for components and frames are

α̃i “
Bzp

Bz̃i
αp, dz̃k “

Bz̃k

Bzi
dzi.

Denote Λ0,1pMq “ Λ1,0pMq. Complexified 1-forms Λ1
CM can be decomposed as

Λ1
C “ Λ1,0pMq ‘ Λ0,1pMq,

from the decompositions (1.1)

dxk “
1

2
pdzk ` dz̄kq, dyk “

1

2i
pdzk ´ dz̄kq. (1.10)

‚Differential forms. Let zk “ xk`iyk be local complex coordinates, and write w “ px1, . . . , xn, y1, . . . , ynq P
R2n. A differential form on M appears in w coordinates as

η “
1

k!
ηi1¨¨¨ik dw

i1 ^ ¨ ¨ ¨ ^ dwik .
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From (1.10), we see that this can be written in the complex basis of dz, dz̄. We will use the following
convention for complex components:

η “
ÿ

p`q“k

ηp,q

with

ηp,q “
1

p!q!
ηi1¨¨¨ip j̄1¨¨¨j̄qdz

i1 ^ ¨ ¨ ¨ ^ dzip ^ dz̄j1 ^ ¨ ¨ ¨ ^ dz̄jq .

We call ηp,q a pp, qq-form, denoted Λp,qpMq.

‚ Exterior derivative. The exterior derivative acting on a function is

df “
Bf

Bxi
dxi `

Bf

Byi
dyi

which in complex coordinates becomes

df “
Bf

Bzi
dzi `

Bf

Bz̄i
dz̄i.

We write this as df “ Bf ` B̄f , with

Bf “
Bf

Bzi
dzi, B̄f “

Bf

Bz̄i
dz̄i.

Similarly, the exterior derivative d : Λk Ñ Λk`1 on higher differential forms decomposes into
types.

d “ B ` B̄.

Acting on χ P Λp,qpMq, we have

Bχ “
1

p!q!

B

Bz`
χi1¨¨¨ip j̄1¨¨¨j̄qdz

` ^ dzi1 ^ ¨ ¨ ¨ ^ dzip ^ dz̄j1 ^ ¨ ¨ ¨ ^ dz̄jq

and

B̄χ “
1

p!q!

B

Bz̄`
χi1¨¨¨ip j̄1¨¨¨j̄qdz̄

` ^ dzi1 ^ ¨ ¨ ¨ ^ dzip ^ dz̄j1 ^ ¨ ¨ ¨ ^ dz̄jq

so that B : Λp,q Ñ Λp`1,q and B̄ : Λp,q Ñ Λp,q`1.

Example 1.17. For α P Λ1,1, we write α “ αjk̄dz
j ^ dz̄k and

Bα “ B`αjk̄dz
` ^ dzj ^ dz̄k

“
1

2
pB`αjk̄ ´ Bjα`k̄qdz

` ^ dzj ^ dz̄k

“
1

2
pBαq`jk̄dz

` ^ dzj ^ dz̄k. (1.11)

and the components formula is
pBαq`jk̄ “ B`αjk̄ ´ Bjα`k̄.
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1.3 Geometry of bundles

1.3.1 Chern connection

Let E ÑM be a holomorphic vector bundle of rank r over a complex manifold. A hermitian metric
on E is H P ΓpE˚ b Ē˚q which is represented in a local frame teαu of E by

H “ Hαβ̄ e
α b eβ

with Hαβ̄ppq a positive-define r ˆ r hermitian matrix at all points p. The hermitian condition is

Hαβ̄ “ Hβᾱ. Our conventions for the inner product on E given by H is

xu, vy “ uiHik̄v
k, u, v P ΓpEq

so that xu, λvy “ λ̄xu, vy. The hermitian condition is xu, vy “ xv, uy. The norm of a section is
|u|2 “ xu, uy.

We note that xu, vy does not depend on the choice of trivialization. Let U, Ũ be two trivializations
of E with transition matrix rQs “ Qαβ and denote components on Ũ with tildes, so for u P ΓpEq
and ϕ P ΓpE˚q we have

ũα “ Qαβu
β , ϕ̃α “ ϕαpQ

´1qαβ

and the transformation law on H P ΓpE˚ b Ē˚q is

H̃αβ̄ “ pQ
´1qµαHµν̄pQ´1qνβ .

From here we can verify ũαH̃αβ̄ ṽ
β “ uαHαβ̄v

β . This can also be written using matrix nota-
tion:

xu, vy “ uTHv̄,

ũ “ Qu, H̃ “ pQ´1qTHQ´1, (1.12)

and it is straightforward to verify that ũT H̃ṽ “ uTHv̄. In other words, though the direction of uα

as a column vector is not a well-defined quantity (depends on the choice of trivialization), its norm
|u|H is a measurable number.

The inverse of H is denoted in components as H ᾱβ , so that HH´1 “ I becomes in components
Hαβ̄H

β̄γ “ δα
γ . The inverse H´1 produces a metric on E‹.

xψ,ϕy “ H ᾱβψβϕα, ψ, ϕ P ΓpE˚q.

Similarly as above, it can be verified that xψU , ϕU y “ xψŨ , ϕŨ y, so that xψ,ϕy takes two sections
and produces a global function on X.

The metric can be used to raise and lower indices. From uα P ΓpEq, we will write

uβ̄ “ uαHαβ̄ ,

and uβ̄ defines a section of Ē˚. This is because if u ÞÑ Qu and H ÞÑ pQ´1qTHQ´1, then uTH ÞÑ

uTHQ´1 “ pQ´1qT puTHq. Said another way, given u P ΓpEq and a metric H, we obtain a dual
element u˚ P ΓpĒ˚q defined by

u˚pv̄q “ xu, vyH .
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Similarly, from uα P ΓpĒ˚q, then uα “ Hαβ̄uβ̄ is a section of ΓpEq. We note that

uαv
α “ uᾱvᾱ.

Definition 1.18. The Chern connection of a metric H on a holomorphic bundle E is a map
∇ : ΓpEq Ñ ΓpE b pTCMq

˚q given by

∇Bkpuαeαq “ pBku
α ` uβpBkHβν̄qH

ν̄αqeα

∇Bk̄pu
αeαq “ pBk̄u

αqeα. (1.13)

We often just write this in components as

∇k̄u
α “ Bk̄u

α,

∇ku
α “ Bku

α ` uβAkβ
α, Akβ

α “ BkHβν̄H
ν̄α, (1.14)

or without indices as
∇ “ pB ` BHH´1q ` B̄.

For ∇k̄s
α to be a section, we need to verify that if pŨ , s̃αq and pU, sαq are two overlapping trivial-

izations of E with s̃α “ Qαβs
β , then

∇k̄s̃
α “ Qαβ∇k̄s

β .

This is true because B̄Qαβ “ 0. It can also be checked directly that ∇ks
α is a section, namely

∇ks̃
α “ Qαβ∇ks

β ,

by using the transformation law for H.

Recall that a general connection ∇ on a complex vector bundle E is a map ∇ : ΓpEq Ñ ΓpEbT˚Mq
such that ∇pas1 ` bs2q “ a∇s1 ` b∇s2 and ∇pfsq “ df b s` f∇s. We will also sometimes call ∇
a covariant derivative. The Chern connection is the most commonly used choice of connection on
holomorphic bundles, and it is characterized by the following uniqueness statement:

Lemma 1.19. Let pE,Hq be a holomorphic bundle with hermitian metric. The Chern connection
is the unique connection satisfying ∇0,1 “ B̄ and

Bkxu, vy “ x∇ku, vy ` xu,∇k̄vy. (1.15)

Proof. Let ∇ be a connection satisfying (1.15) with ∇0,1 “ B̄. We will solve for ∇1,0. Our notation
for the unknown connection is

∇Bkeα “ Akα
βeβ

where A are unknown coefficients to be solved. In other words

∇ku
α “ Bku

α `Akβ
αuβ .

If we require (1.15), then in coordinates this becomes

BkpHij̄u
ivjq “ Hij̄∇ku

iv̄j̄ `Hij̄u
iBk̄v

j

17



which simplies to
BkHij̄u

ivj “ Hrj̄Aki
ruivj

If this is true for all sections u, v, then

BkHij̄ “ Aki
rHrj̄

and solving for A gives
Aki

` “ BkHij̄H
j̄`

or A “ BHH´1.

There is a formula for how the Chern connection changes when changing the metric. Let Ĥ and H
be two metrics on E. Let A “ BHH´1 and h “ HĤ´1. Then

A “ BHH´1

“ BphĤqĤ´1h´1

“ Bhh´1 ` hÂh´1

“ Bhh´1 ` hÂh´1 ` pÂ´ Âhh´1q

“ Â` ∇̂hh´1 (1.16)

where ∇̂h “ Bh ` hÂ ´ Âh in matrix notation, or using index notation for the component of
hα

β “ Hαµ̄Ĥ
µ̄β , then

∇ihα
β “ Bihα

β ` hα
γAiγ

β ´Aiα
γhγ

β . (1.17)

Here is the reason for the term with a minus sign. Let ∇ be a connection on E acting on sections
u P ΓpEq by

∇iu
α “ Biu

α ` uβAiβ
α, Aiβ

α “ BiHβν̄H
ν̄α.

The induced dual connection acting on ϕ P ΓpE˚q is defined with a minus sign:

∇iϕα “ Biϕα ´Aiα
βϕβ .

This minus sign is introduced so that we can differentiate contracted indices using the product
rule

Bipu
αϕαq “ p∇iu

αqϕα ` u
αp∇iϕαq.

The formula (1.17) follows from the rule for covariant differentiation where each upper index receives
a `A term and each lower index receives a ´A term. As another example,

∇iT
α
βγ “ BiT

α
βγ ` T

µ
βγAiµ

α ´ TαµγAiβ
µ ´ TαβµAiγ

µ,

for T P ΓpE b E˚ b E˚q. Sections of Ē follow the rules

∇iu
ᾱ “ Biu

ᾱ, ∇īu
ᾱ “ Bīu

ᾱ ` uν̄Aiνα

so that ∇ū “ ∇̄u for u P ΓpEq. For example,

∇iGαβ̄ “ BiGαβ̄ ´Aiα
νGνβ̄

for G P ΓpE˚ b Ē˚q. From this formula and Ai “ pBiHqH
´1, we see that

∇iHαβ̄ “ 0, ∇īHαβ̄ “ 0

when ∇ is the Chern connection of H.
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1.3.2 Curvature

The curvature of the Chern connection defines a notion of Hessian of a metric tensor H. The
local combinations BjBk̄Hαβ̄ do not transform as the section of any bundle, and taking covariant
derivatives gives zero: ∇iHαβ̄ “ 0. The curvature tensor is a way to encode second derivatives of
the metric.

Definition 1.20. Let pE,Hq be a holomorphic vector bundle with metric. The curvature of the
Chern connection F P ΓpΛ1,1 b EndEq is given by F “ B̄pBHH´1q. In components

F “ Fβ
α
jk̄ eα b e

β dzj ^ dz̄k,

the definition is
Fα

β
jk̄ “ ´Bk̄pBjHαµ̄H

µ̄βq,

or
Fjk̄ “ ´Bk̄pBjHH

´1q,

without showing the endomorphism indices.

The action of Fjk̄ P ΓpEndEq on u P ΓpEq is

uα ÞÑ uβFβ
α
jk̄.

We now verify that the formula for Fjk̄ gives a well-defined section of EndE. The transformation

law H̃ “ pQ´1qTHQ´1 implies

F̃jk̄ “ ´Bk̄

„

BjppQ
´1qTHQ´1qpQH´1QT q



“ ´Bk̄

„

p´QT BjQ
T q



`´Bk̄

„

ppQ´1qT BjHH
´1QT q



“ pQ´1qT
„

´ Bk̄pBjHH
´1q



QT (1.18)

using B̄Q “ 0, BQ̄ “ 0. This matches with (1.7), and so Fjk̄ P ΓpEndEq acting on sections of E on
the right.

Remark 1.21. Let L Ñ M be a holomorphic line bundle. Then H is a 1 ˆ 1 matrix, and the
transformation law for a metric reads

H̃ “
1

|tŨU |
2
H. (1.19)

The formula for the curvature is

Fjk̄ “ ´Bk̄Bj logH, iF “ ´iBB̄ logH P Λ1,1pMq,

and it can also be checked directly that F̃jk̄ “ Fjk̄.
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Remark 1.22. The formula for change of curvature is

F “ F̂ ` B̄p∇̂hh´1q.

where H, Ĥ are two metrics and h “ HĤ´1. This is because (1.16) implies

B̄A “ B̄Â` B̄p∇̂hh´1q.

Remark 1.23. The formula for Chern curvature is consistent with the general formula for the
curvature of a connection. In general, the curvature of a connection ∇ on E is F “ dA ´ A ^ A,
F “ 1

2Fj
i
µνdx

µ ^ dxν b ej b ei, with

Fj
i
µν “ BµAνj

i ´ BνAµj
i ´Aµj

rAνr
i `Aµj

rAµr
i.

For the Chern connection, ∇0,1 “ B̄, so Aīα
β “ 0. Therefore Fα

β
k̄j̄ “ 0, and since the Chern

connection is unitary then Fα
β
kj “ 0 which can also be checked directly. Therefore F only has

mixed p1, 1q form indices, and
Fj

i
mn̄ “ ´Bn̄Amj

i

since mixed connection terms are zero.

Example 1.24. Fubini-Study metric on Op1q Ñ P1. Recall that P1 is covered by two trivializations
pU0, zq, pU1, z̃q, with change of coordinates z̃ “ z´1 and sections s P ΓpOp1qq transform as s̃ “ z̃s.
The Fubini-Study metric is defined as

hpzq “ p1` |z|2q´1, h̃pz̃q “ p1` |z̃|2q´1.

This transforms correctly as (1.19): h̃ “ p1{|z̃|2qh. In other words, the norm

|s|2h “ ss̄h

gives the same result in either trivialization. The curvature is a 2-form iF P Λ1,1 with components

Fzz̄ “ ´Bz̄Bz log h.

We compute

Fzz̄ “ Bk̄
z̄

1` |z|2
“

1

1` |z|2
´

|z|2

p1` |z|2q2
“ p1` |z|2q´2 ą 0.

Therefore iF is a closed positive p1, 1q form; this is a Kähler metric on P1. The Fubini-Study Kähler
metric is sometimes denoted

ωFS “ iBB̄ logp1` |z|2q.

1.3.3 Hermitian geometry

In this section, we focus on metrics and curvature on the holomorphic tangent bundle T 1,0X. We
will denote a hermitian metric on T 1,0M by g, with components gjk̄.

g “ gjk̄ dz
j b dz̄k.
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The collection of local matrices pU, gjk̄q are related by

g̃jk̄ “
Bz`

Bz̃j
g`m̄

Bzm

Bz̃k
.

Locally we view g as a matrix, e.g. in 2 dimensions

g “

»

–

g11̄ g12̄

g21̄ g22̄

fi

fl .

The inner product on T 1,0M is then

gpV,W q “ V jgjk̄W̄
k̄, V “ V i

B

Bzi
, W “W i B

Bzi
.

A Kähler metric on M is a metric satisfying Bigjk̄ “ Bjgik̄. Another way to express this is to
associate a p1, 1q form

ω “ igjk̄dz
j ^ dz̄k

and require dω “ 0. Note that the factor of i is included in the definition so that ω is real: ω̄ “ ω.
Direct calculation gives

ωn

n!
“ det gjk̄ idz

1 ^ dz̄1 ^ ¨ ¨ ¨ ^ idzn ^ dz̄n, (1.20)

and ωn{n! is a nowhere vanishing top form which will later be used for integration.

Remark 1.25. A hermitian metric g “ gjk̄ on T 1,0M produces a Riemannian metric on the real
tangent bundle TM , which we also denote by g. Let us temporarily write this metric as gR. Let
zj be holomorphic coordinates (indices j, k) and wα “ pz1, . . . , zn, z̄1, . . . , z̄nq be full coordinates
(indices α, β). Then we define

gRpBα, Bβq “ gαβ

where we declare
gjk “ gj̄k̄ “ 0, gjk̄ “ gk̄j .

In other words,
gRpX

αBα, Y
βBβq “ gjk̄X

jY k̄ ` gj̄kX
j̄Y k

where X “ Xi B
Bzi `X

ī B
Bz̄i . From this perspective, the p1, 1q-form ω may be defined as ωpX,Y q “

gRpJX, Y q since ωpBj , Bk̄q “ igjk̄.

We can also write the metric g (we now stop using the notation gR) in terms of q “ px1, y1, . . . , xn, ynq
coordinates where zk “ xk ` iyk. We give the details in complex dimension 1. Let z “ x ` iy be
complex coordinates, and we would like to write

g “

»

–

gxx gxy

gyx gyy

fi

fl
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A hermitian metric is given by a mixed type gzz̄ ą 0, and we declare gzz “ 0 and gz̄z̄ “ 0. Changing
coordinates

gxx “ gpBz ` Bz̄, Bz ` Bz̄q “ 2gzz̄,

gxy “ gpBz ` Bz̄, ipBz ´ Bz̄qq “ 0,

gyy “ gpipBz ´ Bz̄q, ipBz ´ Bz̄qq “ 2gzz̄. (1.21)

The corresponding Riemannian metric in px, yq coordinates is then diagonal with

g “

»

–

2gzz̄ 0

0 2gzz̄

fi

fl .

Note: there is a way to go from a Riemannian metric on TM to a hermitian metric on T 1,0M , but
this requires that g is compatible with the complex structure so that gpJX, JXq “ gpX,Xq and we
omit the details.

We will use a normalization factor of p!q! for the inner product defined on pp, qq forms. For ϕ,ψ P
Λp,q with

ϕ “
1

p!q!
“ ϕα1¨¨¨αpβ̄1¨¨¨β̄q dz

α1 ^ ¨ ¨ ¨ ^ dzαp ^ dz̄β1 ^ ¨ ¨ ¨ ^ dz̄βq ,

and
ϕ̄α1¨¨¨αpβ̄1...β̄q “ gā1α1 ¨ ¨ ¨ gāpαpgβ̄1b1 ¨ ¨ ¨ gβ̄qbqϕa1¨¨¨apb̄1¨¨¨b̄q

then we will use the convention

xϕ,ψy “
1

p!q!
ϕα1¨¨¨αpβ̄1¨¨¨β̄q ψ̄

α1¨¨¨αpβ̄1...β̄q . (1.22)

The Chern connection ∇ on the bundle T 1,0X Ñ X is defined by

∇k̄V
i “ Bk̄V

i, ∇kV
i “ BkV

i ` V pΓkp
i, Γkp

i “ Bkgp¯̀g
¯̀i.

and a direct check shows that ∇g “ 0 and ∇J “ 0.

The curvature of the Chern connection on the tangent bundle will be denoted R P Λ1,1pEndT 1,0Mq,
so that

Rj
i
mn̄ “ ´Bn̄Γmj

i

since Amj
i “ Γmj

i. Explicitly in terms of the metric, the curvature of the Chern connection is
given by

Rj
i
mk̄ “ ´Bk̄pBmgjp̄g

p̄iq.

We can lower the second index
Rjp̄mk̄ “ Rj

i
mk̄gip̄

and the explicit formula in terms of the metric is

Rjp̄mk̄ “ ´Bk̄Bmgjp̄ ` pBmgjq̄qg
q̄apBk̄gap̄q
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using the variation formula for the inverse of a matrix δA´1 “ ´A´1pδAqA´1. The conjugate of
this is

Rjp̄mk̄ “ ´Bm̄Bkgpj̄ ` pBkgpāqg
āqpBm̄gqj̄q

so
Rjp̄mk̄ “ Rpj̄km̄, Rjimk̄ “ gīpRpj̄km̄ “ Rī j̄km̄.

The curvature appears when exchanging covariant derivatives. We will write

r∇m,∇k̄sV
i “ ∇m∇k̄V

i ´∇k̄∇mV
i

where ∇m∇k̄V
i means: let Wk̄

i “ ∇k̄V
i be a tensor and compute the components ∇mWk̄

i. The
commutator formula is

r∇m,∇k̄sV
i “ V pRp

i
mk̄. (1.23)

Here is the check:

r∇m,∇k̄sV
i “ Bm∇k̄V

i ` Γm`
i∇k̄V

` ´ Bk̄∇mV
i

“ BmBk̄V
i ` Γm`

iBk̄V
` ´ Bk̄pBmV

i ` Γm`
iV `q

“ ´Bk̄Γm`
iV ` “ R`

i
mk̄V

`. (1.24)

Remark 1.26. A similar calculation gives that the commutator r∇m,∇ksV
i involves another

tensor, the torsion tensor, but we will not need this formula.

Taking the conjugate of (1.23) gives

r∇k,∇m̄sV
ī “ ´V p̄Rīp̄km̄.

We can lower the index by introducing gaī, since ∇kgaī “ 0.

r∇k,∇m̄sVa “ ´Ra
p
km̄Vp.

Similarly
r∇k,∇m̄sVā “ Rp̄āmk̄Vp̄.

Let
Rjk̄ “ Rp

p
jk̄ “ gq̄pRpq̄jk̄

and define the Chern-Ricci form by

iRicω “ iRjk̄ dz
j ^ dz̄k.

Viewing R P Λ1,1pEndT 1,0Xq, we have iRicω “ iTrR P Λ1,1pXq where we trace out the endomor-
phism indices and retain the 2-form indices. Using the general formula for the derivative of the
determinant of an invertible hermitian matrix A,

d

dt

ˇ

ˇ

ˇ

ˇ

t“0

detAptq “ detAp0qTr rAp0q´1 9Ap0qs

we obtain Bj log det g “ gr̄pBjgpr̄, and so

Rjk̄ “ ´Bk̄Bj log det g, (1.25)
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and
iRicω “ ´iBB̄ log det g.

This expression can also be connected to Riemannian geometry: in the case when gij̄ is a Kähler
metric, then it turns out that Rjk̄ is the Levi-Civita Ricci tensor of the Riemannian metric g on TX.
This calculation can be found in Kähler’s original paper (see p.178 in [17], where (1.25) is described
as “very elegant”), and it is one of the main motivations for the field of Kähler geometry.

We note that when g is a general hermitian metric on T 1,0X, the Chern-Ricci curvature Rjk̄ (1.25)
is different than the Riemannian Levi-Civita Ricci tensor.

Remark 1.27. From the point of view of Riemannian geometry, it looks like Rjk̄ “ Rp
p
jk̄ is

tracing the wrong index in the definition of the Ricci curvature and should be zero. This is not the
case because we are only tracing over holomorphic indices. Tracing over all real indices does indeed
give zero. Let α, β represents real coordinates xα “ pz1, . . . , zn, z̄1, . . . , z̄nq and a, b, j, k represents
holomorphic coordinates zi, and let Rαβγµ be the Riemannian curvature tensor. Then

gαβRαβjk̄ “ gab̄Rab̄jk̄ ` g
ābRābjk̄ “ gab̄pRab̄jk̄ `Rb̄ajk̄q “ 0,

since the Riemannian curvature tensor satisfies Rαβγµ “ ´Rβαγµ. But the trace

gab̄Rab̄jk̄

is not summing over all coordinate indices α, β, and need not be zero.

Example 1.28. We start with the line bundle Op1q Ñ Pn with trivializations Ui “ tZi ‰ 0u.
Recall that the transition functions pUi X Uj , tijq are tij “ Zj{Zi.

‚ Show that the collection pUi, hiq with

hi “
|Zi|

2

ř

k |Zk|
2

defines a metric on Op1q Ñ Pn. We call h the Fubini-Study metric.

‚ Compute the curvature iF “ iBB̄ log h of the Fubini-Study metric, and show that in local coordi-
nates on Ui then

iF “ iBB̄ logp1` |z|2q, |z|2 “
n
ÿ

i“1

|zi|2. (1.26)

We will show below that iF :“ ωFS is a Kähler metric on the base Pn.

