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1 Complex Geometry

This section is an introduction to complex geometry. For other references in the style of these notes,
see Kodaira’s book [19], Chapter 1 of Siu’s notes [24], Chapter 1 of Song-Weinkove’s notes [25], or
Chapter 1 of Szekelyhidi’s book [26].

1.1 Complex manifolds

Let © < C" be a domain. We denote complex variables by

so that

=gk ik 2 =ab -k ke{1,...,n},

and the real variables on ) € R?" are (z!,y!,..., 2™, y™). The inverse transformation is

1 1
b = i(zk +20), yF= Z<Zk —zM). (1.1)

By the chain rule, for a smooth function f : Q — C, we have
of 1(¢ .0 of 1[0 .0
SO Lo (=i )L 1.2
0z 2(8:5 z6y>f7 0z 2(6m+16y>‘f (1.2)
Definition 1.1. Let f: Q — CF be a C' function with components

f=0"p), ... ).



We say f is holomorphic if
oft

ozk 0

for all i, k.

Let M be a compact complex manifold. This means that M is a smooth compact manifold admiting
a finite cover by open sets M = | J, U; with homeomorphisms

wiU—USC" zu(p) = (2p(0). - 25 (p)
with the following property. For any pair (U, zi7), (V, zv) with U NV # ¢, then we can write
&, = fvoP(av), fvu=2vozg!

with fyy @ 20(U n' V) — 2y (U n V) a holomorphic bijective function with holomorphic in-
verse.

Example 1.2. P! = (C2\{0})/ ~, where points p € P! are written as
p =120 : Z1]

and [Zy : Z1] ~ [Xo : X1] if and only if (Zy, Z1) = A\(Xo, X1) for A € C*. Holomorphic charts are:
o Uy = {Zy # 0}, with coordinate

_ 4
z= 7"
o Uy = {Z; # 0}, with coordinate
%
zZ = 7

The change of coordinates function fig : 2(Uy nUy) — Z(Uy n Uy) is

5 1
fi10:C* > C*,  Z= fio(2) = —.

z

Example 1.3. Complex projective space in higher dimensions P* = (C"*1\{0})/ ~ is defined
similarly. Points are denoted
p=1[Zo:Z1: 1 Zy]

and [Zy: Z1 i1 Zp] ~[Xo: Xy -+ X, ] if and only if (Zy, Z1,...,2Zn) = MXo, X1, .., Xn)
for A € C*. Holomorphic charts are of the form Uy = {Z) # 0}. For example, (Up, z) has coordinate

Z Z
1 n 1 n
z=(z",...,2%) = —,...,— |,
( ) <Z0 Z0>

while (U3, Z) has coordinate



and the change of coordinates function is Z = fio(z) with

1
5= =2 kef2,....n)

The coordinates on the other open sets Uy are defined similarly.

Example 1.4. Let P(Z, ..., Z,) be a homogeneous polynomial of degree r, meaning P(AZy, ..., \Z,) =

N'P(Zy,...,Zy). Suppose that P has the property that only the point Zy = --- = Z,, = 0 solves
575 = 0 for all 7. Then

X ={xzeP": P(x) =0}

defines a complex manifold of dimension n — 1. To see this, we look at {P = 0} inside the local
charts U, < P". For example, in coordinates (Up, z), the equation defining X is

At a point p € {f = 0}, there must be a coordinate z' such that 9/ % 0, in other words one

0zt

of %, . 08711 must be nonzero. The assumption on P is that we cannot have ggj = 0 for all
i€ {0,...,n}, so we only need to rule out 5;; # 0 with all other partials zero. This is ruled out by

Euler’s identity
= 0P
Zi— =r1P,
’;0 aZl '

which shows that on {P = 0} n Uy if % # 0 then one of g;_ for ¢ > 1 must be non-vanishing.
Euler’s identity follows from %|t=1P(tZ) = t"P(Z).

d
E‘t:l

Without loss of generality, % # 0. By the holomorphic implicit function theorem, there exists a
holomorphic function ¢ : V. — O,, V.« C" 1, p e O, < Uy, such that

XnO,={(w'. . ,u" Yw) weV}.

This defines a coordinate chart (V,w).