‚ We also sometimes refer to the following expression

ωFS “ iBB̄ logp1` |z|2q, ωFS “ igjk̄dz
j ^ dz̄k,

as the Fubini-Study metric on Pn. We see that dωFS “ 0, and to show ωFS is a Kähler metric, we
need to verify that gjk̄ is a positive-definite matrix. A computation gives

gjk̄ “
p1` |z|2qδjk ´ zkz̄j

p1` |z|2q2
.
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For ξ P Cn, we have

gjk̄ξ
j ξ̄k “

p1` |z|2q|ξ|2 ´ |zk ξ̄
k|2

p1` |z|2q2

ě
p1` |z|2q|ξ|2 ´ |z|2|ξ|2

p1` |z|2q2

“
|ξ|2

p1` |z|2q2
ą 0. (1.27)

Therefore g is a hermitian metric.

‚ Compute the Chern-Ricci curvature of ωFS . A computation of the determinant gives

det gjk̄ “ p1` |z|
2q´pn`1q.

From here, one can compute that
Rjk̄ “ pn` 1qgjk̄.

Another way to write this is iRicpωFSq “ pn ` 1qωFS . Kähler metrics satisfying iRicpωq “ λω for
λ P R are said to be Kähler-Einstein.

Example 1.29. Suppose X is a complex manifold with an embedding into projective space i :
X Ñ PN . Then i˚ωFS is Kähler metric on X. In other words, projective manifolds are Kähler.
For an interesting converse, see the Kodaira embedding theorem: this states that a compact Kähler
manifold pX,ωq with rωs P H2pX,Zq admits an embedding i : X Ñ PN into some projective space
PN .
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2 Kähler Manifolds

This section will follow the textbook by Kodaira-Morrow [20].

2.1 Hodge theory

We start with the definition of the Dolbeault cohomology groups. Let X be a compact complex
manifold and E Ñ X a holomorphic vector bundle. Let Λp,qpEq be smooth pp, qq forms with
coefficients in E, so that sections s P Λp,qpEq are of the form s “ u b η with u P ΓpEq and
η P Λp,qpXq. The Dolbeault cohomology groups are defined

HqpX,Eq “
kerpB̄ : Λ0,qpEq Ñ Λ0,q`1pEqq

im pB̄ : Λ0,q´1pEq Ñ Λ0,qpEqq

Letting E “ Ωp be the holomorphic bundle of pp, 0q forms, we also define

Hp,q

B̄
pXq :“ HqpX,Ωpq “

kerpB̄ : Λp,qpXq Ñ Λp,q`1pXqq

im pB̄ : Λp,q´1pXq Ñ Λp,qpXqq

and the Hodge numbers are
hp,q “ dimHp,q

B̄
pXq.

The theme of Hodge theory is to represent the cohomology class rϕs by a unique optimal repre-
sentative ϕ0 P rϕs. The selected representative from the equivalence class is found by solving an
elliptic PDE. In this particular case, we will look for solutions ϕ0 P rϕs to the Laplace equation
∆B̄ϕ0 “ 0.

To define the Laplacian, we must equip pE,Xq with metrics: let H be a metric on E and g a
metric on the base X. As described in earlier sections, this defines a pointwise inner product on
ϕ1, ϕ2 P Λp,qpEq:

xϕ1, ϕ2yg,H : X Ñ C.
The L2 inner product on Λp,qpEq is then

pϕ1, ϕ2qL2 “

ż

X

xϕ1, ϕ2yg,H
ωn

n!
.

The Dolbeault operator B̄ : Λp,qpEq Ñ Λp,q`1pEq has an L2-adjoint denoted B̄: : Λp,qpEq Ñ
Λp,q´1pEq. The adjoint satisfies

pB̄ϕ1, ϕ2qL2 “ pϕ1, B̄
:ϕ2qL2 , ϕ1 P Λp,q´1pEq, ϕ2 P Λp,qpEq.

The B̄-Laplacian ∆B̄ : Λp,qpEq Ñ Λp,qpEq is then defined by

∆B̄ “ B̄B̄
: ` B̄:B̄.

There is an explicit formula for the adjoint in local coordinates. Roughly speaking, B̄ is a like a curl
operator while B̄: is like a divergence operator. We give the formula without the additional vector
bundle E Ñ X, so that we consider usual pp, qq forms with adjoint B̄: : Λp,qpXq Ñ Λp,q´1pXq. The
formula in local coordinates is

pB̄:ϕqĪJ “ ´pdet gq´1Bp

„

pdet gqϕpĪJ


, ϕ P Λp,qpXq. (2.1)
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Here I “ i1 ¨ ¨ ¨ ip, J “ j1 ¨ ¨ ¨ jq are multi-indices, and we raise indices using the metric: e.g. if
ϕ “ 1

q!ϕJ̄dz̄
J is p0, qq form, then ϕJ “ gj1ā1 ¨ ¨ ¨ gjq āqϕā1¨¨¨āq , or e.g. if ϕ “ ϕrs̄dz

r ^ dz̄s is a

p1, 1q-form, then ϕīj “ gīrgs̄jϕrs̄.

Let us verify formula (2.1) in the special case of p0, 2q forms. Let θ P Λ0,2pXq and ϕ P Λ0,1pXq.
Then

ϕ “ ϕīdz̄
i, pB̄ϕqj̄k̄ “ Bj̄ϕk̄ ´ Bk̄ϕj̄ .

Using the inner product (1.22) we have

xB̄ϕ, θyg “
1

2
gj̄igk̄`pBj̄ϕk̄ ´ Bk̄ϕj̄qθī¯̀“ Bj̄ϕk̄θ̄

j̄k̄

and
Bj̄ϕk̄θ̄

j̄k̄pdet gq “ ´ϕk̄Bj̄pθ̄
j̄k̄pdet gqq ` Bj̄rϕk̄pθ̄

j̄k̄pdet gqqs.

Let W k̄ “ pdet gq´1Bj̄ppdet gqθ̄j̄k̄q. Multiplying by idz1 ^ dz̄1 ¨ ¨ ¨ ^ idzn ^ dz̄n and using (1.20)
gives

xB̄ϕ, θy
ωn

n!
“ ´ϕk̄W

k̄ ω
n

n!
` dιV

ωn

n!
.

The last term involves V j̄ “ ϕk̄θ
j̄k̄ and will be explained below. Integrating this identity over X

and applying Stokes’s theorem gives

pB̄ϕ, θqL2 “ ´

ż

X

pϕk̄W
k̄q
ωn

n!
.

We compare this with the definition of the adjoint:

pB̄ϕ, θqL2 “

ż

X

pϕk̄pB̄
:θq

k̄
q
ωn

n!
“ pϕ, B̄:θqL2 .

Thus pB̄:θqk “ ´W̄ k, and since

W̄ k “ pdet gq´1Bpppdet gqθpkq

this is the formula (2.1). We now explain why

Bj̄rV
j̄pdet gqs idz1 ^ dz̄1 ¨ ¨ ¨ ^ idzn ^ dz̄n “ dιV

ωn

n!
.

First, we recall the definition of the interior product: if V is a vector field, then ιV : Λk Ñ Λk´1

via
pιV ηqpW1, . . . ,Wk´1q “ V iηpBi,W1, . . . ,Wk´1q,

and it satisfies ιV pη1^η2q “ ιV η1^η2`p´1qkη1^ ιV η2 if η1 P Λk. Therefore applying ιV to (1.20)
gives

´ιV
ωn

n!
“ det g

„

V 1̄pidz1q ^ pidz2 ^ dz̄2q ^ p¨ ¨ ¨ q ` V 2̄pidz1 ^ dz̄1q ^ pidz2q ^ p¨ ¨ ¨ q ` . . .



and d “ B ` B̄ becomes

dιV
ωn

n!
“ Bk̄rpdet gqV k̄s pidz1 ^ dz̄1q ^ ¨ ¨ ¨ ^ pidzn ^ dz̄nq,
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as claimed.

The B̄-Laplacian can be studied using techniques from the theory of elliptic PDE. We now give the
general definition of an elliptic operator.

Definition 2.1. Let E,F Ñ X be vector bundles trivialized by a finite cover X “ YNi“1Ui. An
elliptic operator of order k is a map L : ΓpEq Ñ ΓpF q such that:

‚ In each trivialization Ui Ă X, L appears as

pLuqα “
ÿ

|I|“k

AIαβBIu
β `

ÿ

0ď|I|ăk

BIαβBIu
β .

‚ Let p P X. Then for all ξ P Λ1pX,Rq with ξp ‰ 0, then

σpL, ξqppq : Ep Ñ Fp

is an isomorphism. Here for ξ P Λ1pX,Rq with ξ “ ξidx
i, we define σpL, ξq P ΓpHompE,F qq by

σpξqαβ “ ξIA
Iα
β , ξI “ ξi1 ¨ ¨ ¨ ξik .

In other words, for an elliptic operator the matrix rξIA
I s is invertible.

Example 2.2. The B̄-Laplacian ∆B̄ : Λp,qpXq Ñ Λp,qpXq is an elliptic operator of order 2. A
calculation (illustrated below) shows that it is locally of the form

p∆ψqPQ̄ “ ´g
j̄iBiBj̄ψPQ̄ ` . . . , (2.2)

and therefore
σp∆, ξq “ p´gj̄iξiξj̄q id “ ´|ξ|

2
g id.

Here we write ξ “ ξidz
i ` ξīdz̄

i for ξ P Λ1pM,Rq, and since ξ is real then ξ̄ “ ξ and ξj̄ “ ξj .

We verify (2.2) for p0, 1q forms ϕ “ ϕīdz̄
i. By using the expression for the adjoint (2.1) and

pB̄ϕqj̄k̄ “ Bj̄ϕk̄ ´ Bk̄ϕj̄ , we compute

pB̄B̄:ϕqᾱ “ BᾱpB̄
:ϕq

“ ´Bᾱ

ˆ

pdet gq´1Bp

„

gq̄ppdet gqϕq̄

˙

(2.3)

and

pB̄:B̄ϕqᾱ “ ´pdet gq´1Bp

„

pdet gqpB̄ϕqpβ


gβᾱ

“ ´pdet gq´1Bp

„

pgq̄pgν̄β det gqpBq̄ϕν̄ ´ Bν̄ϕq̄q



gβᾱ. (2.4)

The terms involving 2 derivatives of ϕ are

p∆ϕqᾱ “ ´g
q̄pBᾱBpϕq̄ ´ g

q̄pBppBq̄ϕᾱ ´ Bᾱϕq̄q ` . . .

and cancellation gives the result (2.2).
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We say that an elliptic operator L is self-adjoint if

pLψ,ϕqL2 “ pψ,LϕqL2 , ψ P ΓpEq, ϕ P ΓpF q.

For example, ∆B̄ is self-adjoint.

Theorem 2.3. Let L be a self-adjoint elliptic operator on a vector bundle over a compact manifold.
There is an L2 orthogonal decomposition

ΓpEq “ kerL‘ ImL.

Thus we can solve Lψ “ ϕ if and only if ϕ P pkerLqK.

Proof. See Theorem 7.3 in the appendix of [19].

Applying this to ∆B̄, we see that we can write any η P Λp,qpXq as

η “ h` pB̄B̄: ` B̄:B̄qβ,

where h P ker ∆B̄, and this is usually written as

η “ h` B̄β1 ` B̄
:β2.

We will often use that
ker ∆B̄ “ tη : B̄η “ 0, B̄:η “ 0u.

This can be seen by the formula

p∆B̄η, ηqL2 “ pB̄η, B̄ηqL2 ` pB̄:η, B̄:ηqL2 .

As a consequence of this discussion, we obtain:

Corollary 2.4. Let X be a compact complex manifold with hermitian metric gij̄. Every Dolbeault
cohomology class rηs P Hp,qpXq admits a unique representative h P rηs with ∆B̄h “ 0. Therefore:

dim ker ∆B̄|Λp,q “ dimHqpX,Ωpq “ hp,q.

Proof. Write η “ h` B̄β1 ` B̄
:β2. Since B̄η “ 0, then

η “ h` B̄β1.

This is because pB̄:β2, B̄
:β2q “ pβ2, B̄ηq “ 0. It follows that rηs “ rhs for h P ker ∆B̄. For uniqueness,

suppose η “ h1 ` B̄β1 “ h̃1 ` B̄β̃1. Then

0 “ ph1 ´ h̃1q ` B̄pβ1 ´ β̃1q

and so
0 “ ph1 ´ h̃1, h1 ´ h̃1qL2 ` pB̄pβ1 ´ β̃1q, h1 ´ h̃1qL2

and }h1 ´ h̃1}
2
L2 “ 0 since B̄:ph1 ´ h̃1q “ 0.
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There is a similar theory for vector bundle valued pp, qq forms, and in general

HqpX,E b Ωpq :“ Hp,q

B̄
pEq

“ tη P Λp,qpEq : ∆B̄η “ 0u

“ tη P Λp,qpEq : B̄η “ 0, B̄:η “ 0u. (2.5)

Theorem 2.5. (Serre duality) Let E Ñ X be a holomorphic vector bundle over a compact complex
manifold. Then

dimHp,q

B̄
pEq “ dimHn´p,n´q

B̄
pE˚q,

which implies that
dimHqpX,Eq “ dimHn´qpX,KX b E

˚q. (2.6)

and hp,qpXq “ hn´p,n´qpXq.

Proof. We will use the Hodge star operator. This is a linear map

‹ : Λp,q Ñ Λn´q,n´p

defined by the property

ϕ^ ‹ψ̄ “ xϕ,ψyg
ωn

n!
, ϕ, ψ P Λk. (2.7)

Here xϕ,ψy is defined by zero if ϕ,ψ are of different pp, qq type. For example, if g is the Euclidean
metric on Cn,

dz1 ^ ‹dz1 “ xdz1, dz̄1yg
ωn

n!
“ 0, dz̄1 ^ ‹dz1 “

ωn

n!
, (2.8)

and so ‹dz1 “ ´idz1 ^ pidz2 ^ dz̄2q ^ ¨ ¨ ¨ ^ pidzn ^ dz̄nq.

The Hodge star satisfies:

‚ ‹ψ “ ‹ψ̄

‚ ‹2ψp,q “ p´1qp`qψp,q

The first property can be verified by manipulating and taking the conjugate of (2.7). The second
property can be verified by manipulating (2.7) and using x‹ϕ, ‹ψy “ xϕ,ψy. To show ‹ preserves
the inner product, one can calculate in a similar way to (2.8) to show that ‹ takes an orthonormal
basis of Λp,q to an orthonormal basis Λn´q,n´p.

Next, we extend ‹ to vector bundle valued forms. For ϕ P Λp,qpEq, we can write ϕ “ ϕαb ηp,q and
define

‹pϕα b ηp,qq “ ϕα b ‹ηp,q.

Equip E with a hermitian metric H. The L2 inner product can then be written as

pϕ,ψqL2 “

ż

ϕα ^ ‹ψβHαβ̄ .

The L2 adjoint of B̄ can be written as

pB̄:ψqβ “ ´ ‹H µ̄βBpHνµ̄ ‹ ψ
νq. (2.9)
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This can be verified by Stokes’s theorem and substitution of (2.9) into the defining relation pB̄ϕ,ψq “
pϕ, B̄:ψq. Indeed, for ϕ P Λp,qpEq and ψ P Λp,q`1pEq, then

pϕ, B̄:ψq “

ż

ϕα ^ ‹pB̄:ψqβHαβ̄

“ ´

ż

ϕα ^ ‹2

ˆ

H β̄µB̄pHµν̄ ‹ ψ̄
ν̄q

˙

Hαβ̄

“ p´1qp´1qn´pp´1qn´q
ż

ϕα ^ B̄pHαν̄ ‹ ψ̄
ν̄q

“ p´1qp´1qn´pp´1qn´qp´1qp´1qp`q
ż

B̄ϕα ^ ‹ψ̄ν̄Hαν̄

“ pB̄ϕ,ψq. (2.10)

Next, we define the map
# : Λp,qpEq Ñ Λn´p,n´qpE˚q

by
p#ψqβ “ Hβᾱ ‹ ψα.

This satisfies ## “ p´1qp`q, and formula (2.9) can be written

pB̄:ψqµ “ ´ ‹ B̄p#ψqβH
βµ̄.

Therefore
Hp,q

B̄
pEq “ tη P Λp,qpEq : B̄η “ 0, B̄:η “ 0u

can be written in this notation as

Hp,q

B̄
pEq “ tη P Λp,qpEq : B̄η “ 0, B̄#η “ 0u.

It follows that
η ÞÑ #η

is a map from Hp,qpEq to Hn´p,n´qpE˚q, and this is an isomorphism.

Note that here we used # because this would not have worked using ‹ : Λp,qpXq Ñ Λn´q,n´ppXq,
since ∆B̄η “ 0 if and only if B̄η “ 0 and B ‹ η “ 0, and so if ∆B̄η “ 0 then it is not necessarily true
that ∆B̄ ‹ η “ 0.

On a Kähler manifold, there are the following symmetries for the Hodge numbers.

Theorem 2.6. Let X be a compact Kähler manifold. Then

HkpX,Cq “
à

p`q“k

Hp,qpXq, hp,q “ hq,p, hn´p,n´q “ hp,q.

If bk “ dimHkpX,Cq denote the Betti numbers of X, then

bk “
k
ÿ

p“0

hp,k´p. (2.11)
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For example,

b1 “ h1,0 ` h0,1 “ 2h0,1,

b2 “ h2,0 ` h1,1 ` h0,2 “ 2h0,2 ` h1,1. (2.12)

Here

HqpX,Cq “
kerpd : ΛqpXq Ñ Λq`1pXqq

im pd : Λq´1pXq Ñ ΛqpXqq

are the deRham cohomology groups, and ΛkpXq denotes differential k-forms with coefficients in C.
The Laplacians are

∆d “ dd: ` d:d, ∆B “ ∆B̄ “ BB
: ` B:B,

where d:, B: are the L2 adjoints of d, B. These Laplacians are elliptic operators and satisfy the
Hodge decomposition Theorem 2.3, and it follows from elliptic PDE theory that each de Rham
class rηs P HkpX,Cq admits a unique representative h P rηs with ∆dh “ 0.

Proof. This theorem follows from the Kähler Laplacian identities

∆B̄ “ ∆B “
1

2
∆d. (2.13)

We will prove (2.13) below. We will show how (2.13) implies the result. From

HkpX,Cq “ tη P Λk : ∆dη “ 0u

Hp,qpXq “ tη P Λp,q : ∆B̄η “ 0u, (2.14)

we can decompose η P Λk as η “
ř

p`q“k η
p,q. Since ∆B̄ preserves type, we have ∆dη “

ř

p`q“k 2∆B̄η
p,q.

Therefore if η P Λk with ∆dη “ 0, then

η ÞÑ
ÿ

p`q“k

ηp,q

is a map from HkpX,Cq to ‘p`q“kH
p,qpXq and this is an isomorphism.

Next, we prove hp,q “ hq,p. If η P Hp,qpXq with ∆B̄η “ 0, then η̄ P Λq,ppXq and (2.13) implies

∆B̄η̄ “ ∆B̄η̄ “ ∆B̄η̄ “ 0.

Therefore η ÞÑ η̄ is a map from Hp,qpXq to Hq,ppXq and this is an isomorphism.

Example 2.7. We compute the Hodge numbers of Pn. The cell-decomposition Pn “ tptu Y C1 Y

C2 Y ¨ ¨ ¨ Y Cn implies
dimH2kpPn,Cq “ 1, k P t0, 1, . . . u

and all odd cohomology groups are zero. Since HkpX,Cq “
À

Hp,qpXq, we conclude

hk,kpPnq “ 1

and all other Hodge numbers are zero.
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We now show ∆B̄ “ ∆B “
1
2∆d. First, we note the following Kähler identities:

pB̄:ϕqJK̄ “ ´g
āb∇bϕāJK̄ , (2.15)

and

iB̄: “ BΛω ´ ΛωB

´iB: “ B̄Λω ´ Λω B̄, (2.16)

where Λω : Λp,q Ñ Λp´1,q´1 is
pΛϕqJK̄ “ igābϕbāIJ̄ .

For example, for ω “ igjk̄dz
j ^ dz̄k then Λωω “ ´n.

We will discuss (2.15) in the following section on the Kodaira vanishing theorem, and we assume it
for now. Let us verify (2.16) for ϕ P Λ1,1. Then

pBΛωϕqj “ ∇jpig
ābϕbāq “ igāb∇jϕbā.

and
pΛωBϕqj “ igābpBϕqbāj ,

while

Bϕ “ B`ϕjk̄dz
` ^ dzj ^ dz̄k

“
1

2
p∇`ϕjk̄ ´∇jϕ`k̄qdz

` ^ dzj ^ dz̄k

“
1

2
pBϕq`jk̄dz

` ^ dzj ^ dz̄k (2.17)

where B was switched for ∇ since Γkij “ Γkji for Kähler metrics, as is seen by the explicit formula

Γkij “ Bigjp̄g
p̄k and the Kähler definition Bigjp̄ “ Bjgip̄. So

pΛωBϕqj “ igābp´∇bϕjā `∇jϕbāq

Therefore
pBΛωϕqj ´ pΛωBϕqj “ igāb∇bϕjā “ ipB̄:ϕqj

which proves (2.16) for p1, 1q-forms.

Next, using the Kähler identity (2.16), we note

BB̄: “ ´B̄:B, (2.18)

since
iBB̄: ` iB̄:B “ BpBΛ´ ΛBq ` pBΛ´ ΛBqB “ 0.

Combining (2.16) and (2.18), we derive

∆B “ pBB: ` B:Bq

“ iBpB̄Λ´ ΛB̄q ` ipB̄Λ´ ΛB̄qB

“ ´iB̄pBΛ´ ΛBq ´ ipBΛ´ ΛBqB̄

“ B̄B̄: ` B̄:B̄

“ ∆B̄ (2.19)
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and

∆d “ pdd: ` d:dq

“ pB ` B̄qpB: ` B̄:q ` pB: ` B̄:qpB ` B̄q

“ ∆B `∆B̄ ` pBB̄
: ` B̄:Bq ` pB̄B: ` B:B̄q

“ 2∆B̄. (2.20)

To end this section, we state the BB̄-Lemma.

Theorem 2.8. (BB̄-Lemma) Let X be a compact Kähler manifold. Let α P Λp,qpXq. Then:

‚ If α “ dη for η P Λp`q´1, then α “ BB̄β for β P Λp´1,q´1.

‚ If α “ Bη for η P Λp´1,q and dα “ 0, then α “ BB̄β for β P Λp´1,q´1.

Proof. We prove the first statement, and the second statement has a similar proof. Using the Hodge
decomposition (Theorem 2.3) for ∆B,

α “ Bα1 ` B
:α2 ` α

1, α1 P ker ∆B.

Using that α1 P ker ∆B “ ker ∆d, we have pα1, α1q “ pα1, αq “ pd:α1, ηq “ 0. Also 0 “ Bα “ BB:α2

and so pB:α, B:αq “ 0. Therefore
α “ Bα1.

Next, we use the Hodge decomposition for ∆B̄ to write

α1 “ B̄β1 ` B̄
:β2 ` β

1, β1 P ker ∆B̄

Substituting gives
α “ BB̄β1 ` BB̄

:β2.

To remove the last term, we must use the Kähler identity (2.18) which reads BB̄: “ ´B̄:B. Using
this and B̄α “ 0, we see that

0 “ B̄B̄:Bβ2.

It follows that pB̄:Bβ2, B̄
:Bβ2q “ 0.