2

" g£=o}=><

Uo

W

There are two types of coordinate change:

e Suppose p € X n Uy satisfies both % # 0 and ;Z—J; # 0. Then we can parametrize X in a

neighborhood of p by either (implicit function on aazJ; #0)

(wh, ..., w" L Y(w))




or (implicit function on % # 0)
(@), @, .a" ).

The change of coordinates is
o' =w?, w? =wd, ... " =(w),

which is holomorphic.

e Suppose p € X n (Uy nUy). Then we can use coordinates coming from either Uy or U;. As before
we denote (Up, z) and (U, 2) with 2! = 1/z! and 2% = 2¥/2! for k > 2. The submanifold appears
as the equation

0=P(1,242%...,2")
on Uy, and

0=P('1,2%...,2")

on U;. Suppose ;TP # 0. As before, the implicit function theorem gives coordinates w’ and @, so
that the equations become

0=P(1,w',w? ..., ¢¥w))
on Uy, and

0= P(w',1,%%...,9(w0))
on U;. The change of coordinates is

o' = 1w, 0 =wwl, ... " =w" T wl

Other situations when e.g. g;o # 0 and % # 0 can also be worked out in a similar way:.




1.2 Holomorphic vector bundles
1.2.1 Definitions and notation

We recall the cocycle definition of a rank r complex vector bundle. Let M = | J, U; be a finite cover-
ing of open coordinate charts, together with matrix-valued functions on the nonzero overlaps

tyy :UnV — GL(r,C)
satisfying
tov(p) =tuw(P)twv(p), peUnV AW

We call the tyy transition functions. They satisfy tyy = I« and ta%, = tyy. We define a complex
vector bundle E by
E = <UU,- x <C’”>/ ~,
i

where the relation is as follows. For (p,u) € U x C" and (p,v) € V x C", we identify (p,u) ~ (p,v)
if
u=tyv(p)v.

This is written using matrix notation. In terms of components, this is written

u® = [tuv(p)]F e,

where repeated indices are summed. Here we write v = (v!,...,v") and the components of the
matrix tyy are denoted tyv';, e.g. for 2x2,

1 1 1
U tuv'r tuve| v
2 2 2
u tuv 1 tuv 2| |V

1

2

The U; x C" are the trivializations of the bundle. The projection map « : E — M is given by
m(p,u) = p.



[ ] \A-:‘t,bwv
Je
) [
W=’ Vx "

U V

We denote E|, = 7~!(p) to be the fiber over p, and note that E|, is a vector space of dimension 7.
For two points (p,u), (p,v) in the same trivialization U; x C", the vector space structure is

a(p,u) + b(p,v) = (p, au + bv),

and one can check that this is well-defined.
e Note: we will call a complex vector bundle of rank 1 a line bundle.

Definition 1.5. A complex vector bundle w : E — M over a complex manifold is holomorphic if
the transition functions tyy are holomorphic.

e Note: taking U, V to be coordinate charts, then U n V' is viewed as an open set in C”. That
tyy : UnV — GL(r,C) is holomorphic means that each entry of the matrix is a holomorphic
function of pe U n'V < C™.

Example 1.6. We will denote the trivial holomorphic line bundle by Ox — X. This means that
the transition functions are tyy = 1.

Definition 1.7. Let E — M be a rank r complex vector bundle with trivializations U;. A smooth
section, denoted s € T'(E), is given by local vector-valued smooth functions {U;, sy,} with sy : U —
C" satisfying

Sy = tUst.



A section s € T'(F) defines a well-defined map s : M — F such that

s(p) € Elp.

Indeed, in this formalism we set s(p) = (p,sy(p)) when p € U, and the condition sy = tyysy
ensures that if pe U n'V then (p, su(p)) ~ (p, sv(p)).

Remark 1.8. If E — M is a holomorphic bundle and the s are holomorphic functions, then we
say s is a holomorphic section and write s € H°(M, E).

Remark 1.9. In components, the transformation law is

k k¢
sy =tuv ¢Sy (1.3)
e.g. for 3x3, this notation means
1 1 1 1 1
Sty tuyv'r tuve tuvis| | sy
2 | = 2 2 2 2
sy | = |tov®r tuve tuvis| | sy |
3 3 3 3 3
Sty tuv®1t tuv®2 tuvs| | sy

onUnV.