2.2 Kodaira vanishing theorem

Let L Ñ pM,ωq be a holomorphic line bundle over a compact Kähler manifold. We say that L is
a positive line bundle if it admits a metric h such that its curvature satisfies Fjk̄ ě εgjk̄ for some
ε ą 0. Here the inequality is in the sense of positive-definite matrices, meaning

Fjk̄v
jvk ě εgjk̄v

jvk

for all v P Cn.
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Example 2.9. The main example of a positive line bundle is Op1q Ñ Pn, as

phFSqi “
|Zi|

2

ř

p |Zp|
2
, over Ui “ tZi ‰ 0u

defines a metric with curvature iF “ ´iBB̄ log hFS “ ωFS ą 0 as we computed in (1.26). A similar
computation shows that Opkq Ñ Pn is positive for any k ě 1. For this, equip Opkq with phFSq

k so
that the curvature is iF “ kωFS .

Example 2.10. Let P pZ0, . . . , Znq be a homogeneous polynomial of degree k, and let Y “ tP “
0u Ă Pn. Then OpY q Ñ Pn is a positive line bundle by example 1.14.

Example 2.11. There is a notion of ample line bundle LÑM , which means that there are sections
si P H

0pM,Lq such that ϕ : M Ñ PN with ϕpzq “ rs0pzq, . . . , sN pzqs is an embedding. We can
cover X with trivializations Ui “ tsi ‰ 0u and equip L with metrics phi, Uiq with

hi “ ϕ˚hFS “
|si|

2

ř

k |sk|
2
.

Then ´iBB̄ log h “ ϕ˚p´iBB̄ log hFSq ą 0. Therefore ample line bundles are positive. Kodaira’s
embedding theorem (e.g. [20]) states that positive line bundles are ample.

Theorem 2.12. Let L Ñ pM,ωq be a positive holomorphic line bundle over a compact Kähler
manifold. Then

HqpX,LbKXq “ 0

for all q ě 1.

We will show that dim HqpX,L b KXq “ dim ker ∆B̄|Λ0,qpLbKXq “ 0. We will give the proof for
q “ 1 for simplicity. For the general calculation, see e.g. [20].

Let h be a metric on L, so that the inner product on sections u, v P ΓpLq is xu, vyh “ uvh. Let
ϕ P Λ0,1pLq, which we write as

ϕ “ ϕk̄dz̄
k,

where ϕk̄ is a local section of L. The L2 inner product for u, v P ΓpLq is

pu, vq “

ż

X

puv̄hq
ωn

n!

and for ϕ,ψ P Λ0,1pLq is

pϕ,ψq “

ż

X

gīkpϕīψk̄hq
ωn

n!
.

We will start by computing B̄:ϕ P ΓpLq. The difference with (2.1), in addition to introducing the
line bundle L into the mix, is that we now use the assumption that g is Kähler. The formula in
this case is:

Lemma 2.13. Let pX,ωq be a compact Kähler manifold and ϕ P Λ0,qpLq.

pB̄:ϕqK̄ “ ´g
āb∇bϕāK̄ .
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We will verify this for ϕ P Λ0,1pLq. The definition of the adjoint is

pB̄:ϕ, uq “ pϕ, B̄uq, ϕ P Λ0,1pLq, u P ΓpLq.

We start with
xϕ, B̄uyg,h “ gīkpϕīBk̄uhq “ ϕkBkuh

which implies
xϕ, B̄uyg,hpdet gq “ Bkpϕ

kupdet gqhq ´ Bkphpdet gqϕkqu

The first term integrates to zero by Stokes’s theorem (see earlier notes for more justification on
this), and so wedging by dz1 ^ ¨ ¨ ¨ ^ dz̄n and integrating gives

pϕ, B̄uq “ ´

ż

X

Bkphpdet gqϕkqpdet gq´1h´1hu
ωn

n!
“ pB̄:ϕ, uq

where
B̄:ϕ “ ´h´1pdet gq´1Bkphpdet gqgkīϕīq. (2.21)

On a Kähler manifold, this is in fact

B̄:ϕ “ ´gk̄p∇pϕk̄, (2.22)

where the Chern connection of ph, gq acts on ϕ P Λ0,1pLq by

∇pϕk̄ “ Bpϕk̄ ` ph
´1Bphqϕk̄, ∇p̄ϕk̄ “ Bp̄ϕk̄ ´ Γp̄k̄

¯̀
ϕ¯̀.

To see (2.22), expand (2.21)

B̄:ϕ “ ´gkīBkϕī ´ h
´1Bkhg

kīϕī ´ pdet gq´1Bkppdet gqgkīqϕī

The last term is zero. Indeed,

Bkppdet gqgīkq “ Bkpdet gqgīk ` pdet gqBkg
īk

“ pdet gqgb̄aBkgab̄g
īk ´ pdet gqgb̄kBkgab̄g

īa

“ 0 (2.23)

by the Kähler condition Bkgab̄ “ Bagkb̄. This proves (2.22). With this formula for the adjoint, we
now compute the Laplacian.

Lemma 2.14. Let pL, hq Ñ pX,ωq be a holomorphic line bundle with metric over a compact Kähler
manifold. For any ϕ P Λ0,1pLq, we have

p∆B̄ϕqk̄ “ ´g
āb∇b∇āϕk̄ ` ϕ

iRik̄ ` ϕ
iFik̄.

Proof. We start with pB̄fqk̄ “ ∇k̄f on functions, which implies

pB̄B̄:ϕqk̄ “ ∇k̄p´g
āb∇bϕāq “ ´g

āb∇k̄∇bϕā,
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since ∇k̄g
āb “ 0. Next,

pB̄:B̄ϕqk̄ “ ´gāb∇bpB̄ϕqāk̄

“ ´gāb∇bpBāϕk̄ ´ Bk̄ϕāq

“ ´gāb∇bp∇āϕk̄ ´∇k̄ϕāq. (2.24)

This is because Γij
k “ Γji

k for a Kähler manifold since Γij
k “ Bigjp̄g

p̄k. Therefore

p∆B̄ϕqk̄ “ ´g
āb∇b∇āϕk̄ ` r∇b,∇k̄sϕ

b

The commutator formula for covariant derivatives on ϕa P ΓpT 1,0X b Lq implies

r∇b,∇k̄sϕ
b “ ϕaRa

b
bk̄ ` ϕ

bFbk̄.

In Kähler geometry, one can see directly from Rj
i
mk̄ “ ´Bk̄pBmgjp̄g

p̄iq the symmetry

Ra
b
jk̄ “ Rj

b
ak̄.

Since Rak̄ “ Rb
b
ak̄, we conclude the formula.

We now let ϕ P Λ0,1pLbKXq. We can apply the previous formula with ϕ P Λ0,1pL̃q, and L̃ “ LbKX

equipped with the product metric h̃ “ hb pdet gq´1. Using the formula Rik̄ “ ´BiBk̄ log det g and
F̃jk̄ “ ´BjBk̄ log h, we see that the curvature is

F̃jk̄ “ Fjk̄ ´Rjk̄

Therefore cancellation occurs and we have

p∆B̄ϕqk̄ “ ´g
āb∇b∇āϕk̄ ` ϕ

iFik̄.

Suppose ϕ P ker ∆. Then

0 “ p∆ϕ,ϕq “ ´

ż

X

∇a∇aϕk̄ϕ̄
k̄h
ωn

n!
`

ż

X

ϕiFik̄ϕ̄
k̄h
ωn

n!

Integrating the first term by parts and using positivity of Fik̄,

0 ě

ż

X

∇aϕk̄∇aϕ̄
k̄h

ωn

n!
` ε

ż

X

gik̄ϕ
iϕ̄k̄h

ωn

n!
,

which is
0 ě p∇ϕ,∇ϕqL2 ` εpϕ,ϕqL2 .

It follows that ϕ “ 0. This proves that ker ∆ “ t0u. Therefore dimH1pX,LbKXq “ 0.

Here we used integration by parts on a Kähler manifold, which follows from the divergence theo-
rem

ż

X

∇aV
a ωn “ 0, V P ΓpT 1,0Xq. (2.25)
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In the above computation, this was used with V a “ ∇aϕk̄ϕ̄
k̄h P ΓpT 1,0Xq and

0 “

ż

X

∇ap∇aϕk̄ϕ̄
k̄hq

ωn

n!
“

ż

X

∇a∇aϕk̄ϕ̄
k̄h

ωn

n!
`

ż

X

∇aϕk̄∇apϕ̄
k̄hq

ωn

n!

and we also then used metric compatibility ∇ah “ 0. The divergence theorem (2.25) comes
from

ż

X

dιV
ωn

n!
“ 0,

and the integrand is

BipV
i det gqpidz1dz̄1q . . . pidzndz̄nq “ pdet gq´1BipV

i det gq
ωn

n!
.

We compute

pdet gq´1BipV
i det gq “ BiV

i ` pdet gq´1Bipdet gqV i “ BiV
i ` gābBigābV

i.

Therefore
ż

X

pBiV
i ` Γib

bV iqωn “ 0.

On the other hand
∇iV

i “ BiV
i ` Γib

iV b.

Since Γib “ Γbi, these are equal.

This vanishing theorem can be generalized, and more generally there holds (see e.g. [20]

Theorem 2.15. Let L Ñ pX,ωq be a positive holomorphic line bundle over a compact Kähler
manifold. Then

HqpX,Ωp b Lq “ 0

for all integers p, q with p` q ą n.

2.3 Sheaves and the Lefschetz hyperplane theorem

We will use the vanishing theorem (Theorem 2.15) to prove the Lefschetz hyperplane theorem.

First, we state some results from the theory of sheaves. For a nonempty open set U Ď X, let
OpUq denote holomorphic functions on U . Note that the only holomorphic functions defined on
the entirety of a compact manifold are constant functions. But for small open sets U Ď X there
are many holomorphic functions in OpUq.

Here we prove: if f : X Ñ C is holomorphic on a compact complex manifold X, then f is constant.
Let M “ supX |f | be attained a point p P X. After possibly replacing f by eiθf for a constant angle
eiθ, we may assume that fppq “M . Consider Re f “ 1

2 pf` f̄q, so that Re f ďM and Re fppq “M .
Let S “ tx P X : Re fpxq “Mu. Then S is non-empty and closed. It is also in fact open: if x P S,
in a local coordinate ball B1p0q centered at x then Re f is a harmonic function:

Bz1Bz̄1Re f “
1

2
Bz1pBz1fq “ 0,
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so that
ř

pBxiBxi ` ByiByiqRe f “ 0. By the maximum principle for harmonic functions on B1p0q Ď
R2n, since pRe fqp0q “ M then Re f ” M in all of B1p0q. Hence S is open, and S “ X. Since
Re f “M and |f | ďM , then Im f “ 0 and f is a constant.

We will define sheaves of OpUq modules (there is also a notion of sheaves of groups, vector spaces,
etc).

Definition 2.16. A presheaf (of OX modules) F on a complex manifold X is defined by the
following information. For any non-empty open set U Ď X, we associate a nonempty OpUq-module
FpUq, and a collection of restriction maps ρU,V : FpV q Ñ FpUq defined when U Ď V satisfying

ρU,V ˝ ρV,W “ ρU,W , ρU,U “ idU , (2.26)

for U Ď V ĎW . The set FpUq is called the set of sections of F over U . We also use the notation
s|U “ ρUV psq for s P FpV q.

Definition 2.17. A sheaf F on X is a presheaf satisfying the following glueing property. Suppose
Ω “

Ť

Uµ are open sets in X. If sµ P FpUµq are such that

ρUµXUν ,Uµpsµq “ ρUµXUν ,Uν psνq (2.27)

then there exists s P FpΩq such that ρUµ,Ωpsq “ sµ. Also, if s, t P FpΩq and ρUµ,Ωpsq “ ρUµ,Ωptq
for all µ, then s “ t.

In other words, local sections of a sheaf can be uniquely glued together.

Example 2.18. We write OX for the sheaf of holomorphic functions on a complex manifold X.

Example 2.19. Let E Ñ M be a holomorphic bundle. We write E for the sheaf of holomorphic
sections: EpUq are holomorphic sections over U .

Example 2.20. Sheaf I0 described by holomorphic functions in C2 vanishing at the origin. If U
does not contain the origin, then this is generated by 1 so I0pUq – OpUq. In a neighbourhood V
of the origin, this is generated by x and y: any local holomorphic function f with fp0q “ 0 can be
written as fpxq “ gpx, yqx` hpx, yqy. Thus I0pV q is a module of rank 2. Thus the rank jumps up
to 2. Also, at the origin, the module is not free. For example, we have the relation ´y ¨x`x ¨y “ 0.
In this sense, sheaves are sometimes viewed as a generalization of vector bundles where the rank
may jump.

Example 2.21. Another example to note are the constant sheaves Z, R, C. These are sheaves of
groups, meaning that FpUq attaches a group for every open set U (rather than a module). So for
example, ZpUq are locally constant Z-valued functions on U .

Definition 2.22. Stalk of a sheaf. Let x P X. The stalk Fx is the set of equivalence classes in the
disjoint union

Ů

xPU FpUq with s1 P FpU1q and s2 P F pU2q satisfying s1 „ s2 if s1|V “ s2|V for
some V Ă U1 X U2. The stalk Fx is an Ox,X-module.

A map of sheaves ϕ : F Ñ E is a collection of homomorphisms ϕU : FpUq Ñ EpUq such that ϕU ,
ϕV commute with the restriction maps. We say

0 Ñ E Ñ F Ñ G Ñ 0
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is an exact sequence of sheaves if, denoting the arrows by fi, we have that all fi are maps of sheaves
with fi`1 ˝ fi “ 0 and the associated complex of stalks

0 Ñ Ex Ñ Fx Ñ Gx Ñ 0

is exact for all x P X. Recall that exact means that the kernel of one arrow is the image of the
previous arrow.

We will use the following two results from Cech cohomology [13]. Rather than define the Cech
cohomology groups ȞqpX, Eq, we will just directly use the following two facts:

‚ Given an exact sequence of sheaves 0 Ñ E Ñ F Ñ G Ñ 0, there exists a long exact sequence in
cohomology

¨ ¨ ¨ Ñ ȞppX, Eq Ñ ȞppX,Fq Ñ ȞppX,Gq Ñ Ȟp`1pX, Eq Ñ ¨ ¨ ¨ .

‚ Dolbeault theorem:

ȞqpX,Ωp b Eq – kerpB̄ : Λp,qpEq Ñ Λp,q`1pEqq

im pB̄ : Λp,q´1pEq Ñ Λp,qpEqq
.

We will write HqpX,Ωp b Eq as before instead of ȞqpX,Ωp b Eq.

Theorem 2.23. (Lefschetz hyperplane) Let Y Ď X be a smooth analytic hypersurface of a compact
Kähler manifold X such that the line bundle OpY q is positive. Then the restriction map

HqpX,ΩpXq Ñ HqpY,ΩpY q

is an isomorphism when p` q ď n´ 2. Thus we have equality of Hodge numbers:

hp,qpY q “ hp,qpXq, p` q ď n´ 2.

As a consequence of the Hodge decomposition, we obtain that

HqpX,Cq Ñ HqpY,Cq

is an isomorphism for q ď n´ 2.

Example 2.24. Let Y “ tP “ 0u Ă Pn be a smooth complex manifold cut out by a homogeneous
polynomial P of degree m ě 1. We showed earlier that OpY q “ Opmq, which is positive. Therefore
HkpY,Cq is isomorphic to HkpPnq for k ď n´ 2.

Proof. First, we note the exact sequence sheaves

0 Ñ Op´Y q Ñ OX Ñ OY Ñ 0.

Here Op´Y q is the dual bundle of OpY q. This means that sections s P ΓpOp´Y qq transform as
sU “ tUV sV with tUV “ fV {fU , where Y has defining function fU “ 0 over an open set U . The
transformation relation shows that the combination sUfU is a well-defined function on the manifold.

To explain the exact sequence, over an open set U where Y has defining function fU “ 0, a local
holomorphic section sU P Op´Y qU gets sent to sUfU P OU which is a holomorphic function on U
vanishing along Y .
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Tensoring with bΩpX implies the exact sequence

0 Ñ ΩpXp´Y q Ñ ΩpX Ñ ΩpX |Y Ñ 0.

The corresponding long exact sequence in cohomology gives

HqpX,ΩpXp´Y qq Ñ HqpX,ΩpXq Ñ HqpY,ΩpX |Y q Ñ Hq`1pX,ΩpXp´Y qq

We note that

dimHqpX,ΩpXp´Y qq “ dimHn´qpX, pΩpq˚ bOpY q bKXq

“ dimHn´qpΩn´ppOpY qq
“ 0 (2.28)

by Serre duality and the vanishing theorem (Theorem 2.15) when pn ´ qq ` pn ´ pq ą n. Also
considering this with q replaced by q ` 1, we see that when p` q ă n´ 1 we have

0 Ñ HqpX,ΩpXq Ñ HqpY,ΩpX |Y q Ñ 0 (2.29)

and so HqpX,ΩpXq Ñ HqpY,ΩpX |Y q is an isomorphism.

Next, we will show that HqpY,ΩpX |Y q Ñ HqpY,ΩpY q is an isomorphism. For this we use the exact
sequence of vector spaces

0 Ñ pN |Y q
˚
y b pΛ

p´1,0
Y qy Ñ pΛp,0X |Y qy Ñ pΛp,0Y qy Ñ 0. (2.30)

Here y P Y and coordinates are chosen over an open set U Ă X such that U X tzn “ 0u “ U X Y ,
and

pN |Y q
˚
y “ span tdznu

pΛ1,0
X |Y qy “ span tdz1, . . . , dzn´1, dznu

pΛ1,0
Y qy “ span tdz1, . . . , dzn´1u (2.31)

and we may multiply the generators by local holomorphic functions on Y . The sequence (2.30)
implies

0 Ñ Op´Y q|Y b Ωp´1
Y Ñ ΩpX |Y Ñ ΩpY Ñ 0,

as sheaves over Y . This is because
pN |Y q

˚ “ Op´Y q
which can be seen as follows: if there are two sets of coordinates z, z̃ where both zn “ 0 and z̃n “ 0
locally cut out Y , then z̃npzq “ znfpzq, where fpzq is the transition function for OpY q. Note that
fpzq is non-vanishing; this is because Y “ tz̃npzq “ 0u smooth means that Bzn z̃

npyq ‰ 0. Next,
dz̃n “ Bz̃n

Bzi dz
i implies dz̃n|Y “ fpzqdzn|Y . This is the transformation law for the local frame dzn,

so components of pN |Y q
˚ transform by the inverse 1{f which is why the dual Op´Y q appears.

Thus
HqpY,Ωp´1

Y p´Y qq Ñ HqpY,ΩpX |Y q Ñ HqpY,ΩpY q Ñ Hq`1pY,Ωp´1
Y p´Y qq.

We apply Serre duality and the vanishing theorem as before to obtain

dimHq`1pY,Ωp´1
Y p´Y qq “ dimHn´q´1pY,Ωn´p`1

Y bOpY qq “ 0.
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Here we used that OpY q|Y Ñ Y is positive if OpY q Ñ X is positive. The dimension of Y is n´ 1,
so the vanishing theorem applies if

pn´ q ´ 1q ` pn´ p` 1q ą pn´ 1q

which holds for p` q ď n´ 2. Therefore

0 Ñ HqpY,ΩpX |Y q Ñ HqpY,ΩpY q Ñ 0

so HqpY,ΩpX |Y q Ñ HqpY,ΩpY q is an isomorphism, which combined with (2.29) gives that

HqpX,ΩpXq Ñ HqpY,ΩpY q

is an isomorphism.
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3 Deformations of Complex Manifolds

3.1 Families of complex manifolds

From a complex manifold given by
X “ tP “ 0u Ă Pn,

we can consider a 1-parameter family Xt by inserting a parameter t P C in front of one of the
polynomial coefficients. A famous example [3] is

Xt “

"

ÿ

k“0

Z5
k ´ t

4
ź

k“0

Zk “ 0

*

Ă P4.

The total space including the parameter t is

X “ tpp, tq P Xt ˆ Cu.

We can also consider families where t P Cr, and we use the notation ∆ Ă Cr for a ball of radius 1.
The formal definition of a family of complex manifolds is:

Definition 3.1. Let X0 be a compact complex manifold. A family of deformations of X0 over ∆ Ă

Cr is given by π : X Ñ ∆ where X is a complex manifold, π is a holomorphic map, π´1p0q “ X0,
and the Jacobian of π has maximal rank.

Using the definition π : X Ñ ∆ and the maximal rank theorem for holomorphic submersions, we
may cover X “

Ť

i Ui so that local coordinates on Ui are of the form pz1, . . . , zn, tq, where zi are
holomorphic coordinates on Ui XXt, and

πpz1, . . . , zn, tq “ t.

Change of coordinates on an overlap pz, tq, pz̃, t̃q are of the form

z̃k “ fkpz1, . . . , zn, tq, t̃ “ t. (3.1)

We will now show that in a family of complex manifolds, all underlying smooth manifolds are
diffeomorphic.
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Lemma 3.2. Let π : X Ñ ∆ be a family of compact complex manifolds.

Let t1 P ∆. From any path γ : r0, 1s Ñ ∆ with γp0q “ 0 and γp1q “ t1, we can construct a
1-parameter family of diffeomorphisms Θs : X0 Ñ Xγpsq such that Θ0 “ id.

In particular Xt1 is diffeomorphic to X0 for all t1 P ∆.

Proof. Let γpsq be a path on ∆ from 0 to t0. Extend the vector field 9γ arbitrarily to all of ∆. Let
tbiu be real coordinates on ∆, and write

9γpbq “ 9γipbq
B

Bbi
.

We will lift up the vector field on the base 9γ P ΓpTB,Bq using a partition of unity. Cover X with
finitely many coordinates charts pz1, . . . , zn, b1, . . . , bnq as described earlier where πpz, bq “ b. Let
ρα be a partition of unity (

ř

ρα “ 1, supppραq Ă Uα) subordinate to this cover. Define on X the
vector field

V “
ÿ

α

ρα

„

9γi
B

BbiUα



.

It may be clearer to write V using fixed coordinates on say U0 Ă X , in which case

V “ 9γi
B

BbiU0

`
ÿ

α

ρα 9γi
BzkU0

BbiUα

B

BzkU0

.
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So we get a lifted vector field V P ΓpTX q with π˚V “ 9γ. Next, we solve the ODE system on X

d

dε
Θε “ V, Θ0 “ id,

which is well-known to produce a 1-parameter family of diffeomorphisms Θε : X Ñ X together with
inverses Θ´ε : X Ñ X satisfying d

dεΘ´ε “ ´V and Θε ˝Θ´ε “ id.

The last thing to check is that this construction produces diffeomorphisms from fiber to fiber
Θε : X0 Ñ Xγpεq. Fix x P X0 and consider the function fpεq “ π ˝Θεpxq ´ γpεq. Then

fp0q “ 0, f 1pεq “ π˚V ´ 9γ “ 0.

Therefore fpεq ” 0 and so Θεpxq P Xγpεq.

A similar argument shows Θ´ε : Xγpεq Ñ X0: consider x P Xγpεq, fprq “ π ˝Θ´rpxq´γpε´ rq, and
prove fpεq “ 0. Since Θε ˝Θ´ε “ id, we have that Θε : X0 Ñ Xγpεq is a family of diffeomorphisms.

Looking relative to the moving family of diffeomorphisms, we may regard Xt as the fixed differen-
tiable manifold X0, and let the complex structure tensor Jt vary in t. More precisely: let X Ñ ∆
be a family of complex manifolds, so that pXt, J̌tq is a complex manifold for each parameter t P ∆.
Take a path γ : p´ε, εq Ñ ∆ with γp0q “ 0, 9γp0q ‰ 0, and so from Lemma 3.2 we obtain a family
of diffeomorphisms Θt : X0 Ñ Xγptq. Then we may consider

pX0, Jtq, Jt “ pΘtq
´1
˚ J̌γptqpΘtq˚

which is a 1-parameter family of complex structures on a fixed differentiable manifold X0. This
defines new complex structures because J2

t “ ´id and NpJtq “ 0 (as because N transforms as a
tensor under coordinate transformation). We now define the Nijenhuis tensor N .

On a differentiable manifold X, an almost-complex structure is a tensor J P ΓpEndTRXq satisfying
J2 “ ´id. The Newlander-Nirenberg theorem (see e.g. [7] for a proof) states that an almost
complex structure J comes from holomorphic coordinates tzαu with J B

Bzα “ i B
Bzα , J B

Bz̄α “ ´i
B
Bz̄α

if and only if the Nijenhuis tensor

Nk
ij “

1

4

ˆ

JriBrJ
k
j ` J

k
rBjJ

r
i ´ piØ jq

˙

. (3.2)

vanishes identically: Nk
ij “ 0. It can also be checked that the components of Nk

ij transform
correctly so that N is a legitimate tensor.

Remark 3.3. Here is some motivation regarding N . From an almost complex-structure J on a
smooth manifold X, we may split TCX “ T 1,0X ‘ T 0,1X, where T 1,0X is the `i eigenspace of J
and T 0,1X is the ´i eigenspace of J . The Nijenhuis tensor N “ 1

2N
p
mn dx

m ^ dxn b Bp can be
shown to satisfy NpU, V q “ ´rU, V s0,1 for U, V P ΓpT 1,0Xq. In other words, N “ 0 if and only if
rU, V s P T 1,0X for all U, V P T 1,0X. Hence N measures the failure of the subbundle T 1,0X Ă TCX
being closed under the Lie bracket.
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Let X Ñ ∆ be a family of complex manifolds with central fiber pX, Jq, together with a path
γ : p´ε, εq Ñ ∆ with γp0q “ 0 and 9γp0q ‰ 0. From this data, we would like to produce an
element

rηs P H1pX,T 1,0Xq.

Given our discussion so far, from this information we can create a path of complex structures
Jt P ΓpEndTXq on the fixed differentiable manifold X with J0 “ J satisfying the constraints
J2
t “ ´id and NpJtq “ 0. We will now show:

‚ Differentiation η “ 9Jp0q produces an element η P Λ0,1pT 1,0Xq which satisfies B̄η “ 0 and hence
defines a Dolbeault cohomology class rηs P H1pX,T 1,0Xq.

‚ Different choices of diffeomorphisms Θt : X Ñ Xγptq in Lemma 3.2 produce the same class
rηs P H1pX,T 1,0Xq.

We start by differentiating J2
t “ ´id. Take d

dt |t“0 and obtain

9J ikJ
k
j ` J

i
k

9Jkj “ 0. (3.3)

Here 9J “ d
dt |t“0Jt. We will work in coordinates x “ pz1, . . . , zn, z̄1, . . . , z̄nq on the fixed complex

manifold pX, Jq where tzαu are holomorphic coordinates on pX, Jq. Let α, β denote holomorphic
coordinates, so that α P t1, . . . , nu and Bα “

B
Bzα , Bᾱ “

B
Bz̄α . Let i, j, p denote indices for the real

coordinates x, so that i P t1, . . . , n, 1̄, . . . , n̄u and so we could have i “ α or i “ ᾱ. Summations
over i, j, k run over both unbarred coordinates zα and barred coordinates z̄α.

With this convention, then Jαβ “ iδαβ , J ᾱβ̄ “ ´iδ
α
β and Jαβ̄ “ J ᾱβ “ 0. Then (3.3) with i “ α,

j “ β implies
9Jαβ “ 0.

Similarly 9J ᾱβ̄ “ 0. Since Jptq is real, so is 9J , and hence 9J is determined by the components

ηαβ̄ :“ 9Jαβ̄ .

Next, we differentiate NpJtq “ 0. Taking d
dt |t“0 of (3.2) gives

0 “ 9Jrβ̄BrJ
α
γ̄ ` J

r
β̄Br

9Jαγ̄ ` 9JαrBγ̄J
r
β̄ ` J

α
rBγ̄ 9Jrβ̄ ´ pβ̄ Ø γ̄q

which becomes

0 “ 2

„

´ iBβ̄ 9Jαγ̄ ` iBγ̄ 9Jαβ̄



.

Since ηαβ̄ P ΓpT 1,0X b Λ0,1q, this implies

B̄η “ 0, rηs P H1pX,T 1,0Xq

and we call rηs the Kodaira-Spencer class.

We now want to show that rηs P H1pX,T 1,0Xq is independent of the choice of family of diffeomor-
phisms in Lemma 3.2. Suppose from the path γptq on ∆, we produce two families of diffeomor-
phisms

Θt : X Ñ Xγptq, Ψt : X Ñ Xγptq, Θ0 “ Ψ0 “ id.
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From the complex manifold pXt, J̌tq, we produce a family of complex structures on the fixed X0 as
before by Jt “ pΘtq

´1
˚ J̌γptqpΘtq˚ and J̃t “ pΨtq

´1
˚ J̌γptqpΨtq˚. These are related by

J̃t “ pftq˚Jtpftq
´1
˚

with ft “ Ψ´1
t ˝ Θt. Then ft be a 1-parameter family of diffeomorphisms with d

dt |t“0ft “ V (for
some vector field V ) and f0 “ id.

We now compute d
dt |t“0 of J̃t. Let yα “ fαt pxq be a change of coordinates by the diffeomorphism.

The formulas for the pushfoward f˚ : TpM Ñ TfppqM are

pf˚V q
apfppqq “

Bya

Bxi
ppqV ippq, pf´1

˚ V qappq “
Bxi

Bya
pfppqqV apfppqq,

and so acting Jt on V P TfppqM gives

rJ̃t
a
bV

bspfppqq “
Bya

Bxk
ppqJtppq

k
i
Bxi

Bya
pfppqqV apfppqq

The components of Jt are then

J̃at bpytpxqq “
Byat
Bxk

pxqJtpxq
k
i
Bxi

Bybt
pytpxqq.

Differentiating this in time at t “ 0 along a path with y0pxq “ x and 9yp0q “ V gives

9̃Jab ` BkJ
a
bV

k “ BkV
aJkb ` 9Jab ` J

a
i
d

dt

ˇ

ˇ

ˇ

ˇ

t“0

Bxi

Byb
pytpxqq

In complex coordinates, the second term on the left is zero since the components Jab are constant.
For the last term, we differentiate in time the chain rule identity

Bxi

Byk
pypxqq

Byk

Bxj
pxq “

B

Bxj
xi “ δij

to obtain
d

dt

ˇ

ˇ

ˇ

ˇ

t“0

Bxi

Byj
pytpxqq “ ´BjV

i.

Therefore
9̃Jab “ 9Jab ` BkV

aJkb ´ J
a
iBbV

i.

We showed earlier that considering J2 “ ´id implies that the non-zero contributions are ηαβ̄ “
9Jp0qαβ̄ and its conjugate. So we let a “ α, b “ β̄ and obtain

η̃αβ̄ “ ηαβ̄ ´ 2iBβ̄V
α.

It follows that
η̃ “ η ´ 2iB̄V 1,0

and so rηs “ rη̃s P H1pT 1,0Xq.
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Remark 3.4. Let pX, Jq be a complex manifold. This calculation shows that deformations
J̃t “ pftq˚Jpftq

´1
˚ created by 1-parameter families of diffeomorphisms ft produce the zero class

rηs “ 0 P H1pX,TXq (since 9J “ 0). Deformations of complex structure coming from families of
diffeomorphisms are not counted by rηs P H1pX,TXq.

A central question in deformation theory is the inverse problem: given η P H1pT 1,0Xq, does it
come from a family pXptq, Jptqq of complex manifolds with 9Jp0q “ η? This statement is not true
in general, but it is true for Kähler Calabi-Yau manifolds (this is the Bogomolov-Tian-Todorov
theorem). For more references on this topic, see for example [20, 16, 14].

3.2 Semi-continuity theorem

We start with an illustrative example from linear algebra. Let At : Rn Ñ Rn be a family of
symmetric real nˆ n matrices with entries continuously varying in t P R. Then there exists ε ą 0
such that for all |t| ă ε, then

dim kerAt ď dim kerA0.

The dimension of kerAt may jump at t “ 0, as seen from e.g.

At “

»

–

t 0

0 t

fi

fl .

Returning to complex geometry, let pX, Jtq be a family of complex structures on a compact manifold
X with J0 “ J . A differential form α P ΛkpXq has different decompositions into pp, qq types for
each parameter t. Write Λ1,0

0 for p1, 0q forms with respect to the initial structure J , and Λ1,0
t

for p1, 0q forms with respect to Jt. We can decompose α P Λ1pXq into pp, qq components via the
formula

α “
1

2
pα´ iJtαq `

1

2
pα` iJtαq

:“ pαq1,0t ` pαq0,1t (3.4)

Here we define JαpXq “ αpJXq. With this notation, we have that α P Λ1,0
0 if and only if Jα “ `iα.

The map ϕt : Λ1,0
0 Ñ Λ1,0

t given by
α ÞÑ pαq1,0t

is an isomorphism for small t, since ϕ0 “ id and ϕt varies continuously as seen from the explicit
expression above. Similarly, we obtain isomorphisms

ϕt : Λp,q0 Ñ Λp,qt

for small t. Recall that
hp,qpXtq “ dim kert∆B̄t : Λp,qt Ñ Λp,qt u.

We will show that hp,qpXtq is an upper-semicontinuous function, meaning

hp,qpXtq ď hp,qpX0q, |t| ă ε.

To view all operators on the same space, instead of ∆B̄ we will use

Lt : Λp,q0 Ñ Λp,q0 , Lt “ ϕ´1
t ˝∆B̄t ˝ ϕt,
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and show
dim kerLt ď dim kerL0, |t| ă ε.

To prove this, we will need some PDE estimates.

Let E Ñ X be a vector bundle over a compact manifold. Cover X by finitely many trivializations
X “

ŤN
i“1 Ui where Bi Ă Ui Ă Cn are balls of radius 1 still covering X. Let ψ P ΓpX,Eq and let ψUi

denote the vector valued function of the components of ψ in the trivialization Ui. Let 0 ă α ă 1.
Define

}ψ}Ck,α :“ sup
i
}ψUi}Ck,αpBiq

where for a function f : B Ñ Rp the Hölder norm is

}f}Ck,αpBq “ }f}CkpBq ` sup
|I|“k

sup
x‰y

|DIfpxq ´DIfpyq|

|x´ y|α
,

where }f}CkpBq “ sup|I|“k supB |D
If |. We write ψ P Ck,αpX,Eq if ψ is a k-times differentiable

section of E with finite } ¨}Ck,α norm. The main features of Ck,α spaces for our purposes are:

‚ Ck,αpX,Eq is a Banach space.

‚ Compactness: suppose tψnu P C
k,αpX,Eq is a sequence of sections such that

}ψn}Ck,α ď C

for uniform constant C ą 0. Let 0 ă α1 ă α. Then there exists a limiting section ψ8 P C
k,α and a

subsequence tψnku such that ψnk Ñ ψ8 in Ck,α
1

.

‚ The Schauder estimates. (Theorem 3.5 below)

Let us prove that C0,αpX,Eq :“ Cα is a Banach space and its compactness property. It is routine
to check that } ¨ }Cα is a norm. To show completeness, we must show that if tψnu is a Cauchy
sequence, then ψn converges to ψ8 P C

α. By Arzela-Ascoli applied on each coordinate ball Bi, a
subsequence ψnk converges in C0 to a continuous limit ψ8, and since tψnu is Cauchy then the full
sequence converges

ψn Ñ ψ8 in C0.

The limit section ψ8 is in Cα, since for x, y P Bi with |x´ y| “ δ, then

|ψ8pxq ´ ψ8pyq|

|x´ y|α
ď

|ψ8pxq ´ ψkpxq|

|x´ y|α
`
|ψkpxq ´ ψkpyq|

|x´ y|α
`
|ψkpyq ´ ψ8pyq|

|x´ y|α

ď C (3.5)

for k large enough such that }ψ8 ´ ψk}C0 ă δ. To show the sequence converges in Cα, let ε ą 0.
There exists N such that if k, ` ě N then for all x ‰ y there holds

|rψk ´ ψ`spxq ´ rψk ´ ψ`spyq|

|x´ y|α
ď ε.

Fix x, y and send `Ñ8 to conclude

}ψk ´ ψ8}Cα ă ε.
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We now show compactness. Suppose tψnu P C
α is a sequence with }ψn}Cα ď C. By the Arzela-

Ascoli theorem applied to coordinate balls Bi, we obtain a subsequence ψnk converging in C0 to a
continuous limit ψ8. The limiting section is Hölder continuous ψ8 P C

α by estimate (3.5). To see
convergence in 0 ă α1 ă α, we let vk “ ψnk ´ ψ8 and write

|vkpxq ´ vkpyq|

|x´ y|α1
“

ˆ

|vkpxq ´ vkpyq|

|x´ y|α
|vkpxq ´ vkpyq|

pα{α1q´1

˙α1{α

.

This goes to zero as k Ñ8.

Next, we state the Schauder estimates.

Theorem 3.5. (Schauder estimates I) Let E,F Ñ X be vector bundles over a compact manifold.
Let L : ΓpX,Eq Ñ ΓpX,F q be an elliptic operator of order k. There exists C ą 0 such that for all
sections s P Ck,αpX,Eq, then

}s}Ck,αpXq ď Cp}s}L8 ` }Ls}C0,αq.

Here C only depends on the constant of ellipticity and the Cα norms of the coefficients of L.

For a reference, see [19], remark after Theorem 4.3 in the appendix.

We can upgrade this estimate for sections s P pkerLqK.

Theorem 3.6. (Schauder estimates II) Let E,F Ñ X be complex vector bundles over a compact
complex manifold. Let L : ΓpX,Eq Ñ ΓpX,F q be an elliptic operator of order k. Let H be a metric
on E and ω a hermitian metric on X. There exists C ą 0 such that for all s P Ck,αpX,Eq with

s P pkerLqK

then
}s}Ck,αpXq ď C}Ls}C0,α .

Here s P pkerLqK means: ps, ϕqL2 “ 0 for all ϕ P ΓpX,Eq with Lϕ “ 0, and the L2 inner product
on ΓpX,Eq is as before: ps, ϕqL2 “

ş

X
xs, ϕyH ω

n.

Proof. Suppose this estimate is false. Then there exists a sequence tsiu P pkerLqKXCk,α such that

}sn}Ck,α ěMn}Lsn}C0,α , Mn Ñ8.

Let un “ sn{}sn}Ck,α . Then tunu P pkerLqK satisfies

}Lun}C0,αpXq ď
1

Mn
, }un}Ck,α “ 1.

From }u}Ck,α “ 1, compactness of Hölder space allows us to extract a subsequence un Ñ u8
converging in the Ck,α

1

norm with 0 ă α1 ă α. Since }Lun}C0,α1 Ñ 0, the limit satisfies Lu8 “ 0.

Next, un P pkerLqK and u8 P kerL implies pun, u8qL2 “ 0 for all n, and we conclude

u8 “ 0.
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We want to obtain a contradiction, but we cannot take a limit of }un}Ck,α “ 1 since α ą α1.
However, by the usual Schauder estimates, for n " 1 large enough we have

1 “ }un}Ck,α ď Cp}un}L8 ` }Lun}C0,αq ď C}un}L8 `
1

2

and so }un}L8 ě 1{2C for all n large. Taking a limit gives }u8}L8 ą 0 which is a contradiction.

From the Schauder estimates, we can deduce the semi-continuity theorem.

Theorem 3.7. Let E,F Ñ X be complex vector bundles over a compact manifold. Let Lt :
ΓpX,Eq Ñ ΓpX,F q be a continuous family of elliptic operators of order k. Then there exists ε ą 0
so that

dim kerLt ď dim kerL0, |t| ă ε

so that dim kerLt is upper semi-continuous.

Proof. Let u P ΓpX,Eq satisfy u P pkerL0q
K. Then by the Schauder estimate,

}u}Ck,α ď C}L0u}Cα

ď C}Ltu}Cα ` C}pLt ´ L0qu}Cα

ď C}Ltu}Cα ` Cε}u}Ck,α (3.6)

if }Lt ´ L0}Cα ď ε. For ε ą 0 small enough, then Cε ă 1
2 and we obtain

}u}Ck,α ď 2C}Ltu}Cα .

It follows that
pkerL0q

K X pkerLtq “ t0u.

From
pkerLtq Ă ΓpX,Eq “ pkerL0q ‘ pkerL0q

K,

we have kerLt Ď kerL0.

To conclude semi-continuity of Hodge numbers, we let Lt “ ϕ´1
t ˝∆B̄ ˝ ϕt : Λp,q0 Ñ Λp,q0 as before.

Then
hp,qpXtq ď hp,qpX0q, |t| ă ε

and we see that t ÞÑ dimHqpXt,Ω
pq is upper semi-continuous in a family of complex mani-

folds.
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3.3 Stability of Kähler metrics

Kodaira-Spencer’s stability theorem states that if X0 is a compact Kähler manifold, then any
deformation Xt admits a Kähler metric for small enough t [21].

After this section, we will be restricting our attention from general complex manifolds to simply
connected Calabi-Yau threefolds. We will in this section give the proof of Kodaira-Spencer’s stability
theorem assuming that X0 is a simply connected Calabi-Yau threefold. Explicitly, the only extra
hypothesis that we will use is H0,2pX0q “ 0, so the proof here applies to any complex manifold
X0 satisfying this property. Our proof under this hypothesis is simpler compared compared to
Kodaira-Spencer [21], and we will follow the argument and exposition in Fu-Li-Yau [11]. The setup
in Fu-Li-Yau [11] is different as it concerns balanced metrics rather than Kähler metrics and the
central fiber X0 has nodal singularities, but the outline of the argument is readily adapted.

Let ω0 be the Kähler metric on X0, and Θt be a family of diffeomorphisms Θt : X0 Ñ Xt.
Then

Θ˚t ω0 “ pΘ
˚
t ω0q

2,0 ` pΘ˚t ω0q
1,1 ` pΘ˚t ω0q

0,2

is a closed 2-form on Xt. To obtain a Kähler metric on Xt, it must be of type p1, 1q, so we let

χt “ pΘ
˚
t ω0q

1,1.

But this is no longer closed.

0 “ dpΘ˚t ω0q

“

„

BpΘ˚t ω0q
2,0



`

„

B̄pΘ˚t ω0q
2,0 ` BpΘ˚t ω0q

1,1



`

„

B̄pΘ˚t ω0q
1,1 ` BpΘ˚t ω0q

0,2



`

„

B̄pΘ˚t ω0q
0,2



By type considerations, we have

B̄χt “ ´BpΘ
˚
t ω0q

0,2, B̄pΘ˚t ω0q
0,2 “ 0. (3.7)

So B̄χt Ñ 0 uniformly in all Ck norms. The claim is that we can correct χt by

ωγ “ χt ` B

„

B̄:B:γ



` B̄

„

B:B̄:γ̄



(3.8)

where γ P Λ1,2 solves
B̄BB̄:B:γ “ ´B̄χt. (3.9)

This will produce a real p1, 1q form ωγ P Λ1,1pX,Rq satisfying

B̄ωγ “ B̄χt ` B̄BB̄
:B:γ “ 0.

Taking the conjugate, we conclude dωγ “ 0. To show that ωγ is a Kähler metric, we will show its
positivity ωγ ą 0. For this, we will show that the correction γ is small.

Roughly speaking, the strategy is to correct ω̃t “ χt ` Bα ` B̄ᾱ so that α solves B̄Bα “ ´B̄ω̃t and
so B̄ω̃t “ 0. If B̄B were an elliptic operator, one could try to use elliptic PDE theory to estimate
}α} ď C}BB̄α} “ C}B̄χt} and show smallness of α since B̄χt Ñ 0 as t Ñ 0. To make this strategy
work, we do not use α but rather γ with α “ B̄:B:γ. Furthermore (3.9) is not quite an elliptic PDE
for γ, but this equation can be modified to make this strategy work.
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To make (3.9) elliptic, we consider the Kodaira-Spencer operator

Et “ BB̄B̄
:B: ` B̄:B:BB̄ ` B̄:BB:B̄ ` B:B̄B̄:B ` B̄:B̄ ` B:B

and solve
Etpγtq “ B̄χt.

In the definition of Et, the B, B̄ are with respect to the complex structure at t, and the adjoints
B:, B̄: are with respect to the non-Kähler metrics χt. The operator Et is a 4th order elliptic operator
as proved by Kodaira-Spencer. The first term in Et matches with (3.9), so we will need to look
for solutions in a space where all the other terms vanish; we see that if we can find a solution to
Epγq “ B̄ω with dγ “ 0, we will solve (3.9).

By the Fredholm alternative, we can find a solution γt P pkerEtq
K if B̄χt K kerEt. Note that

considering pEtϕ,ϕq and integrating by parts shows that

kerEt “ tϕ : dϕ “ 0, B̄:B:ϕ “ 0u.

We claim that there exists µ P Λ0,1 with

B̄χt “ iBB̄µt. (3.10)

Here we use the assumption of vanishing cohomology H0,2pX0q “ 0. By the semi-continuity theo-
rem,

h0,2pXtq ď h0,2pX0q “ 0

and by (3.7), we have rpΘ˚t ω0q
0,2s P H0,2pXtq “ 0 and so we can write pΘ˚t ω0q

0,2 “ B̄ν for ν P Λ0,1.
By (3.7), we have B̄χt “ ´BB̄ν.

It follows from (3.10) that for β P kerEt then

xB̄χt, βy “ xµt, B̄
:B:βy “ 0.

Therefore, we can find a solution to Etpγtq “ B̄χt “ iBB̄µt. Next, we prove that such a solution is
closed.

Lemma 3.8. If Epγq “ iBB̄µ, then dγ “ 0.

Proof. We compute

0 “ Etpγq ´ iBB̄µt

“ BB̄

„

B̄:B:γt ´ iµt



` B:
„

B̄B̄:Bγt ` Bγt



` B̄:
„

B:BB̄γt ` BB
:B̄γt ` B̄γt



:“ BB̄α1 ` B
:α2 ` B̄

:α3. (3.11)

Let σ “ B:α2 ` B̄
:α3. Then the equation above implies dσ “ 0, and

}σ}2 “ pα2 ` α3, pB ` B̄qσq “ 0.

Setting σ “ 0, we obtain

0 “ B:
„

B̄B̄:Bγt ` Bγt



` B̄:
„

B:BB̄γt ` BB
:B̄γt ` B̄γt



.
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and taking an inner product with γt implies

0 “ }B̄:Bγ}2 ` }Bγ}2 ` }BB̄γt}
2 ` }B:B̄γ|2 ` }B̄γ}2

and so Bγ “ 0 and B̄γ “ 0.

In summary, by the Fredholm alternative we have γt P pkerEtq
K with Etγt “ B̄χt and dγt “ 0.

Therefore (3.9) holds and the corrected ωγ (3.8) satisfies dωγ “ 0. To show ωγ is a Kähler metric,
we prove the estimate

}γt}C3pX,g0q ď C|t|. (3.12)

Then since χt ą p1{2qω0 for small t, we see that ωγ ą 0 for small t.

Lemma 3.9. There exists C ą 1 independent of t such that for all t small, we can estimate

}γt}C4,α ď C}Etγt}Cα , (3.13)

for all γt P pkerEtq
K with dγt “ 0.

Proof. Suppose by contradiction that the estimate fails, and there is a sequence ti Ñ 0 such that

}γt}C4,α ě Ci}Etγt}Cα ,

with Ci Ñ8. Replacing γt by γt{}γt}C4,α , so that we have a sequence γti with

}γti}C4,α “ 1, }Etiγti}Cα Ñ 0.

The Eti Ñ E0 smoothly, and after relabeling a subsequence we have that γti Ñ γ0 in C4,α{2 with
E0γ0 “ 0 and dγ0 “ 0. This limit is non-trivial due to the Schauder estimates

}γt}C4,α ď Cp}γt}L8 ` }Etγt}C8q

where C ą 1 is uniform in t as Et is a smoothly varying family of elliptic operators on a fixed
smooth manifold, and by compactness of t, the coefficients of Et and its ellipticity are uniformly
bounded. Taking tÑ8 implies }γ0}L8 ě C´1.