There is another viewpoint on this from the perspective of basis vectors rather than vector compo-
nents. For a trivialization U x C", let

eY(p) = (p,(0,...,0,1,0,...,0)) e U x C",

a

where the 1 is at the ath position. Then {e¥ (p),...eY(p)} is a basis for E|,, and we say that {eJ}
is a local frame over U.

On an overlap U n V, the same basis vector can be written in two different ways. We note that
eaU ~ el‘,/tVUba. Instead of the ~ notation, this is usually just written

eV = el tyla. (1.4)
Here is how to see this in the 2 x 2 case and a = 1. By definition, e} ~ eXtVUbl if and only if
el =tyvel tyuly.
which is

1 1 L 2 1
= [tuv] . tvu 1+ , tvu1 | = [tov] | [tvu]

and this holds since tyytyy = Ioxo.

For a section s € I'(E), we will sometimes make the frame explicit and write

s = s%;,.



In the 2 x 2 case, this notation means

sl(p) 1 0
=s'(p) | | +5(p)
s*(p) 0 1
Note that on U n V, then
shel = shel

so we simply write s = s%,. Indeed, substituting the transformation laws (1.3), (1.4) gives

s&hel = [tuv st ][el tvuCa] = 0%she) = sbe) .
In terms of linear algebra, this is just the statement that the same vector v will appear in different
components v* using different bases e,.

Example 1.10. Let M = ( J, U; be a complex manifold with holomorphic coordinate charts (U, z).
The holomorphic tangent bundle TV°M — M is the holomorphic bundle defined by transition
matrices

k
tov®i = aZU-
02,
Sections X € I'(T1°M) are denoted
0
— XP
X =X?(2) pret

On an overlap of coordinate charts (U, z), (U ,Z), components transform as

~ 0zP
XP ==Xt
0zt
while the basis transforms as
0 _ 0zP 0

ozk 03k ozp”

It follows that 5 )
xXpP_~_ _ XP

0zP ozp

on overlaps.

Let E — M, F — M be two holomorphic vector bundles with transition functions tyv, tyy with
respect to a trivialization M = | J, U;. An isomorphism of holomorphic bundles h : E — F' is given
by a collection {hy : U — GL(r,C)} of holomorphic invertible matrices satisfying

hu = tuvhvt;y. (1.5)
This definition is such that h is a well-defined isomorphism from fibers of F to fibers of F'.
h(p) : Elp — Flp

This amounts to the statement that if v ~ w in E, then hv ~ hw in F. Indeed, if vy = tyywy
then
huvu = (fuvhvigy)(tuvwy) = toy (hvwy).



Example 1.11. We return to the example M = P! = Uy uU;. There are two charts (Up, 2), (Uy, 2)
and Z = z~!. Therefore ~
0 0Z0 10 2 0

0z 0205 2oz ez

Said otherwise, a section of T%M may be written on Uy n U; as v(z)% or 6(2)9% with

b= —3%.

so that the transition function is t19 = —22.

For example, defining a% over Uy extends to a global vector field V' over M by setting —22£ over

U,. However, even though % is nowhere vanishing over Uy, this vector field must acquire a zero at
z =0in U;. In component notation, this vector field V is given by the data

V = {(Uy,v(2)), (U1, 5(%))} € H*(M, T ° M)
with

v(z) =1, ¥(3) =3

Example 1.12. Let k € Z. Define the bundle O(k) — P! with trivializations (Uy, z), (Ui, 2) by
setting t19 = 2¥, so that sections transform as

ks,

ISy

Va3

The previous example, combined with (1.5) and suitable choice of hys,, hy,, shows that T1OP! ~
O(2). Let k > 0.

e There are no holomorphic sections of O(—k). Suppose such a section appears as a holomorphic
function s(z) over the trivialization Uy. Then over Uy, that same section takes the form § = 77 ¥s,

which in the Z coordinates belonging to U; is
5(2) = z7ks(z7Y).
Writing s(z) = Y-, a;z*, we see that §(Z) must have a pole and cannot be holomorphic.
e Holomorphic sections of O(k) correspond to homogeneous polynomials P(Zy, Z1) of degree k: any

section o € HY(P',O(k)) is o = {(Uy, 5), (U1, 3)} locally the form s = P(Zy, Z1)/ZE over Uy, and
of the form § = P(Zy, Z,)/Z¥ over U,. Indeed, let o € H°(P', O(k)) be an arbitrary holomorphic

section. Then s(z), 5(Z) are both holomorphic and

5(2) = 2Fs(z71). (1.6)
After writing § = ZZOZO bizk, s = Zkoozo apz® and comparing coefficients, we see that s(z) =
ag + a1z + - + apz®. Tt follows that