Since E0γ0 “ 0, we showed earlier that B̄:B:γ0 “ 0. Since B̄γ0 “ 0, we have B̄B:γ0 “ 0 by the Kähler
identities on the Kähler central fiber X0. Now B:γ0 P H

0,2pX0q and we are assuming H0,2pX0q “ 0,
so B:γ0 “ B̄q. Therefore B̄:B̄q “ 0, and so B̄q “ 0. It follows that

Bγ0 “ 0, B:γ0 “ 0.

Hence γ P ker ∆B, and in Kähler geometry ∆B “ ∆d, so

dγ0 “ 0, d:γ0 “ 0.

We will now use γt P pkerEtq
K, dγt “ 0, to show that γ0 “ 0, which is a contradiction. Since

Λ1,2 “ ImEt ‘ kerEt, we can write γt “ Etpβtq, and so

γt “ BB̄β1 ` B̄
:β2 ` B

:β3.
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Since dγt “ 0, we have
0 “ pγt, B̄

:β2 ` B
:β3q “ }B̄

:β2 ` B
:β3}

2.

So γt “ dαt. We note
pγt, γ0qL2pX0q “ pαt, d

:
0γ0qL2pX0q “ 0.

Let tÑ 0, we conclude
pγ0, γ0qL2pX0q “ 0

which is a contradiction.

Using this lemma, we obtain

}γt}C4,α ď C}B̄χt}Cα “ C}BpΘ˚t ω0q
0,2}Cα .

The estimate (3.12) now follows from

}pΘ˚t ω0q
0,2}Ck ď Ck|t|.

This is because Θ0 “ id, ω0 P Λ1,1, and

|pΘ˚t ω0q
0,2| “

ˇ

ˇ

ˇ

ˇ

ż t

0

d

ds
pΘ˚sω0q

0,2ds

ˇ

ˇ

ˇ

ˇ

ď

ż t

0

|LVsω0|ds ď C

ż t

0

ds.

and similarly for any Ck norm of pΘ˚t ω0q
0,2.

We now prove that the forms ωγt Ñ ω as tÑ 0.

}ωγt ´ ω}C0pX,g0q ď }χt ´ ω}C0pX,g0q ` C}γt}C3pX,g0q ď C|t|.

Similarly, ωγt Ñ ω as tÑ 0 in any Ck norm.

Corollary 3.10. Let X Ñ ∆ be a family of complex manifolds with X0 a compact Kähler manifold.
Then hp,qpXtq “ hp,qpX0q for all small enough t.

Proof. By the Kodaira-Spencer theorem, Xt is a Kähler manifold for all t small enough. By the
semi-continuity theorem, hp,qpXtq ď hp,qpX0q for small t, so we suppose by contradiction that there
exists t and p, q such that hp,qpXtq ă hp,qpX0q. Let p` q “ k, and

ÿ

i`j“k

hi,jpXtq ă
ÿ

i`j“k

hi,jpX0q “ bk “
ÿ

i`j“k

hi,jpXtq

which is a contradiction. Here we used that X0 and Xt are diffeomorphic so they have the same
Betti numbers bk, and the Hodge decomposition bk “

ř

i`j“k h
i,j for Kähler manifolds.
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4 Calabi-Yau Threefolds

4.1 Parameters of threefolds

There are various inequivalent definitions of Calabi-Yau manifolds used in the literature. The
Wikipedia page for Calabi-Yau manifolds gives some of the commonly used definitions. In these
notes, we will use the following definition:

Definition 4.1. Our definition of a Kähler Calabi-Yau manifold is a simply-connected compact
complex manifold of dimension n admitting a Kähler metric ω and a nowhere vanishing holomorphic
pn, 0q form Ω.

The section Ω is a nowhere vanishing holomorphic section of the canonical bundleKX “ pdetT 1,0Xq˚,
and so KX “ OX is the trivial holomorphic bundle.

Let pY,Ω, ω̂q be a Kähler Calabi-Yau threefold. Since we assume that Y is simply connected, we
have b1pXq “ 0 and so by the Hodge decomposition (2.11) then

h1,0 “ h0,1 “ 0.

In addition to the Hodge symmetries

hp,q “ hq,p, hp,q “ h3´p,3´q,

Calabi-Yau threefolds satisfy
h0,p “ h3,p.

This is just HppX,KXq “ HppX,OXq. Therefore, the only Hodge numbers to consider are

h1,1, h2,1.

By the Hodge decomposition (2.11), we have b2 “ h1,1 and b3 “ 2` 2h2,1. The Euler characteristic
is defined by

χpY q “
6
ÿ

i“1

p´1qibi,

which becomes in this case
χpY q “ 2ph1,1 ´ h2,1q.

In summary, for each Calabi-Yau threefold, we associate two parameters ph1,1, h2,1q.

‚ h1,1 encodes the Kähler classes of X. A Kähler metric ω produces a non-zero class

rωs P H2
dRpX,Rq XH1,1pX,Rq.

To see rωs ‰ 0 P H2
dR, consider

ş

X
ωn. If ωn “ dα, then

ş

X
ωn “ 0. On the other hand,

ωn “ pdet gq idz1 ^ dz̄1 ^ ¨ ¨ ¨ ^ idzn ^ dz̄n. Since pdet gq ą 0 at all points, then
ş

X
ωn ą 0.

Let C be the set of all rαs P H1,1pX,Rq such that there exists a Kähler metric ω with ω P rαs. We
call C the Kähler cone. It turns out that C is an open convex cone in H1,1pX,Rq (see e.g. Tosatti’s
note [28]). Therefore the Kähler cone has real dimension h1,1. By the BB̄-Lemma, if rωs P C,
then

rωs “ tω ` iBB̄ϕ ą 0 with ϕ P C8pX,Rqu
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and a given Kähler class rωs is parametrized by functions.

‚ h2,1 encodes the infinitesimal complex structure deformations of X. We discussed earlier how
a 1-parameter family of complex structures pX, Jptqq produces an element rηs P H1pX,T 1,0Xq by
η “ 9Jp0q. Note that by Serre duality

dimH1pT 1,0Xq “ dimH2pKX b pT
1,0Xq˚q “ dimH2pΩ1q “ h1,2.

On a Calabi-Yau manifold, the inverse problem can be solved.

Theorem 4.2. (Bogomolov-Tian-Todorov Theorem) Let pX, Jq be a Kähler Calabi-Yau threefold.
Let rηs P H1pX,T 1,0Xq. Then η can be attained by a path of complex structures pX,Jptqq such that
Jp0q “ J and r 9Jp0qs “ rηs.

Textbook references for the proof of this include e.g. [14, 16]. Since dimH1pX,T 1,0Xq “ dimH2pX,Ω1q

on a Calabi-Yau threefold, the number h2,1 is understood as parametrizing deformations of complex
structure.

4.2 Ricci flat metrics

Let X be a complex manifold with holomorphic volume form Ω and hermitian metric ω. In local
holomorphic coordinates, then

ω “ igjk̄ dz
j ^ dz̄k, Ω “ fdz1 ^ . . . dzn

where fpzq is a local nowhere vanishing holomorphic function. The norm of Ω induced on pdetT 1,0Xq˚

is

|Ω|2ω “
fpzqfpzq

det gjk̄
.

The Chern-Ricci curvature Rjk̄ “ ´Bk̄Bj log det g can also be written

Rjk̄ “ Bk̄Bj log |Ω|2ω.

Indeed,
Bk̄Bj log det |Ω|2ω “ Bk̄Bj log |f |2 ´ Bk̄Bj log det g,

and Bk̄Bj log |f |2 “ 0 for any such function f . This is because

BjBk̄ log |f |2 “ Bj
fBk̄f̄

f f̄
“ Bj̄

Bkf

f
“ 0.

The hermitian metric ω is Chern-Ricci flat if Rjk̄ “ 0 which implies

0 “ gjk̄BjBk̄ log |Ω|2ω.

The maximum principle on compact manifolds implies that |Ω|ω is constant. Here is a quick proof
if ω is Kähler. (Note: this PDE result holds without the Kähler assumption. The general proof
uses the Hopf maximum principle instead of integration by parts. The general statement is: if
aijBiBjf ` b

iBif “ 0 on a compact manifold with aij positive-definite, then f is constant.)
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First, note the identities for a real function u : X Ñ R:

iBB̄u^ ωn´1 “
1

n
pgjk̄ujk̄qω

n, ujk̄ “ BjBk̄u,

and

iBu^ B̄u^ ωn´1 “
1

n
|Bu|2gω

n.

These can be checked at a point p P X with ω|p “
ř

k idz
k ^ dz̄k. By Stokes’s theorem and

dω “ 0,
ż

X

plog |Ω|2ωqidB̄ log |Ω|2ω ^ ω
n´1 “ ´

ż

X

dplog |Ω|2ωq ^ iB̄ log |Ω|2ω ^ ω
n´1.

which implies

0 “

ż

X

plog |Ω|2ωqpg
jk̄BjBk̄ log |Ω|2ωqω

n “ ´

ż

X

|B log |Ω|2ω|
2
g ω

n

and so |B log |Ω|2ω|
2
g “ 0 and log |Ω|2ω is a constant.

In summary, on a compact complex manifold with trivial canonical bundle, then Rjk̄ “ 0 is equiv-
alent to |Ω|2ω “ const. To find such metrics, we fix ω an arbitrary hermitian metric, and look for
solutions to this equation of the form

g̃jk̄ “ gjk̄ ` BjBk̄ϕ ą 0

or in differential form notation
ω̃ “ ω ` iBB̄ϕ ą 0.

The equation |Ω|2ω̃pxq “ eb, b P R, can be written

eb “
|Ω|2ω̃
|Ω|2ω

elog |Ω|2ω “

„

det g

det g̃



elog |Ω|2ω ,

which leads to the complex Monge-Ampère equation
„

detpgjk̄ ` ϕjk̄q

det gjk̄



“ elog |Ω|2ω´b.

When dω “ 0, the constant b can be identified from the initial data pω,Ωq, since the equation can
also be written

pω ` iBB̄ϕqn “ e´b|Ω|2ωω
n

and integration of both sides and Stokes’s theorem gives
ż

X

ωn “

ż

X

e´b|Ω|2ωω
n.

Indeed:
ż

X

pω ` iBB̄ϕqn “

ż

X

ωn `
n
ÿ

k“1

ck

ż

X

ωn´k ^ piBB̄ϕqk

“

ż

X

ωn `
n
ÿ

k“1

ck

ż

X

dpωn´k ^ piB̄ϕq ^ piBB̄ϕqk´1q

“

ż

X

ωn. (4.1)
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Another way to write the Kähler-Ricci flat metric equation is

pω ` iBB̄ϕqn “ e´bin
2

Ω^ Ω̄,

because of the identity

in
2

Ω^ Ω̄ “ |Ω|2ω
ωn

n!
.

Yau’s theorem states:

Theorem 4.3. [31] Let pX,ωq be a compact Kähler manifold. Let eh be an arbitrary function and
b be the constant eb “

ş

X
ehωn{

ş

X
ωn. Then there exists a unique smooth solution u : X Ñ R

solving
pω ` iBB̄uqn “ eh´bωn, ω ` iBB̄u ą 0

and
ş

X
uωn “ 0.

References for the proof of this theorem include: Chapter 2 of Siu’s notes [24] and Chapter 3 of G.
Szekelyhidi’s book [26].

The complex Monge-Ampère equation can also be solved for a pair pu, bq on a general hermitian
manifold pX,ωq: this theorem is due to Tosatti-Weinkove [29].

As a consequence of Yau’s theorem, a Kähler Calabi-Yau manifold admits Kähler Ricci-flat metrics.
These are also called Calabi-Yau metrics ωCY and they solve

RicpωCY q “ 0, dωCY “ 0.

Furthermore, each Kähler class rωs P H1,1pX,Rq contains a unique Calabi-Yau representative ωCY P
rωs by solving the Monge-Ampère equation with ansatz ω ` iBB̄ϕ.

4.3 Deformations of complex structure

By the BTT theorem, on a Calabi-Yau threefold X then any element rηs P H1pX,T 1,0Xq can
be attained by a family of complex manifolds. Here we note that a deformation of a Calabi-Yau
threefold also carries a Calabi-Yau structure.

Proposition 4.4. Let pX, J, ω,Ωq be a Kähler Calabi-Yau threefold. Let pX, Jptqq be a smooth path
of complex structures with Jp0q “ J and |t| ă ε. For ε ą 0 small enough, then there exists a family
pωptq,Ωptqq with pωptq,Ωptqq Ñ pω,Ωq as t Ñ 0 such that ωptq is a Kähler metric and Ωptq is a
nowhere vanishing holomorphic volume form on pX, Jptqq.

Proof. The existence of the family of Kähler metrics ωptq “ ωt with ωt Ñ ω is Kodaira-Spencer’s
stability theorem [21] which we discussed earlier. We now describe how to construct Ωptq “ Ωt. The
3-form Ω is defined on pX, Jptqq, however it does not necessarily have type p3, 0q. So we take the
p3, 0q part pΩq3,0t , and this is nowhere vanishing for small t by continuity of the complex structures
Jptq. We now need to correct pΩq3,0t to make it holomorphic. Write

pΩq3,0t “ σtdz
1
t ^ dz

2
t ^ dz

3
t .
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Note α “ σ´1
t B̄tσt is a well-defined p0, 1q-form on Xt. This is because of the transformation law

σ ÞÑ tUV σ with tUV holomorphic, which implies αk̄ ÞÑ αk̄. We also note that B̄α “ 0, since

B̄α “ ´σ´2B̄σ ^ B̄σ ` σ´1B̄2σ “ 0.

We claim that we can find a smooth function ut such that

B̄tut “ ´αt,

ż

Xt

uωnt “ 0

This is because X is assumed to be simply-connected, and so H1pX,OXq “ 0. By the semi-
continuity theorem, H1pXt,OXtq ď H1pX,OXq, hence H1pXt,OXtq “ 0. The definition of Dol-
beault cohomology states that the closed p0, 1q-form α comes from B̄ of a function. Using u, we
define

Ωt “ eutσtdz
1
t ^ dz

2
t ^ dz

3
t .

This solves B̄Ωt “ 0 since

Bk̄pe
uσq “ euBk̄uσ ` e

uBk̄σ “ eup´σ´1pBk̄σqσ ` Bk̄σq “ 0.

Therefore Ωt defines a nowhere vanishing holomorphic volume form on pX, Jtq. Next, we show
Ωt Ñ Ω. For this, we show

|ut| ď C|t|. (4.2)

Then since σt Ñ σ smoothly,

|euσt ´ σ| ď |σt||e
u ´ 1| ` |σt ´ σ|

ď C|eC|t| ´ 1| ` C|t|

ď C
8
ÿ

k“1

1

k!
pC|t|qk ` C|t| ď C|t|. (4.3)

Hence |Ωt ´ Ω|g ď C|t|. To prove (4.2), we will use the complex Laplacian

∆gt : C8pX,Rq Ñ C8pX,Rq,

given by
∆gtf “ pgtq

jk̄BjBk̄f.

We proved earlier that ker ∆gt “ R ¨ 1 are constants. Therefore since
ş

Xt
ut ω

n
t “ 0, we have that

ut P kerp∆gtq
K with respect to the gt inner product for all t. By elliptic estimates,

}ut}C2,αpX,gq ď C}∆gtut}CαpX,gq.

One should verify that the constant C is uniform in t. We omit the proof, but it follows an outline
similar to (3.13): the usual Schauder estimates }u}C2,α ď Cp}u}L8 `}∆u}Cαq are uniform in t, and
to remove the extra }u}L8 we assume the estimate fails as tÑ 0 and derive a contradiction.

Therefore since Bk̄u “ σ´1
t Bk̄σt

}ut}C2,αpX,gq ď C}gjk̄Bjpσ
´1
t Bk̄σtq} ď C|t|

since σt tends smoothly to the holomorphic σ with B̄σ “ 0.

60



Let pX,Jptq, ωptq,Ωptqq be a family of Kähler Calabi-Yau threefolds with 9Jp0q “ η. We use the
notation δ “ d

dt |t“0. To end this section, we will compute the variation

χ :“ δΩ

and relate it to η via

χᾱβγ “
i

2

„

´ ηµᾱΩµβγ



.

Here everything is evaluated at holomorphic coordinates with respect to the initial pX, J,Ωq. We
will show χ P Λ2,1pX, Jq, and since B̄η “ 0, it follows that B̄χ “ 0.

We start by differentiating
JriJ

s
jJ

t
kΩrst “ ´iΩijk (4.4)

to obtain

´ iδΩijk “ δJriJ
s
jJ

t
kΩrst ` J

r
iδJ

s
jJ

t
kΩrst ` J

r
iJ
s
jδJ

t
kΩrst ` J

r
iJ
s
jJ

t
kδΩrst (4.5)

In holomorphic coordinates α, β, γ, then Jαβ “ iδαβ , J ᾱβ̄ “ ´iδ
α
β , and the only non-zero compo-

nents of Ω are unbarred, which implies

δΩᾱβ̄γ̄ “ 0, δΩᾱβ̄γ “ 0 (4.6)

and
´ iδΩᾱβγ “ ´δJ

r
ᾱΩrβγ ` δJ

s
jΩᾱsγ ` δJ

t
kΩᾱβt ` p´iqi

2δΩᾱβγ (4.7)

which implies

χᾱβγ :“ δΩᾱβγ “
i

2

„

´ δJµᾱΩµβγ



. (4.8)

We can also invert the formula for χ to get δJ from δΩ. At a point where gij “ δij , then

Ω “ fpzqdz1 ^ dz2 ^ dz3, |Ω|2ω “ |fpzq|
2, (4.9)

and

Ω̄βγν
„

´
i

2
ΩµβγδJ

µ
ᾱ



“ ´i|Ω|2ωδJ
ν
ᾱ. (4.10)

Thus

δJνᾱ “
i

|Ω|2ω
Ω̄βγνδΩᾱβγ (4.11)

or

ηνᾱ “
i

|Ω|2ω
Ω̄βµνχᾱβµ. (4.12)
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4.4 Quintic threefolds

4.4.1 Holomorphic volume form

Consider X Ă P4 given by tP “ 0u, where

P “ x5
0 ` x

5
1 ` x

5
2 ` x

5
3 ` x

5
4.

In the coordinate chart U0 “ tx0 ‰ 0u with coordinates zi “ zi{x0, X appears as

tf “ 1` z5
1 ` z

5
2 ` z

5
3 ` z

5
4 “ 0u Ă C4.

Since
Df “ r5z4

1 , 5z
4
2 , 5z

4
3 , 5z

4
4s

we see that Df has maximal rank except at z “ 0, which is not included in the set tf “ 0u.
Therefore X is a smooth complex manifold of complex dimension three. This manifold admits a
holomorphic volume form Ω. This can be seen by the adjunction formula, but also by the explicit
expression

Ω|U0XV4
“
dz1 ^ dz2 ^ dz3

Bf{Bz4
(4.13)

over the set U0 “ tx0 ‰ 0u intersected with V4 “ tBf{Bz4 ‰ 0u. We now verify that Ω extends
from U0 X V to a holomorphic volume form on all of X.

‚ Extending from V4 to V3. On the intersection V3 X V4, by the implicit function theorem we can
write z3 “ gpz1, z2, z4q. Therefore

Ω “
dz1 ^ dz2 ^ dg

Bf{Bz4
“
Bg{Bz4

Bf{Bz4
dz1 ^ dz2 ^ dz4.

Differentiating fpz1, z2, gpz1, z2, z4q, z4q “ 0 in z4 gives

B3fB4g ` B4f “ 0.

Hence

Ω|U0XV3
“ ´

dz1 ^ dz2 ^ dz4

Bf{Bz3

This is holomorphic and nowhere vanishing on V3, therefore Ω extends from V4 to V3. Similar
arguments show that Ω defines a holomorphic volume form on all of U0. Next, we need to extend
Ω beyond U0 Ă X.

‚ Extending from U0 to U1. On U0 we have coordinates zi “ xi{x0, and on U1 we have coordinates
w1 “ x0{x1, and for i ě 2 then wi “ xi{x1. The change of coordinates on U0 X U1 is then

z1 “ w´1
1 , z2 “ w´1

1 w2, z3 “ w´1
1 w3, z4 “ w´1

1 w4.

The holomorphic volume form on U0 X U1 X V4 becomes

Ω “
dw´1

1 ^ dpw´1
1 w2q ^ dpw

´1
1 w3q

5z4
4
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since Bf{Bz4 “ 5z4
4 , and therefore

Ω “ ´
dw1 ^ dw2 ^ dw3

5w4
4

.

Over U1, tP “ 0u appears as tf̃ “ 1` w5
1 ` w

5
2 ` w

5
3 ` w

5
4 “ 0u, and so

Ω|U1XṼ4
“ ´

dw1 ^ dw2 ^ dw3

Bf̃{Bw4

.

As before, Ω extends from U1 X Ṽ4 to all of U1, and similarly Ω extends to a nowhere vanishing
holomorphic form on U2, U3, U4.

Putting everything together, we see that the local expression (4.13) defines a holomorphic volume
form on all of X.

4.4.2 Hodge numbers

The Hodge numbers of the quintic threefold X are

h1,1 “ 1, h1,2 “ 101.

‚ h1,1 “ 1. This follows from the Lefschetz hyperplane theorem, which we recall states: let Y Ď X
be a complex hypersurface such that its associated line bundle OpY q Ñ X is positive. Then

hp,qpY q “ hp,qpXq, p` q ď n´ 2.

We computed that for Y “ tP “ 0u Ă Pn with P of degreen k, then OpY q “ Opkq. We also
computed that the Fubini-Study metric on Op1q has positive curvature, hence Opkq “ rOp1qsk is
also a positive bundle. Therefore the Lefschetz hyperplane theorem applies to the quintic Y Ă P4,
and

h1,1pY q “ h1,1pP4q.

We computed earlier that h1,1pPnq “ 1, and so h1,1 “ 1 for the quintic.

‚ h1,2 “ 101. We only give here a heuristic argument from the string theory literature, but a real
proof can be found in e.g. [23]. We discussed earlier that h1,2 parametrizes complex structure
deformations. We can deform the complex structure of the quintic

4
ÿ

i“0

Z5
i “ 0

by introducing parameters cI “ ci0i1i2i3i4
ÿ

|I|“5

cIZI “ 0, ZI “ Zi00 Z
i1
1 Z

i2
2 Z

i3
3 Z

i4
4 . (4.14)

The number of parameters are: number of ways of placing 5 objects (the powers) in 5 bins (the Zi),
which is p5 ` 4q!{5!4! “ 126. But some of these 126 coefficients do not give genuine deformations
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of complex structure. There are 52 degrees of freedom coming from matrices A P GLp5q which
produces a biholomorphism

A : tP pZq “ 0u Ď P4 Ñ tP pAZq “ 0u Ď P4.

So we are left with 126 ´ 25 “ 101 parameters, which matches up with h1,2 “ 101. This is not a
proof because a priori there could be ways to deform the complex structure of a quintic which is
not by (4.14).

4.4.3 Nodal singularities

We now the quintic by a parameter t P C and consider

Xt “

"

Qt “
4
ÿ

i“0

Z5
i ´ 5tZ0Z1Z2Z3Z4 “ 0

*

Ď P4.

We note in passing that this family was used by [3] to construct one of the first examples of mirror
symmetry. We first notice that at t “ 1, this is no longer a smooth manifold as it contains singular
points. To find the singular points, we set all derivatives of Qt to zero.

5Z4
k “ 5t

ź

i‰k

Zi

and so
ˆ 4
ź

i“0

Zi

˙4

“ t5
ˆ 4
ź

i“0

Zi

˙4

If one of the Zi “ 0, then they all are, which is not a point in projective space. So we conclude
that singular points occur when t5 “ 1.

We let t “ 1 and investigate the singular quintic which we denote X. There are 125 singular points:
these occur when Z5

0 “ Z5
1 “ ¨ ¨ ¨ “ Z5

4 “
ś

Zi. Dividing the singular points by
ś

Zi (in projective
space), singular points are given by roots of unity Z5

k “ 1.

q “ rζα0 , . . . , ζα4s, ζ5 “ 1

with αi P t0, 1, 2, 3, 4u. Since q P X, we must have
ř

i αi “ 0 mod 5. We can always represent q in
projective space with the first entry equal to 1, so that leaves 3 free parameters α1, α2, α3 with α4

determined by
ř

i αi “ 0, so there are p5qp5qp5q “ 125 singular points.

We now look locally near the point q “ r1, 1, 1, 1, 1s. In the coordinate chart pU0, zq, q “ p1, 1, 1, 1q
and the equation of the singular quintic is

fpzq “ 1`
4
ÿ

i“1

z5
i ´ 5z1z2z3z4 “ 0.

The holomorphic function f satisfies fpqq “ 0 and Dfpqq “ 0. Its holomorphic Hessian matrix
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B
2f

BziBzj at q is
»

—

—

—

—

—

—

–

20 ´5 ´5 ´5

´5 20 ´5 ´5

´5 ´5 20 ´5

´5 ´5 ´5 20

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

This is a non-singular matrix. Thus we have a holomorphic function fpz1, . . . , z4q with fpqq “ 0,
dfpqq “ 0, but D2fpqq is non-degenerate. There is a holomorphic Morse lemma (e.g. Lemma
2.11 in the book [30]) which gives the existence of holomorphic coordinates w with qpwq “ 0 such
that

fpwq “
4
ÿ

i“1

w2
i .

We give the proof in complex dimension n “ 2 following (Lemma 42 p.242 in [8]). First, shift
coordinates so that q “ 0 and fpz1, z2q is a holomorphic function with fp0q “ 0, Dfp0q “ 0, and
BiBjfp0q a non-degenerate symmetric matrix. For a symmetric complex matrix A, there is a unitary
matrix U such that UAUT “ D where D is diagonal (Autonne–Takagi factorization). Since A is
non-degenerate the diagonal elements are non-zero, so we may multiply on both sides by a diagonal
complex matrix to form SAST “ I.

So we can write ST rD2fp0qsS “ I for a complex matrix S, and let zk “ Siky
k. By the chain

rule
Bf

Byk
“
Bf

Bzp
Bzp

Byk
“ Spkfp,

B2f

ByjByk
“ SpkfpqS

q
j .

Written in matrix notation, this is

D2
yfp0q “ ST rD2fp0qsS “ I.

Hence we may assume that the power series of f is

f “ z2
1 ` z

2
2 `

ÿ

i`ją2

aijz
i
1z
j
2.

Let f2 “
Bf
Bz2

. Since B2f2p0q ‰ 0, by the holomorphic implicit function theorem there is a function

apz1q with ap0q “ 0 such that f2pz1, apz1qq “ 0. Differentiating this gives a1p0q “ 0. Define new
coordinates by

z̃1 “ z1, z̃2 “ z2 ´ apz1q

and let f̃pz̃1, z̃2q “ fpz1, z2 ´ apz1qq. We will compute the power series of f̃ . We start with 1st
derivatives:

B1f̃ “ B1f ´ a
1B2f, B2f̃ “ B2f.

The key observation is that B2f̃ ” 0 when z̃2 “ 0, and so

B2f̃ “ z̃2Qpz̃1, z̃2q. (4.15)

Next, we move on to second order derivatives.

B1B2f̃ “ z̃2B1Qpz̃1, z̃2q,
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B1B1f̃ “ B1B1f ´ 2a1B1B2f ` pa
1q2B2B2f ´ a

2B2f

B2B2f̃ “ B2B2f.

Evaluating all these at zero, and using that (4.15) implies Bk1Bffp0q “ 0, we get the expansion

f “ z̃2
1 `

ÿ

kě3

bkz̃
k
1 ` z̃

2
2 `

ÿ

i`jě3, jě2

aij z̃
i
1z̃
j
2

“ z̃2
1

ˆ

1`
ÿ

kě1

bkz̃
k
1

˙

` z̃2
2

ˆ

1`
ÿ

i`jě3, jě0

aij z̃
i
1z̃
j
2

˙

(4.16)

We can now let

w1 “ z̃1

ˆ

1`
ÿ

kě1

bkz̃
k
1

˙1{2

, w2 “ z̃2

ˆ

1`
ÿ

i`jě3, jě0

aij z̃
i
1z̃
j
2

˙1{2

,

using that a holomorphic function ψ : C Ñ C with ψp0q ‰ 0 has a local square root defined in a
neighborhood of the origin. In these new coordinates then, f “ w2

1 ` w
2
2.

In summary, the singular quintic X has holomorphic coordinates around each singular point where
the singularity appears as

" 4
ÿ

i“1

z2
i “ 0

*

Ď C4.

Such singularities are called nodes, or nodal singularities, or ordinary double points (ODP).

4.4.4 Examples of conifold transitions

Example 4.5. There are 2 ways to desingularize

X “

" 4
ÿ

i“0

Z5
i ´ 5

4
ź

i“0

Zi “ 0

*

Ď P4

which is the singular quintic discussed in the previous section.

‚ The first way is called a smoothing, which is to realize X as the central fiber of

Xt “

" 4
ÿ

i“0

Z5
i ´ p5` tqZ0Z1Z2Z3Z4 “ 0

*

Ă P4. (4.17)

We discussed earlier how for t ‰ 0, the space Xt no longer has singular points. In the chart pU0, zq,
we see the zero set

ftpzq “ 1`
4
ÿ

i“1

z5
i ´ 5z1z2z3z4 ´ tz1z2z3z4 “ 0.

Near p1, 1, 1, 1q, we apply the holomorphic Morse lemma to

gpzq “
1`

ř4
i“1 z

5
i

z1z2z3z4
´ 5,
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and write gpwq “
ř

i w
2
i (here w “ 0 corresponds to the point p1, 1, 1, 1q) so that the zero set

tft “ 0u becomes

t

4
ÿ

i“1

w2
i “ tu Ă C4. (4.18)

for new coordinates wi. Locally, the ODP singularities
ř

i w
2
i “ 0 has been replaced by

ř

i w
2
i “ t.

‚ The second way to desingularize X is by small resolution. We will discuss how this is done in full
detail in the next section, but it results in a map

σ : X Ñ X

where X is a complex manifold, σ´1ppq “ P1 for each singular point p, and σ is a biholomorphism
outside the singular set on X. In other words, each singular point of X is replaced by P1.

The holomorphic volume form Ω on X defines a holomorphic volume form Ω̂ “ σ˚Ω defined on
XzE with E “ YP1. By Hartog’s theorem, Ω̂ extends to all of X and so X has trivial canonical
bundle. We will show later that χpXq ´ 2N “ χpXtq where N is the number of nodes. Therefore
the two threefolds have different topologies.

Note Hartog’s theorem (e.g. p.46 in [7]) states: Let X be a complex manifold. Let S Ă X be a
closed complex submanifold of complex codimension ě 2: this means there are local coordinates
where U X S is given by z1 “ ¨ ¨ ¨ “ zp “ 0 for p ě 2. Then every holomorphic function f on XzS
extends holomorphically to X. This is major difference with complex analysis in C: fpzq “ 1{z
does not extend on Czt0u, but any holomorphic fpz1, z2q extends on C2zt0u.

Example 4.6. Here is another example from Greene-Morrison-Strominger [12] (see also the expo-
sition in [23]). Define a singular quintic X Ă P4 by the polynomial

P “ Z3GpZ0, . . . , Z4q ` Z4HpZ0, . . . , Z4q “ 0. (4.19)

where G “ Z4
3 ` Z

4
2 ´ Z

4
0 and H “ ´Z4

4 ´ Z
4
1 ´ Z

4
0 . The singular points are where DP “ 0, which

happens when
Z3 “ 0, Z4 “ 0, G “ 0, H “ 0. (4.20)

There are 16 singular points. (This is also expected by Bezout’s theorem: n homogeneous poly-
nomials of degrees di in projective space of dimension n has d1 ¨ dn intersection points generically.
16 “ p1qp1qp4qp4q singular points.) We now look at the local model for these singularities. Suppose
p P X is a singular point with p P U0 “ tZ0 ‰ 0u. In coordinates zi “ Zi{Z0 the equation for X is

z3gpzq ` z4hpzq “ 0. (4.21)

Since gpzq has surjective derivative, by the implicit function theorem there is a holomorphic change
of coordinates

w1 “ gpz1, z2, z3, z4q, wi`1 “ zi`1 (4.22)

with inverse z1 “ ϕpw1, w2, w3, w4q. We can repeat this for hpzq and obtain coordinates w̃i with
w̃2 “ hpw1, w2, w3, w4q. Then in these coordinates, the equation for X is a neighborhood of the
origin in

tw̃3w̃1 ` w̃4w̃2 “ 0u Ă C4. (4.23)
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This is the model for a nodal singularity. There is another change of coordinates

z1 “
w̃1 ` iw̃2

2
, z2 “

w̃1 ´ iw̃2

2
, z3 “

w̃3 ` iw̃4

2
, z4 “

w3 ´ iw4

2
. (4.24)

such that this singularity is represented by

t

4
ÿ

i“1

z2
i “ 0u Ă C4. (4.25)

One way to resolve X is to consider the family of quintics

Xt “ tZ3G` Z4H “ tZ0Z1Z2Z3Z4u Ď P4.

which is now non-singular for t ‰ 0. As a quintic, it has h1,1pXtq “ 1.

Another way is by small resolution. Let X Ă P4 ˆ P1 given by

UZ4 ´ V Z3 “ 0, UGpZq ` V HpZq “ 0

with rU : V s P P1, rZ0 : ¨ ¨ ¨ : Z4s P P4. There is a map

σ : X Ñ X, σprZ0 : ¨ ¨ ¨ : Z4s, rU : V sq “ rZ0 : ¨ ¨ ¨ : Z4s.

(check lands in X). When P P SingpXq is a singular point Z3 “ Z4 “ G “ H “ 0, then σ´1pP q is
a full P1. Otherwise if one of these is non-zero, there is a single point in σ´1pP q. So we have a map
such that σ´1ppiq “ Ci – P1 for pi P SingpXq and σ´1 is a biholomorphism on XzSingpXq. There
are 16 exceptional curves Ci, and we notice that they are not linearly independent in homology.

ÿ

i

airCis “ 0 in H2pX,Cq.

This is because b2pXq “ h1,1pXq “ 2. To show this, we use the Lefschetz hyperplane theorem
applied to

X Ă X 1 “ tUZ4 ´ V Z3 “ 0u Ă P4 ˆ P1.

Let P “ UGpZq ` V HpZq so X “ tP “ 0u Ď X 1. Then OpXq Ñ X 1 is rOP4p4q bOP1p1qs|X1 Ñ X 1.
Let’s verify this in two specific charts. Take a chart U1 with coordinates u “ U{V P P1 and
z “ Z{Z0 in P4, and chart U2 with v “ V {U and w “ Z{Z4. In chart U1, the defining equation of
X is in coordinates:

p1pu, zq “ P {V Z4
0 “ 0,

and in chart U2 the defining equation is p2 “ P {UZ4
4 . The cocycle of OpXq on U1 X U2 is by

definition p1{p2 “ UZ4
4{V Z

4
0 , which is the cocycle of OP4p4q bOP1p1q.

By the Lefschetz hyperplane theorem, we conclude

h1,1pXq “ h1,1pX 1q.

Similarly, we can show
h1,1pX 1q “ h1,1pP4 ˆ P1q.

By the Kunneth formula, b2pP4 ˆ P1q “ 2. Since b2 “ h1,1 ` 2h2,0 and pullbacks of Kähler metrics
give h1,1 ě 2, we have h1,1pP4 ˆ P1q “ 2. So

h1,1pXq “ 2.
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5 Conifold Transitions: Local Model

5.1 Blowing-up a nodal singularity

5.1.1 Blow-up review

We start this section by recalling the blow-up construction. The blow-up of Cn at 0 is

X “ tpx, rusq P Cn ˆ Pn´1 : x P rusu,

where x P rus means x “ λu for some λ P C. The exceptional divisor E Ă X is the set of points
p0, rusq, so that x “ 0 and E is a copy of Pn´1. The projection

π : X Ñ Cn, πpx, rusq “ x

satisfies π´1p0q “ E “ Pn´1 and π is a biholomorphism on XzE.

We work out the coordinates for n “ 2. In this case, X consists of pairs

tpx, yq, ru : vsu P C2 ˆ P1

such that
x

u
“
y

v
.

To obtain coordinate charts on X, we use the coordinate charts on P1. So in this case, there are
two charts:

‚ Chart U “ tu “ 1u. Coordinates are defined by

x “ x

y “ xv

u “ 1

v “ v,

so that we only keep the two coordinate px, vq on this patch on X. The exceptional divisor (where
px, yq “ p0, 0q) appears as E X U “ tx “ 0u, and v is a free coordinate.

‚ Chart V “ tv “ 1u. Coordinates are defined by

x “ uy

y “ y

u “ u

v “ 1,

and we only keep the coordinates py, uq on this set. The exceptional divisor is E X V “ ty “ 0u
with free coordinate u.

On U X V , the change of coordinates from px, vq to py, uq on the overlap is

x “ uy, v “ u´1.
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Indeed, in chart U , we have v “ y{x which substituting in chart V givs v “ y{uy “ u´1. The
change of coordinates v “ u´1 is the coordinate change on P1. The change x “ uy is the coordinate
change on a line bundle over P1. Recall in general a section over a line bundle over P1 transforms
as

σ̃pvq “ τpuqσpuq

where τpuq is a local function on P1 which is the transition function of the bundle. In the case
above, we have τpuq “ u. This transition function defines a line bundle

Op´1q Ñ P1.

So X is the total space of this line bundle. The other way to define Op´1q is to cover P1 “ tru1 : u2su

by U1 “ tu1 ‰ 0u and U2 “ tu2 ‰ 0u. Then declare the transition function on the overlap U1 X U2

to be
τ12 “

u1

u2
,

so that local sections transform as σ1 “ τ12σ2. Coordinates over U1 are ζ “ u2{u1 and coordinates
over U2 are ξ “ u1{u2. Then ξ “ ζ´1 and over U2, we do have τ12pξq “ ξ. Thus this is the same
space as above.

5.1.2 ODP in C3

We now illustrate how the blow-up procedure can be used to resolve singularities. Consider the
space

X “ txz ´ y2 “ 0u Ă C3.

This space is of the form F px, y, zq “ 0 with DF “ pz,´2y, xq, and there is a singularity preventing
it from being a submanifold at p0, 0, 0q. We can resolve this singularity

σ : X̃ Ñ X

by blowing up the origin. That is, we look at pairs

tpx, y, zq, ru : v : wsu P C3 ˆ P2

with the relation
x

u
“
y

v
“
z

w
.

The P2 will produce 3 coordinate charts that we now describe:

‚ Chart U “ tu “ 1u. Coordinates px, v, wq satisfy:

x “ x, y “ vx, z “ wx.

and u “ 1, v “ v, w “ w. The defining equation for X becomes

xpwxq ´ pvxq2 “ 0

which is x2pw ´ v2q “ 0. Recall E X U “ tx “ 0u is the exceptional divisor, so we throw out the
x2. The resolution of X is in this chart is then defined by

w ´ v2 “ 0
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which is smooth, and called the proper transform. Therefore X̃ has two coordinates px, vq, and the
exceptional divisor in X is the curve x “ 0 with v a free coordinate.

‚ Chart V “ tv “ 1u. Coordinates py, u, wq satisfy

x “ uy, y “ y, z “ wy,

and the proper transform is
uw ´ 1 “ 0.

If g “ uw ´ 1, the only problem with Dg “ pw, uq is when pw, uq “ 0 which is not on the curve
uw ´ 1 “ 0. So X̃ is smooth with two coordinates py, uq and exceptional divisor at y “ 0.

‚ Chart W “ tw “ 1u. Coordinates pz, u, vq satisfy:

x “ uz, y “ vz, z “ z.

and u “ u, v “ v, w “ 1. The proper transform is

u´ v2 “ 0.

Therefore X̃ has two coordinates pz, vq, and the exceptional divisor is the curve z “ 0 with v a free
coordinate.

Next, we note that X̃ is the total space of the line bundle Op´2q Ñ P1. To see the P1 coordinate,
convert from U to V on U X V to obtain

v “ y{x “ y{uy “ 1{u.

For the fiber,
x “ y

on U X V , so nothing going on here. Converting U to W on U X W gives v “ v, but for the
fiber

x “ uz “ v2z.

which is the transition function for Op´2q. Recall that by definition sections of Op´2q transform
as

σ̃ “ τ2σ

where τpvq “ v is the transition function on Op´1q.

5.1.3 ODP in C4

Before discussing singularities, we recall that the blow-up of Cn along a subspace Z replaces Z by
the projectivization of its normal bundle PpNZq. We give the concrete example of the blow-up
of

Z “ tz2 “ z4 “ 0u Ă C4.

The blow-up along Z is

X “ tppz1, z2, z3, z4q, ru : vsq P C4 ˆ P1 : pz2, z4q P ru : vsu,
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in other words
z2

u
“
z4

v
.

The P1 provides two charts for Z.

‚ Chart U “ tu “ 1u. Coordinates pz1, z2, z3, vq are defined by

z1 “ z1, z2 “ z2, z3 “ z3, z4 “ vz2, u “ 1, v “ v

with exceptional divisor E X U “ tz1 “ z2 “ z3 “ 0u.

‚ Chart W “ tv “ 1u. Coordinates pz1, z3, z4, uq are defined by

z1 “ z1, z2 “ uz4, z3 “ z3, z4 “ z4, u “ u, v “ 1

with exceptional divisor E X V “ tz1 “ z3 “ z4 “ 0u.

Consider now the ODP singularity

V “ tz1z2 ´ z3z4 “ 0u Ă C4.

Note that this singulariy is the same as t
ř

i z
2
i “ 0u by a change of coordinates (4.24). We can

desingularize this space by blowing-up C4 along Z “ tz2 “ z4 “ 0u and taking the proper transform
Ṽ .

‚ Chart U “ tu “ 1u. Using the relations above, the equation for V becomes

z1z2 ´ z3pvz2q “ 0.

We throw out z2 “ 0 to obtain the proper transform

z1 ´ vz3 “ 0,

which is now smooth. Therefore here Ṽ has three coordinates pz2, z3, vq, and the relations are

z1 “ vz3, z2 “ z2, z3 “ z3, z4 “ vz2

on U .

‚ Chart W “ tv “ 1u. Similarly as above, the proper transform appears as

uz1 ´ z3 “ 0,

and here Ṽ has three coordinates pz1, z4, uq and the relations are

z1 “ z1, z2 “ uz4, z3 “ uz1, z4 “ z4.

on W .

We note that Ṽ can be identified with the total space of Op´1q ‘ Op´1q Ñ P1. For this, we
compute the change of coordinates on the overlap U XW . Relabel

pσ, s, ζq “ pz2, z3, vq, on U
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ps̃, σ̃, ξq “ pz1, z4, uq on W.

Then chasing relations gives for example,

s̃ “ z1 “ vz3 “ ζs,

and altogether
s̃ “ ζs, σ̃ “ ζσ, ξ “ ζ´1.

This is the change of coordinates on the total space of Op´1q‘Op´1q Ñ P1 with fiber coordiantes
s, σ and P1 coordinate ζ. Thus we have a resolution of singularities

σ : Ṽ Ñ V

where the origin in V is replaced by σ´1p0q “ P1. This can be seen since in local coordinates on U
then σ´1p0q is freely parametrized by coordinate v (and coordinates z2 “ z3 “ 0), and on V then
σ´1 is freely parametrized by coordinate u (and coordinates z1 “ z4 “ 0), and on the overlap we
noted u “ v´1. We note that the modulus

}z}2 “
4
ÿ

i“1

|zi|
2

on V Ă C4 becomes on Ṽ the function

}z}2 “ |vz3|
2 ` |z2|

2 ` |z3|
2 ` |vz2|

2 “ p1` |ζ|2qp|σ|2 ` |s|2q

over the U chart. In the V chart, then

}z}2 “ p1` |ξ|2qp|σ̃|2 ` |s̃|2q.

We recognize this as
}z}2 “ |pσ, ζq|2hFS

where hFS is the Fubini-Study metric on the Op´1q fibers.

In summary, the total space of the bundle Op´1q ‘ Op´1q Ñ P1 is given by two trivializations
tU, pσ, s, ζqu and tV, pσ̃, s̃, ξqu with ξ “ 1{ζ and s̃ “ ζs, σ̃ “ ζσ. The set }z} “ 0 is a P1.

Definition 5.1. A p´1,´1q curve C in a compact threefold X is defined by C – P1 and there
exists a neighborhood of C which is biholomorphic to a neighborhood of t}z} “ 0u in the total space
Op´1q ‘Op´1q Ñ P1.

5.2 Smoothing a nodal singularity

We return to the nodal singularity

V “ t
4
ÿ

i“1

pziq
2 “ 0u Ď C4.

We see that V is a cone, since if z P V then so is λz for λ P C. We also have the radius function

}z}2 “
ÿ

i

|zi|
2.
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On this cone, we have the holomorphic volume form

Ω “
1

z1
dz2 ^ dz3 ^ dz4, on tz1 ‰ 0u

and the corresponding formula on the other open sets tzi ‰ 0u. These local expressions glue on V
to give a global holomorphic volume form. Next, we write

zk “ xk ` iyk.

The equation becomes
0 “ p|x|2 ´ |y|2q ` 2ixx, yy.

Since }z}2 “ |x|2 ` |y|2, this constraint is equivalent to

|x|2 “
}z}2

2
, |y|2 “

}z}2

2
, xx, yy “ 0.

For each fixed r ą 0, the cross-section where }z} “ r is seen from here to be a S2 bundle over S3.
These are topologically trivial, so for each r ą 0, the cross section where }z} “ r is S3 ˆ S2.

The smoothing of V is given by

Vt “ t
4
ÿ

i“1

pziq
2 “ tu.

This is smooth because the only point where the derivative of
ř4
i“1pziq

2 is not surjective is at the
origin, which is not included in Vt.

After rotating coordinates z, we may suppose t ą 0. The defining equation becomes

t “ |x|2 ´ |y|2, xx, yy “ 0.

Since }z}2 “ t` 2|y|2, we see that
}z}2 ě t.

The point t}z}2 “ 0u Ă V has been inflated to t}z}2 “ tu Ă Vt, which is

|x|2 “ t, y “ 0.

The space of x describes an S3 of vanishing radius as tÑ 0. This is sometimes called the vanishing
sphere.

Lastly, we note that Vt also admits a holomorphic volume form, given by local expressions such
as

Ωt “
1

z1
dz2 ^ dz3 ^ dz4, on tz1 ‰ 0u.
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5.3 Candelas-de la Ossa metrics

To summarize our discussion so far, we have described two ways to resolve the singular space

V “ t
ÿ

z2
i “ 0u Ă C4

The first is by small blow-up, which replaced the origin by P1 “ S2. We call this the small
resolution

σ : Ṽ Ñ V.

The second is by smoothing, which replaced the origin by S3.

Vt “ t
ÿ

z2
i “ tu Ă C4.

Candelas-de la Ossa [2] constructed a sequence of metrics on both sides. We will discuss how one
side of the sequence sends the area of a holomorphic curve P1 to zero, and the other side sends the
area of a special Lagrangian 3-sphere to zero.

5.3.1 Metrics on the small resolution

We work on the total space Op´1q ‘Op´1q Ñ P1 with two coordinate charts pλ, u, vq and pλ̃, ũ, ṽq
satisfying the change of coordinates

λ “ λ̃´1, u “ λ̃ũ, v “ λ̃ṽ.

We have the well-defined function

τ “ p1` |λ|2qp|u|2 ` |v|2q,

which measures the distance to the zero section P1 (coordinate λ) along the Op´1q fibers (coordi-
nates u, v) using the Fubini-Study metric. For a ą 0, the Candelas-de la Ossa ansatz is

ωco,a “ iBB̄fapτq ` 4a2ωFS .

for some function fa. Note that

ż

P1

ωco,a “ 4a2VolpP1, ωFSq Ñ 0, aÑ 0.

We want to solve for fa such that these metrics are Ricci-flat. We expand the ansatz as

iB

„

f 1τ B̄ log τ



` 4a2ωFS

and using ωFS “ iBB̄ logp1` |λ|2q,

ωco,a “

„

pf2 ` τ´1f 1qiBτ ^ B̄τ



`

„

f 1τiBB̄ logp|u|2 ` |v|2q



`

„

pf 1τ ` 4a2qωFS



. (5.1)
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To compute the Ricci curvature, we first compute ω3
co,a. We note that these 3 terms each square

to zero. For example
„

iBB̄ logp|u|2 ` |v|2q

2

“ 0. (5.2)

Indeed,

BB̄ logp|u|2`|v|2q “
1

p|u|2 ` |v|2q2

"„

p|u|2`|v|2qpdu^dū`dv^dv̄q



´

„

pūdu` v̄dvq^pudū`vdv̄q

*

.

Squaring this is of the form pα´ βq2 where β2 “ 0. A direct computation then shows α2 ´ 2αβ “
2p|u|2 ` |v|2q2 ´ 2p|u|2 ` |v|2q2 “ 0. This verifies (5.2).

Going back to (5.1), computing ω3
co,a is of the form pa` b` cq3 “ 6abc since a2 “ b2 “ c2 “ 0. We

have
ω3
co,a “ 6pf2 ` τ´1f 1qpf 1τqpf 1τ ` 4a2qiBτ ^ B̄τ ^ ωFS ^ iBB̄ logp|u|2 ` |v|2q.

Next, we have
ωFS “ p1` |λ|

2q´2idλ^ dλ̄,

and

Bτ ^ B̄τ “

ˆ

p|u|2 ` |v|2qλ̄dλ` p1` |λ|2qpūdu` v̄dvq

˙ˆ

p|u|2 ` |v|2qλdλ̄` p1` |λ|2qpudū` vdv̄q

˙

and

BB̄ logp|u|2 ` |v|2q “
1

p|u|2 ` |v|2q2

ˆ

p|u|2 ` |v|2qpdu^ dū` dv ^ dv̄ ´ pūdu` v̄dvq ^ pudū` vdv̄q

˙

Using this, direct calculation gives

iBτ ^ B̄τ ^ ωFS ^ iBB̄ logp|u|2 ` |v|2q “ cpidλ^ dλ̄q ^ pidu^ dūq ^ pidv ^ dv̄q.

Therefore, writing ωco,a “ ipgco,aqjk̄dz
j ^ dz̄k, then up to a constant we have

det gco,a “ pf
2f 1τ ` pf 1q2qpf 1τ ` 4a2q.

Side note: at λ “ 0, in pλ, u, vq coordinates the metric is

gco,ap0, u, vq “

»

—

—

—

–

f 1τ ` 4a2 0 0

0 f 1 ` |u|2f2 f2uv̄

0 f2vū f 1 ` |v|2f2

fi

ffi

ffi

ffi

fl

.

Let γpτq “ τf 1. The determinant in terms of γ is

det gco,a “ γ1γpγ ` 4a2qτ´1

To find a Ricci-flat metric, from Rjk̄ “ ´BjBk̄ log det g we look for solutions to det gco,a “ const,
which is the equation (with convenient choice of constant)

γ1γpγ ` 4a2q “
2

3
τ.

76



This has solution
γ3 ` 6a2γ2 “ τ2.

This is
τpf 1aq

3 ` 6a2pf 1aq
2 “ 1.

From here, we note that if f1 is a solution for a “ 1, then fa “ a2f1pτ{a
3q is a solution for arbitrary

a. We discuss the solution f for a “ 1 and obtain the other fa by rescaling.

We look for a positive solution of τy3 ` 6y2 “ 1 with y “ f 1pτq. At τ “ 0, we choose the solution
y “ 1{

?
6. It turns out that there is an explicit solution ypτq ą 0 on τ ě 0 given by

y “
1

τ

„

z `
4

z
´ 2



, z “ 2´1{3pτ2 ` pτ4 ´ 32τ2q1{2 ´ 16q1{3. (5.3)

The function f1 is then defined on r0,8q and given by

f1pτq “

ż τ

0

yptqdt.

By construction, it solves
pf2f 1τ ` pf 1q2qpf 1τ ` 4q “ 1.

The form ωco,1 is ą 0, since it is given by (5.1) with f 1 ą 0 and f2τ ` f 1 ą 0.

Next, we show that fa Ñ f0 smoothly on compact sets away from u “ v “ 0. We study the
asymptotic behavior of f1 as τ Ñ 8. For τ ě K, then the Puiseux series of (5.3) turns out to
be

y “ τ´1{3 ´
2

τ
` 4τ´5{3 ´

16

3
τ´7{3 ` . . .

Integrating gives
f1pτq “ c0τ

2{3 ` c1 log τ ` c2τ
´2{3 ` c3τ

´4{3 ` . . .

Therefore when τ ě Ka3, then

fapτq “ c0τ
2{3 ` c1a

2 log a´3τ ` c2a
4τ´2{3 ` c3a

6τ´4{3 ` . . . .

Therefore fa Ñ c0f0 as aÑ 0 on compact sets disjoint from tτ “ 0u, where

f0 “ τ2{3, ωco,0 “ iBB̄τ2{3.

At the level of metrics, the expansion is

ωco,a ´ ωco,0 “ 4a2ωFS ´ c1a
2iBB̄ log r ´ c2a

4iBB̄r´2 ´ c3a
6iBB̄r´4 ` . . .

on tr ě K0au, where r “ τ1{3. Therefore ωco,a Ñ ωco,0 as aÑ 0 uniformly on compact sets which
are disjoint from the exceptional curve P1 “ tτ “ 0u.

Remark 5.2. Let us rewrite things slightly differently. Rescale the metrics so that c0 “ 1, let
r “ τ1{3 so that r “ p1` |λ|2q1{3p|u|2 ` |v|2q1{3 and

ωco,0 “ iBB̄r2, ωco,a “ a2S˚a´1ωco,1
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where
SRpλ, u, vq “ pλ,R

3{2u,R3{2vq

satisfies S˚Rr “ Rr and S˚Rωco,0 “ R2ωco,0. Let AR “ tR ď r ď 2Ru and note SR : A1 Ñ AR. We
pullback the compact set estimate

|iBB̄pf1 ´ f0q|ω0 ď C, t1 ď r ď 2u

to obtain
|iBB̄S˚ρ pf1 ´ f0q|S˚ρ ω0

ď C, tρ´1 ď r ď 2ρ´1u

which, using |T |S˚ρ ω0
“ |T |ρ2ω0

“ ρ´2|T |ω0
for T “ rTijs, implies

sup
ρ´1ďrď2ρ´1

|ωco,1 ´ ωco,0|ω0
ď Cρ2

and
|ωco,1 ´ ω0|ωco,0 ď Cr´2.

We now pullback this estimate via Sa´1 .

|S˚a´1pωco,1 ´ ωco,0q|S˚
a´1ωco,0

ď Ca2r´2.

Therefore
|S˚a´1ωco,1 ´ a

´2ωco,0|ωco,0 ď Cr´2,

and
|ωco,a ´ ωco,0|ωco,0 ď Cr´2a2

which shows that ωco,a Ñ ωco,0 as aÑ 0 on sets tr ą εu.

5.3.2 Metrics on the smoothings

In this section, we construct Kähler Ricci-flat metrics on Vt. For t P C, consider as before

Vt “ t
4
ÿ

i“1

pwiq
2 “ tu Ď C4

with radius function τ “
ř

|wi|
2. Consider potentials of the form

ϕpzq “ fpτq,

for f to be determined. To find Kähler Ricci-flat metrics, we solve

piBB̄ϕq3 “ iΩ^ Ω̄.

We compute
B̄ϕ “ f 1B̄τ,

and
iBB̄ϕ “ f 1iBB̄τ ` f2iBτ ^ B̄τ.
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Its Monge-Ampère mass is

piBB̄ϕq3 “ pf 1q3piBB̄τq3 ` 3pf 1q2f2piBB̄τq2 ^ iBτ ^ B̄τ. (5.4)

We have
Bτ ^ B̄τ “ wjw̄idwi ^ dw̄j , BB̄τ “

ÿ

k

dwk ^ dw̄k.

We now compute in coordinates pw1, w2, w3q on Vt over the chart tw4 ‰ 0u. On tw4 ‰ 0u, we
have

Ωt “
1

w4
dw1 ^ dw2 ^ dw3.

Therefore

iΩt ^ Ω̄t “
1

|w4|
2
pidw1 ^ dw̄1q ^ pidw2 ^ dw̄2q ^ pidw3 ^ dw̄3q.

We write

dµ “
1

|w4|
2
pidw1 ^ dw̄1q ^ pidw2 ^ dw̄2q ^ pidw3 ^ dw̄3q

for simplicity. We need to equate this to piBB̄ϕq3 (5.4). For this we will use the defining relation of
Vt, which gives

4
ÿ

k“1

wkdwk “ 0, dw4 “ ´
1

w4
pw1dw1 ` w2dw2 ` w3dw3q.

Using this, we can compute the first term in (5.4) to be

piBB̄τq3 “ p3!qτdµ.

Indeed,

piBB̄τq3 “ pi33!qrdw11̄22̄33̄ ` dw11̄22̄44̄ ` dw11̄33̄44̄ ` dw22̄33̄44̄s

“ pi33!q

„

1`
1

|w4|
2
p|w3|

2 ` |w2|
2 ` |w1|

2q



dw11̄22̄33̄. (5.5)

Next we compute the second term in (5.4). We start with

pidw1 ^ dw̄1q ^ pidw2 ^ dw̄2q ^ iBτ ^ B̄τ

“ λ11̄ ^ λ22̄ ^ p|w3|
2λ33̄ ` |w4|

2λ44̄ ` w4w̄3λ34̄ ` w3w̄4λ43̄q (5.6)

with the notation λij̄ “ idzi ^ dz̄j . By the defining relation

λ11̄ ^ λ22̄ ^ iBτ ^ B̄τ

“ p|w3|
2 ` |w3|

2 ´
w4pw̄3q

2

w̄4
´
w̄4pw3q

2

w4
qλ11̄ ^ λ22̄ ^ λ33̄

“ 2

ˆ

|w3|
2|w4|

2 ´ Re pw4w̄3q
2

˙

dµ (5.7)

We also have

λ11̄ ^ λ44̄ ^ iBτ ^ B̄τ

“ λ11̄ ^ λ44̄ ^ p|w2|
2λ22̄ ` |w3|

2λ33̄ ` w3w̄2λ23̄ ` w2w̄3λ32̄q (5.8)
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which by the defining relation becomes

λ11̄ ^ λ44̄ ^ iBτ ^ B̄τ

“ p
|w2|

2|w3|
2

|w4|
2

`
|w2|

2|w3|
2

|w4|
2

´
pw3w̄2q

2

|w4|
2
´
pw̄3w2q

2

|w4|
2
qλ11̄ ^ λ22̄ ^ λ33̄

“ 2p|w2|
2|w3|

2 ´ Re pw3w̄2q
2qdµ. (5.9)

By symmetry,

piBB̄τq2 ^ iBτ ^ B̄τ

“ 4

ˆ

|w1|
2|w4|

2 ` |w2|
2|w4|

2 ` |w3|
2|w4|

2 ` |w2|
2|w3|

2 ` |w3|
2|w1|

2 ` |w2|
2|w1|

2

´Re tpw1w̄2q
2 ` pw1w̄3q

2 ` pw1w̄4q
2 ` pw2w̄3q

2 ` pw2w̄4q
2 ` pw3w̄4q

2u

˙

dµ

Since |t|2 “ |
ř

w2
i |

2 and τ2 “ p
ř

|wi|
2q2, we obtain

piBB̄τq2 ^ iBτ ^ B̄τ “ 2pτ2 ´ |t|2qdµ.

Substituting this into (5.4) gives

piBB̄ϕq3 “ 3!

„

pf 1q3τ ` pf 1q2f2pτ2 ´ |t|2q



dµ.

Thus to solve piBB̄ϕq3 “ iΩ^ Ω, we need to solve

pf 1q3τ ` pf 1q2f2pτ2 ´ |t|2q “ 1{6,

for a function fpτq, and where t is a fixed parameter. Here is the result. When t “ 0, the solution
is proportional to

f0pτq “ τ2{3

and for given t ‰ 0, the solution is proportional to

ftpτq “ 2´1{3|t|2{3
ż cosh´1

pτ{|t|q

0

psinhp2λq ´ 2λq1{3dλ.

Remark 5.3. Let’s work out how to find this solution when t “ 0. The ODE is

6τ rpf 1q3 ` τpf 1q2f2s “ 1.

Let τ “ s2 and γpsq “ s2f 1ps2q. Then we have

pγ3q1 “ ps6pf 1q3q1 “ 6s5f 13 ` p3qs6f 12p2sqf2 “ 6s2rf 13 ` s2f 12f2ss3.

The equation becomes
pγ3q1 “ s3,
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which admits the solution γ3 “ 1
4s

4. Therefore

s6rf 1ps2qs3 “
1

4
s4

which for f 1 ą 0 is the ODE
f 1pτq “ c0τ

´1{3.

The solution is fpτq “ c1τ
2{3.

Remark 5.4. Let’s compute the asymptotics of f1. Its derivative is

f 11pτq “

ˆ

sinhp2 cosh´1
pτqq ´ 2 cosh´1 τ

˙1{3
1

?
τ2 ´ 1

.

We have sinhp2 cosh´1
pτqq “ 2τpτ ´ 1q1{2pτ ` 1q1{2 and cosh´1 τ “ logpτ `

?
τ2 ´ 1q. Then as

τ Ñ8, the series expansion turns out to be

f 1pτq “ 21{3τ´1{3 ` a1τ
´7{3 log τ ` a2τ

´7{3 `Opτ´10{3q

Integrating gives
fpτq “ c0τ

2{3 ` a1τ
´4{3 log τ ` a2τ

´4{3 `Opτ´7{3q.

Therefore, if we let r “ τ1{3, then

ϕ1 “ c0r
2 ` a1r

´4 log r ` a2r
´4 `Opr´7q.

Remark 5.5. The metrics ωco,1 are asymptotically conical. We now describe what this means (see
[6] for more on asymptotically conical Kähler-Ricci flat metrics). Let the Kähler-Ricci flat metrics
be denoted

ωco,0 “ iBB̄ϕ0, ωco,1 “ iBB̄ϕ1.

We consider the map Φ : V X t|z| ą Ru Ñ V1 given by

Φpxq “ x`
x̄

2|x|2
.

We will estimate the order of Φ˚ωco,1 ´ ωco,0. By the asymptotics of ϕ1 and r “ }x}2{3,

pΦ˚ϕ1qpxq “ |Φpxq|4{3 `Op|Φpxq|´p8{3q log |Φpxq|q

“ |x|4{3 `Op|x|p4{3q´1|x|´1q `Op|Φpxq|´p8{3q log |Φpxq|q

“ r2 `Opr´1q (5.10)

Therefore
Φ˚ϕ1 ´ ϕ0 “ Opr´1q.

Next, we start from
sup

1ďrď2
|Φ˚ωco,1 ´ ωco,0|ωco,0 ď C,
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and pull this back via Sλ : V Ñ V , Sλpzq “ λ3{2z to get

sup
λ´1ďrď2λ´1

|S˚λ iBB̄pΦ
˚ϕ1 ´ ϕ0q|S˚λ ωco,0

ď C.

The definition of Sλ is such that S˚λr “ λr and S˚λωco,0 “ λ2ωco,0. Since

|S˚λ iBB̄pΦ
˚ϕ1 ´ ϕ0q|S˚λ ωco,0

“ λ´2λ´1|iBB̄pΦ˚ϕ1 ´ ϕ0q|ωco,0

we conclude
|Φ˚ωco,1 ´ ωco,0|ωco,0 ď Cr´3. (5.11)

Metrics satisfying estimates of this form are said to be asymptotically conical (with rate 3).

Remark 5.6. Next, we notice that Sλpzq “ λ3{2z implies

St1{3 : V1 Ñ Vt.

We assume t ą 0. We have that
ωco,t “ t2{3S˚t´1{3ωco,1

is a natural sequence of metrics, and we can check that it does agree with the sequence of explicit
metrics obtained earlier. The reason for the t2{3 out-front is that far out on the cone r " R, then
ωco,1 „ iBB̄r2 and S˚

t´1{3iBB̄r
2 “ t´2{3, so that these metrics ωco,t are asymptotic to the cone iBB̄r2.

More precisely, let
Φt “ St1{3 ˝ Φ ˝ St´1{3 : V Ñ Vt,

then
|Φ˚t ωco,t ´ ωco,0|ωco,0 ď C|t|r´3 (5.12)

Indeed, pulling back (5.11) gives

|S˚t´1{3Φ˚ωco,1 ´ S
˚

t´1{3ωco,0|S˚
t´1{3

ωco,0
ď C|t|r´3

which combined with

|t´2{3Φ˚t ωco,t ´ t
´2{3ωco,0|t´2{3ωco,0 “ |Φ

˚
t ωco,t ´ ωco,0|ωco,0

gives the estimate (5.12). This estimate can be interpreted as ωco,t Ñ ωco,0 on compact sets away
from the cone singularity as tÑ 0.

5.3.3 The cone metric

We return to the cone

V “ t
4
ÿ

i“1

z2
i “ 0u Ď C4

with holomorphic volume form Ω “ 1
z1
dz2 ^ dz3 ^ dz4. We will now equip this with a natural

Calabi-Yau metric.

Both sequence of metrics gco,a and gco,t agree at gco,0. Recall that Op´1q ‘Op´1q Ñ P1 with zero
section removed can be identified with V and the function τ in both previous sections agrees in this
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identification. So we will work on V , and the Candelas-de la Ossa cone metric derived in the two
previous sections is, up to a constant,

ωco,0 “ iBB̄r2

where r “ }z}2{3.

Here is the reason why the power 2/3 is natural. We are looking to solve ω3
co,0 “ iΩ^ Ω̄. We can

rescale z ÞÑ λz on both sides, which gives

pλ4{3q3 “ pλ´1λ3qpλ´1λ3q

which is consistent.

Since the cone radius is r, the natural scaling on the cone is

t ¨ pz1, z2, z3, z4q “ pt
3{2z1, t

3{2z2, t
3{2z3, t

3{2z4q

since rpt ¨ zq “ tr.

We have explained why this metric is Kähler-Ricci flat. We will now discuss why this is a cone
metric. Note that V is a cone, since if z P V then λz P V for any λ P C. In general, a cone metric
is a metric on p0,8q ˆ Σ of the form

g “ dr b dr ` r2gΣ. (5.13)

This type of metric is very useful in Riemann geometry. To see why, convert the Euclidean metric
gEuc on Rn to polar coordinates pr, θiq. It will be of the form (5.13) with gΣ the metric on the
sphere Sn´1. Riemannian geometry with metrics of the form (5.13) behaves like polar coordinates:
for example, the kernel of the Laplacian ∆g can be decomposed by separation of variables.

Here is why ωco,0 can be put in this form. We insert a factor of p1{2q in the definition of ωco “
1
2 iBB̄r

2

for convenience. Compute

ωco “ iBpr2B̄ log rq “ 2iBr ^ B̄r ` r2iBB̄ log r.
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We can write this as

ωco “ ´dr ^ Jdr ` r
2

ˆ

´
i

2
dJd log r

˙

where pJβqpXq “ βpJXq. This can be seen by writing dr “ Br ` B̄r and Jdr “ iBr ´ iB̄r.

Let η “ ´Jd log r. To obtain the metric, we use gcopX,Y q “ ωcopX, JY q.

gco “ dr b dr ` r2η b η ` r2dηp¨, J ¨q.

It remains to show that
η “ ηipθqdθ

i, dηp¨, J ¨q “ αijpθqdθ
i b dθj (5.14)

where the implicit function theorem gives local coordinates pr, θiq near a given point.

‚ First, we note the following nowhere vanishing holomorphic vector field on V :

ξ “ 3
4
ÿ

i“1

zi
B

Bzi
“ r

B

Br
´ iJ

„

r
B

Br



,

with rBr “
3
2xi

B
Bxi
` 3

2yi
B
Byi

. This vector field generates the t¨ action on V in the sense

ξpfq “ 2
d

dt

ˇ

ˇ

ˇ

ˇ

t“1

fpt ¨ z, z̄q.

From here, it follows that
ξplog rq “ 1,

so taking real and imaginary parts gives

r
B

Br
plog rq “ 1, J

„

r
B

Br



plog rq “ 0.

In R2 with polar coordinates reiθ, we can think of JprBrq “ rBθ. This discussion implies ηpBrq “
´JpBrq log r “ 0 and so

η “ ηipr, θqdθ
i.

The next step is to show that ηi does not depend on r, and for this we will use the Lie deriva-
tive.

‚ Next, we note
LξJ “ 0.

The Lie derivative is
LξpJXq “ pLξJqpXq ` JLξpXq

and LξpXq “ rξ,Xs for vector fields X. So this amounts to showing

rξ, JBαs “ Jrξ, Bαs, (5.15)

for Bα “
B
Bzk

or Bα “
B
Bz̄k

. Since ξ “ 3zi
B
Bzi

, this is readily verified directly.
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‚ We now show that
LrBrη “ 0.

By Cartan’s formula, LrBr “ dιrBrη ` ιrBrdη. Since ιrBrη “ 0, we need to show

dηprBr, ¨q “ 0. (5.16)

Indeed, the invariant formula for dη gives

dηprBr, Xq “ rBrηpXq ´XηprBrq ´ ηprrBr, Xsq

“ ´rBrJX log r ` JrrBr, Xs log r

“ ´rBrJX log r ` rrBr, JXs log r

“ ´JXrBr log r “ 0. (5.17)

Here we used the real part of rξ, JXs “ Jrξ,Xs (5.15).

‚ Altogether, since

0 “ LrBrη “
d

dt

ˇ

ˇ

ˇ

ˇ

t“1

ηiptr, θqdθ
i

it follows that in a local chart we can write η “ ηipθqdθ
i and ηi does not depend on r. In other

words, η “ p˚ηΣ where p : V Ñ Σ is ppr, θq “ θ. Similarly, (5.16) implies

dηp¨, J ¨q “ αijpr, θqdθ
i b dθj ,

and LrBrdη “ 0 and LrBrJ “ 0 implies that αijpθq does not dependent on r. We have proved (5.14),
and obtain the cone formula g “ dr2 ` r2gΣ.

5.4 Special Lagrangian cycles

In this section, we show that the vanishing cycle is special Lagrangian with respect to the Candelas-
de la Ossa metric.

5.4.1 Definition of special Lagrangian cycles

We start with a review of calibrated cycles [15]. We say that ϕ P ΛkpMq on pM, gq is a calibration
if for all k-dimensional submanifolds L then

ˇ

ˇϕ|L
ˇ

ˇ

g
ď 1

pointwise. The norm is defined as: write ϕ|L “ fpxqdvolL and then take |fpxq|. Here dvolL is
the volume form of the induced metric g|L. A submanifold L is calibrated with respect to ϕ if
ϕ|L “ dvolL.

Let rLs P HkpM,Zq be a fixed homology class. Any other representative can be written as L1 “
L´ BΣ. We consider the functional on rLs defined by

EpL1q “

ż

L1
dvolL1 `

ż

Σ

dϕ, L1 “ L´ BΣ. (5.18)

In the standard definition of a calibration, we require dϕ “ 0 and the bulk term does not appear so
that this is the area functional. The more general definition is here for potential future application
to non-Kähler geometry.
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Proposition 5.7. Let L be a calibrated submanifold with respect to ϕ. Then L minimizes the
functional EpLq in a given homology class.

Proof. First, we note

EpLq “

ż

L

dvolL “

ż

L

ϕ

When dϕ “ 0, this is the topological number rϕs ¨ rLs. We will show that this is the lower bound
of the functional. By Stokes’s theorem,

EpL1q “

ż

L1
dvolL1 `

„
ż

L

ϕ´

ż

L1
ϕ



.

Using the calibration property, ϕ|L1 ď |ϕ|gdvol|L1 ď dvol|L1 , so

EpL1q ě

ż

L1
ϕ`

„
ż

L

ϕ´

ż

L1
ϕ



“

ż

L

ϕ.

Let Ω be a holomorphic volume form. Let ω be a hermitian metric, conformally rescaled so that
|Ω|ω “ 23{2. A special Lagrangian cycle is a submanifold calibrated with respect to Re Ω. The
calibration argument implies that special Lagrangian cycles minimize the area functional

EpLq “

ż

L

dvolL

in a given homology class rLs. We now show that Re Ω is indeed a calibration.

Lemma 5.8. Re Ω is a calibration. Furthermore, if L is a calibrated submanifold so that Re Ω|L “
dvolL, then ω|L “ 0.

Proof. We closely follow Harvey-Lawson’s proof [15]. Let L ĎM . Suppose v1, v2, v3 are orthonor-
mal vectors spanning TpL. Harvey-Lawson’s identity is

|Ωpv1, v2, v3q|
2 “ |v1 ^ v2 ^ v3 ^ Jv1 ^ Jv2 ^ Jv3|. (5.19)

(The norm of a top form µ is
ˇ

ˇ

µ
dvol

ˇ

ˇ.) Assuming this, then

|Ωpv1, v2, v3q|
2 ď |v1||Jv1| ¨ ¨ ¨ |v3||Jv3| “ 1.

In fact, equality in Hadamard’s inequality is achieved if and only if the vectors are orthogonal. This
implies xvi, Jvkyg “ 0, which translates to ωpvi, vkq “ 0 and so ω|L “ 0. The inequality above is

|Re Ωpv1, v2, v3q|
2 ` |Im Ωpv1, v2, v3q|

2 ď 1

Therefore, since the vi are orthonormal, then |Re Ω|L|g ď 1 and Re Ω is a calibration. If equality
Re Ω|L “ dvolL holds, then ω|L “ 0 and Im Ω|L “ 0.
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We now prove Harvey-Lawson’s identity (5.19). We start with the left-hand side. Let e1, e2, e3, Je1, Je2, Je3

be an orthonormal basis for TpM . Since Ω|p is an element of the 1 dimensional vector space Λ3,0
p

it can be written Ω|p “ fppqε1 ^ ε2 ^ ε3 with

εk “
1

2
pek ´ iJekq.

To find fppq P C, we take the norm and use that |Ω|ω “ c. For suitable normalization (c “ 23{2 as
will be computed below), we conclude Ω|p “ eiθppqε1 ^ ε2 ^ ε3.

Next, we expand vi in the basis εk, εk

vk “ A`kε` `A
¯̀
kε`.

Since vk “ vk, using uniqueness of expansion of a basis we obtain that A`k “ A
¯̀
k. Since Ω|p “

eiθε1 ^ ε2 ^ ε3, we have

Ωpv1, v2, v3q “ ΩpA`1ε`, A
m

2εm, A
n

3εnq “ eiθ detA.

Next, we compute the right-hand side of (5.19). Let e4 “ Je1, e5 “ Je2, e6 “ Je3 so that teiu is
an oriented basis. Define a linear map M by its action on this basis

Mpeiq :“ vi, MpJeiq :“ Jvi.

Then
|v1 ^ Jv1 ^ . . . v3 ^ Jv3| “ |Mpe1q ^Mpe2q ^ ¨ ¨ ¨ ^Mpe6q| “ |det M |

To compute det M , we compute it in the basis εi, εi. We compute

Mpεkq “
1

2
pMpekq ´ iMpJekqq “

1

2
vk ´

i

2
Jvk.

Using our earlier matrix Aik and Jεk “ iεk, Jεk “ ´iεk, this is

Mpεkq “
1

2
pAnkεn `A

n̄
kεnq ´

i

2
piAnkεn ´ iA

n̄
kεnq “ Ankεn.

Similarly Mpεkq “ Āεk, and so in this basis

M “

»

–

A 0

0 Ā

fi

fl .

Therefore detM “ |detA|2, which proves the identity.

A useful formula for calibrated cycles are the special Lagrangian equations. The submanifold L is
special Lagrangian if it solves the equations

ω|L “ 0, Im Ω|L “ 0. (5.20)

These equations imply that L is a calibrated cycle.
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Proposition 5.9. If L Ď pM,ω,Ωq solves the special Lagrangian equations (5.20), then L is a
calibrated cycle. This means we can orient L such that Re Ω|L “ dvolL and L minimizes the area
functional in its homology class.

Proof. The key identity is that if ω|L “ 0, then

Ω|L “
eiθ|Ω|ω

23{2
dvol. (5.21)

Therefore the conditions ω|L “ 0, |Ω|ω “ 23{2 and ImΩ|L “ 0 imply Re Ω|L “ ˘dvol|L.

To prove (5.21), fix a point p P TpL and an orthonormal basis e1, e2, e3 of TpL with dual basis ek.
Since ωpei, ejq “ gpei, Jejq, the condition ω|L “ 0 implies that

te1, e2, e3, Je1, Je2, Je3u

is an orthonormal basis of TpM . Let teku the dual basis, and

εk “ ek ` iJek. (5.22)

One can check by the definition ωpei, ejq “ gpei, Jejq that ω|p “
ř

k e
k ^ Jek, which in the basis

(5.22) is

ω|p “
i

2

ÿ

k

εk ^ ε̄k.

The p3, 0q form is
Ω|p “ fppqε1 ^ ε2 ^ ε3

for fppq P C, since εk span Λ1,0
p pMq and so any p3, 0q form is a multiple of ε1 ^ ε2 ^ ε3. To identify

fppq, we use the formula for the norm

iΩ^ Ω “ |Ω|2ω
ω3

3!
.

We see that

i|f |2ε1231̄2̄3̄ “
|Ω|2ω
23

iε11̄iε22̄iε33̄.

Therefore |f |2 “ |Ω|2{23 and

Ω|p “
eiθppq|Ω|ω

23{2
ε1 ^ ε2 ^ ε3

Thus

Ω|L “
eiθ|Ω|ω

23{2
e1 ^ e2 ^ e3,

which is (5.21).
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5.4.2 Examples on the smoothing

We give two examples of special Lagrangian cycles on

Vt “ tz
2
1 ` z

2
2 ` z

2
3 ` z

2
4 “ tu Ď C4

for t ą 0, with 3-form

Ωt “
1

z4
dz1 ^ dz2 ^ dz3.

The Calabi-Yau metric on Vt is the Candelas-de la Ossa metric ωco,t.

‚ Vanishing cycle L “ S3. For this, we use the Candelas-de la Ossa metric

ωco,t “ iBB̄ftpτq, τ “
ÿ

|zi|
2

A special Lagrangian 3-sphere is given by

L “ t|z1|
2 ` |z2|

2 ` |z3|
2 ` |z4|

2 “ tu Ď Vt.

If zk “ xk ` iyk, the constraint for Vt implies t “ |x|2 ´ |y|2, xx, yy “ 0, and the constraint for L is
|x|2 ` |y|2 “ t. Therefore y “ 0 and |x|2 “ t, so L is topologically a 3-sphere. Since y “ 0, we see
that pIm Ωtq|L “ 0. Since τ is constant, we see that ωco,t|L “ 0.

‚ Special Lagrangian discs. Here we will use the metric ωEuc “
ř

k idz
k ^ dz̄k restricted to Vt. It

is not Calabi-Yau, so this example involves a more general setup. Consider the two discs L`, L´
given by

L˘ “ tx
2
1 ` x

2
2 ` x

2
3 ď tu Ď Vt X ty “ 0u.

with

z4 “ ˘

b

t´ x2
1 ´ x

2
2 ´ x

2
3.

These share the same boundary BL which is a 2-cycle S2 which lies on the holomorphic surface
z4 “ 0. Since y “ 0, we have pIm Ωtq|L “ 0 and ωEuc|L “ 0.
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6 Conifold Transitions: Global Geometry

6.1 Overview

Let X̂ be a compact Calabi-Yau threefold. A conifold transition X̂ Ñ X0 ù Xt is defined as
follows:

Step 1: Find holomorphic curves Ci Ă X̂ with a neighborhood biholomorphic to the open set
t}z} ă 1u in the total space Op´1q ‘Op´1q Ñ P1, with Ci “ t}z} “ 0u. Such curves Ci are called
p´1,´1q curves.

Step 2: Contract each Ci to a point pi and obtain singular space X0. A change of variables shows
that each pi admits a neighborhood biholomorphic to t

ř4
i“1 z

2
i “ 0u Ď C4 (§5.1.2).

Step 3: Realize X0 as the central fiber of a deformation π : X Ñ ∆ such that Xt is smooth for
t ‰ 0 and locally near pi we see the local smoothing t

ř

z2
i “ tu. For this to exist, we need to

satisfy Friedman’s condition on the initial curves, and the global smoothing result of Friedman-
Tian-Kawamata is stated below. The smoothing has the effect of replacing each pi P X0 with
3-sphere S3 (§5.2).

Theorem 6.1. [9, 27, 18] Let X̂ be a Calabi-Yau threefold with p´1,´1q curves Ci Ă X̂. Let
µ : X̂ Ñ X0 be the blow-down map sending Ci to nodal singularities pi P X0. If the curves are
linearly dependent in homology, so that

ÿ

i

λirCis “ 0 P H4pX̂,Cq

with λi ‰ 0, then X0 admits a smoothing Xt. This means there is a complex space X with a proper
flat map π : X Ñ ∆ such that π´1p0q “ X0 and π´1ptq “ Xt is a smooth complex manifold for
t ‰ 0.

Let Ci be an initial configuration of p´1,´1q curves on X̂ satisfying Friedman’s condition
ř

λirCis “
0. The theorem above guarantees the existence of a conifold transition X̂ Ñ X0 ù Xt. Here is a
summary of known results on the geometry and topology of such a transition:

‚ Xt is a compact complex manifold with trivial canonical bundle. [9]

‚ It is conjectured [1] that all Calabi-Yau threefolds can be connected to each other by conifold
transitions.

‚ However, a conifold transition may produce an Xt which is non-Kähler. (Examples at the end
of §6.2) This suggests that these limiting non-Kähler objects should be included in the web of
Calabi-Yau threefolds.

‚ Though non-Kähler in general, Xt is expected to satisfy the ddbar lemma, but as far as I can
tell, this is still unknown in full generality [10].

‚ The topological change is
N “ k ` c,

where N is the number of nodes, k is the decrease of b2, and 2c is the increase of b3. (§6.2)

‚ [11] There is a sequence of metrics pX̂, gaq with dω2
a “ 0 such that ga Ñ g0 uniformly on compact

sets for a limiting metric g0 on X0 locally modeled near the singularities by a scaling of gco,0,
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and
VolpCi, gaq Ñ 0, aÑ 0.

On the smoothing side, for small t there is a sequence of metrics pXt, gtq with dω2
t “ 0 and gt Ñ g0

uniformly on compact sets with

VolpLi,t, gtq Ñ 0, tÑ 0,

where Lt,i “ t}z}
2 “ |t|u Ď Vt Ď Xt are the vanishing 3-spheres. This result is due to Fu-Li-Yau

[11]. Near the singularities, the FLY metrics are modeled by the Candelas-de la Ossa metrics:

|gt ´ λigco,t|gco,t ď C|t|2{3, on X X tr ă 1u.

Here r : X Ñ p0,8q is a function which agrees with r “ }z}2{3 near the singular points and
r´1p0q “ SingpX0q. Each ith component of Xt X tr ă 1u is biholomorphic to Vt X tr ă 1u, and the
metric gt is close to a λi-scaled version of gco,t for λi ą 0. For higher order derivatives, the estimate
is

|∇k
gco,tpgt ´ λgco,tq|gco,t ď Ck|t|

2{3r´k, on X X tr ă 1u.

Let us give a few more details of the Fu-Li-Yau construction. There are two steps:

(A) The construction of a balanced metric ω0 on X0 satisfying:

- On X0ztr ă 1u, we have ω0 “ ωCY , where ωCY is a Calabi-Yau metric on X̂.

- On X0 X tr ă εu, we have ω0 “ Rωco,0. Here ε ą 0 and R ą 1 are chosen parameters.

- On X0 X tε ď r ď 1u, we have ω2
0 “ iBB̄β for some β P Λ1,1pX̂,Rq.

Here we go freely between X0zSingpX0q and X̂z Y Ci since these are biholomorphic.

(B) The construction of a balanced metric ωt on Xt:

This starts by constructing an approximate metric ω̂t:

- On Xt X tr ă εu, we have ωt “ Rωco,t.

- On compact subsets K Ă X zSingpX q, we have that ω̂t converges to ω0 smoothly uniformly as
tÑ 0.

This metric ω̂t is not balanced, and is globally corrected by

ω2
t “ ω̂2

t ` θt ` θ̄t.

The correction θ comes from solving Etpγtq “ B̄ω̂2
t (Et is the Kodaira-Spencer operator) and

θt “ BB̄
:B:γt, ´B̄θt “ Etpγtq. Fu-Li-Yau show that the correction is θt is small: it satisfies |θt|ω̂t ď

C|t|2{3.

‚ [5] The vanishing cycles Lt,i Ď Xt can be represented by special Lagrangian 3-spheres with respect
to the global geometry gt. Thus from the point of view of submanifold geometry, the transition
exchanges holomorphic 2-cycles with special Lagrangian 3-cycles.

‚ [4] The compact manifolds Xt for small t admits a pair of metrics pgt, htq solving

gjk̄Hpjk̄ “ 0, gjk̄F pqjk̄ “ 0
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where H is the 3-form field strength H “ ipB ´ B̄qω and F is the 2-form field strength F “

B̄ph´1Bhq. In particular, Xt admits balanced metrics and has stable tangent bundle. (The equation
gjk̄Hpjk̄ “ 0 is equivalent to dω2 “ 0.) Note that Calabi-Yau metrics gCY solve these equations for
h “ g “ gCY , so these are generalizations of Calabi-Yau metrics on the non-Kähler spaces reached
by conifold transitions.

‚ It is conjectured by S.-T. Yau that the pair pg, hq can be further deformed to solve the Strominger
system:

dp|Ω|ωω
2q “ 0, gjk̄F pqjk̄ “ 0

iBB̄ω “ α1pTrRω ^Rω ´ TrFh ^ Fhq. (6.1)

The equation dp|Ω|ωω
2q “ 0 can be solved by conformally changing the Fu-Li-Yau metric on Xt,

but whether (6.1) is solvable through conifold transitions is unknown.

6.2 Topological change

In this section, we follow the exposition given in Rossi’s survey [23].

Let X̂ Ñ X ù X be a conifold transition with N nodes. We denote the N holomorphic curves
which are being contracted by Ci Ă X̂, and rCis P H2pX̂,Rq their homology class. A transition
decreases b2 and increases b3, and we define the jumps in homology rank by

b2pXtq “ b2pX̂q ´ k, b3pXtq “ b3pX̂q ` 2c.

With this notation, the fundamental identity for topology change to be explained in this section
is:

N “ k ` c. (6.2)

and k is also equal to

k “ dim subspace in H2pX̂,Rq generated by rCis. (6.3)

As a consequence of N “ k ` c, we see that if a transition exists then there must be a linear
dependence relation between the N curves rCis. Viewed another way, we can deduce the change in
b3 by the initial position of the 2-cycles Ci by c “ N ´ k. Also, c ě 1 is the number of independent
vanishing 3-cycles in Xt.

We will need the following properties:

‚ There is a neighborhood Ûi of each p´1,´1q-curve Ci in X̂ which is diffeomorphic to S2 ˆ B4.
This means that though the bundle Op´1q ‘ Op´1q Ñ P1 is not holomorphically trivial, it is in
fact a trivial rank 4 real vector bundle. For the diffeomorphism to S2 ˆB4, see [23].

‚ There is a neighborhood Ut,i of each vanishing cycle Li in Xt which is diffeomorphic to S3 ˆB3.
We discussed earlier how the equations of Vt can be written as t “ |x|2 ´ |y|2, xx, yy “ 0. Let
p “ x{pt ` }y}2q1{2, so that pp, xq P R4 ˆ R4 satisfy }p} “ 1, xp, yy “ 0. This is diffeomorphic to
the total space of TS3, which is known to be a trivial bundle over S3. (A construction of a global
basis of sections of TS3 can be constructed using quaternions.)

‚ Let Ûi Ď Û i be two nested neighborhoods of a p´1,´1q-curve in X̂ as above. Then the annulus
Â “ ÛiXÛ i is homotopic to S2ˆS3. This is because V̂ zÛi is diffeomorphic to the cone V0zt}z} ă 1u,
whose cross-section is S3 ˆ S2. Similarly, At “ Ui,t X U i,t Ď Xt is homotopic to S2 ˆ S3.
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Let Û “ YNi“1Ûi Ď X̂ be an open set containing all curves Ci with Û “ \S2 ˆ B4, and Ut “
YNi“1Ut,i Ď Xt be an open set containing all vanishing cycles with Ut “ \S3 ˆ B3. We now

compute the topology of Xt based on the knowledge of X̂. We start with:

Lemma 6.2. b1pX̂q “ b1pXtq.

Proof. Recall the Meyer-Vietoris sequence: if X “ U Y V then

¨ ¨ ¨ Ñ HipU X V q Ñ HipUq ‘HipV q Ñ HipXq Ñ Hi´1pU X V q Ñ Hi´1pUq ‘Hi´1pV q . . .

We apply this to X̂ “ pX̂zÛq Y Û , so that

H1p\S
3 ˆ S2q Ñ H1pX̂zÛq ‘H1p\S

2q Ñ H1pX̂q Ñ H0p\S
3 ˆ S2q Ñ H0pX̂zÛq ‘H0p\S

2q

while on X, we have

H1p\S
3 ˆ S2q Ñ H1pXzUq ‘H1p\tptuq Ñ H1pXq Ñ H0p\S

3 ˆ S2q Ñ H0pXzUq ‘H0p\tptuq

and on Xt we have

H1p\S
3 ˆ S2q Ñ H1pXtzUtq ‘H1p\S

3q Ñ H1pXtq Ñ H0p\S
3 ˆ S2q Ñ H0pXtzUtq ‘H0p\S

3q

To connect these diagrams, we use the contraction maps X̂ Ñ X and Xt Ñ X, and that X̂zÛ and
XtzUt are both diffeomorphic to XzU (as they are a smooth family of complex structures). The
5-lemma implies that H1pX̂q “ H1pXq “ H1pXtq. Recall the 5-lemma: given a diagram between
two exact sequence

A //

f

��

B //

g

��

C //

h

��

D //

i

��

E

j

��
A1 // B1 // C 1 // D1 // E1

If g, i are isomorphisms, f surjective and j injective, then h is an isomorphism.

Since we are assuming that X̂ is a simply connected Calabi-Yau threefold, it follows that b1pXtq “ 0
on the other side of a conifold transition.

Lemma 6.3. b2pX̂q “ b2pXtq ´ κ, where κ is the dimension of the subspace in H2pX̂,Rq spanned
by the rCis.

Proof. Let C “ YCi Ă X̂ be degenerating 2-cycles and L “ YLi Ă Xt be the vanishing 3-cycles.
The long exact sequence for relative homology gives

¨ ¨ ¨ Ñ H2pCq
ι˚
ÑH2pX̂q Ñ H2pX̂, Cq Ñ H1pCq

ι˚
Ñ¨ ¨ ¨ (6.4)

Recall that relative homology HpX̂, Cq means: homology of space where we identify all points in
C to be a single point (or cycles α P ZnpX̂q such that Bα P Zn´1pCq). But we will not need to have
intuition for this definition here; the only properties we will use is the exact sequence above, and
the Lefschetz duality

HipX̂, Cq – Hn´i
c pX̂zCq
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which holds for topological manifolds and implies in our setup that

HipX̂, Cq – HipXt, Lq, (6.5)

since X̂zC – XtzL. The long exact sequence for relative homology gives

N
ğ

i“1

rCis
ι˚
ÑH2pX̂q

ϕ
ÑH2pX̂, Cq Ñ 0.

By the rank-nullity theorem and (6.5),

dimH2pX̂q “ dimH2pX̂, Cq ` dim kerϕ

“ dimH2pXt, Lq ` dim im ι˚. (6.6)

If κ is the dimension of the subspace in H2pX̂q generated by rCis, we conclude

κ “ b2pX̂q ´ dimH2pXt, Lq. (6.7)

Since H2pXt, Lq – H2pXtq, we obtain

κ “ b2pX̂q ´ b2pXtq. (6.8)

This can be seen by the exact sequence

H2pLq Ñ H2pXtq Ñ H2pXt, Lq Ñ H1pLq

which for L “ \Ni“1S
3 implies H2pXtq – H2pXt, Lq.

Lemma 6.4. N “ k ` c

Proof. Recall the Euler characteristic χ “
ř6
k“1p´1qkbk. The excision property for the Euler

characteristic is: for U Ď X open,

χpXzUq “ χpXq ´ χpUq.

In our setup, this gives
χpX̂zÛq “ χpX̂q ´NχpS2 ˆB4q

and
χpXtzUtq “ χpXtq ´NχpS

3 ˆB3q.

Since X̂zÛ and XtzUt are diffeomorphic, and χpS2q “ 2 and χpS3q “ 0, plus χpS2 ˆ B4q “ χpS2q

by deformation retraction, it follows that

χpX̂q ´ 2N “ χpXtq.

We proved that X̂ and Xt have b1 “ 0, so χ “ 2` 2b2 ´ b3 and we obtain

N “ pb2pX̂q ´ b2pXtqq `
1

2
pb3pXtqq ´ b3pX̂qq.

94



Remark 6.5. If the initial manifold has b2pX̂q “ 1 (if for example X̂ is a quintic threefold in
P4), then two homologically linearly dependent curves C1, C2 produce a conifold transition where
the resulting manifold has b2pXtq “ 0. A compact Kähler manifold cannot have b2 “ 0, since ω
represents a non-zero cohomology class in H2. We see that conifold transitions possibly take us out
of Kähler geometry.

Example 6.6. Here is another example of a non-Kähler transition from [2]. Start with a small
resolution X̂ of a singular quintic P “ Z3GpZ0, . . . , Z4q`Z4HpZ0, . . . , Z4q “ 0. This has h1,1 “ 2,
and there are 16 p´1,´1q curves Ci Ď X̂ from the small resolution, but they are all linearly
dependent. Suppose they are generated by C1. Take 2 curves C1, C2; they satisfy Friedman’s
condition so we can produce a transition X̂ Ñ X ù Xt. Now the other 14 curves are trivial in
homology rCis “ rBDis. Furthermore by [Remark 3.2.8, Lemma 3.3.1] in McDuff-Salamon [22], the
p´1,´1q curves deform along the family so that Ci,t are holomorphic curves. If Xt admits a Kähler
metric ωt, then

0 ă

ż

Ci,t

ωt “

ż

Di,t

dωt “ 0,

which is a contradiction. So Xt is non-Kähler, but b1pXtq “ 1.
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