_ 1
i

aZy + a1 ZE 7 + -+ an 28

since on Uy = {Zy # 0} the coordinate is z = Z;/Z;. The transformation (1.6) implies

1
Zf

= aZ8 +a 25120 + - ap 2

since on Uy = {Z; # 0} the coordinate is 2 = Zy/Z;. Therefore the homogeneous polynomial
corresponding to this section is P = agZ(’f + alZg_lZl + -t apZk.

10



Example 1.13. In higher dimensional projective space, define O(k) — P" by (U;,t;;) where
Ui={Zi7é0} andtij:UimUj—NC* is

For example on O(1) — P2, with coordinates (Uy, 2), (U1, 2) with z = (Z1/Zy, Z2/Zo) and 2z =
(Zo/ZhZQ/Zl), then th = Zo/Zl = 21.

1.2.2 Bundle constructions

We now describe some bundle constructions. Let E — M be a complex vector bundle of rank r
with trivializations tyy .

e Conjugate bundle. The complex vector bundle E — M has trivializations . Note that if
FE — M is a holomorphic vector bundle, then E is not a holomorphic bundle. However, the next
constructions do produce holomorphic bundles if F is holomorphic.

e Dual bundle. Define E* — M to be the bundle of rank r defined by trivializations (tl}%,)T. We use
the following index notation: components of sections s € I'(M, E) are denoted s*, and components
of sections ¢ € I'(M, E*) are denoted ¢;, so that the transformation laws reads

3 .k U 1% k
sy =tuv'ksy, @; =entvu i

This is the dual bundle because sections s € I'(M, E) and ¢ € I'(M, E*) can be paired together to
form a function 4
o(s) == (p;s') € C*(M,R).

This is because the transformation laws imply
. v
o sy = i sy
and so (p;s°)(p) is independent of the choice of trivialization. In matrix notation Q = [tyy], the
transformation laws for s € T'(E) and ¢ € T'(E*) are

s Qs, o [Q7 ", o(s) =¢"s.

In terms of local frames, if {e;} is a local frame for E, we denote the corresponding dual frame on
E* by {e'}. This is defined as e’(e;) = §%;, and a section ¢ € T'(E*) is written as

Y= %ei-
The pairing ¢(s) can then be seen by the formula for the dual frame: ¢(s) = (pie’)( k
pjsl.

e Determinant bundle. The line bundle det E — M is defined by the trivializations det tyy .

er) =

e Tensor product. If E — M, E — M are vector bundles, then the bundle F ® E — M has
trivializations tyy ® tyy. In components, if indices i,j denotes indices on E and indices a, 3
indices on F, then

San = tUVingvaﬂSVjB.

11



e Endomorphism bundle. We will later encounter sections of E* ® F = End E*, and our convention
for h € T'(End E*) will be
h=ho e ®es

so that the transformation law for components reads
[hula” = tvutalhv]n tov?,
which in matrix notation @ = [tyy], for u € T'(F) and h € T'(End E*), is
u— Qu, h—[QT]'hQT. (1.7)

Note that h defines a map hl|, : E*|, — E*|, by ho?pg. Verifying that this map is well-defined is
a similar calculation as (1.5).

In fact, h € I'(End E*) also defines an endomorphism of E by acting on the right as u”h, or in
index notation u®h,?. That uTh transforms like a section follows from

(W"h) = (Qu)T(QT)'hQT) = u"hQ" = Q(u"h).
Thus v h € T'(E). Thus, we will sometimes view h € T'(End E*) with h = h,” as h e I'(End E).

e Divisor bundle. Let Y < X be an analytic hypersurface. This means that near each p € Y, there
is neighborhood U such that U n'Y is locally given by the vanishing set of a holomorphic function.
The theory of holomorphic functions (see e.g. [13]) implies that there exists the notion of a local
defining function: this means that f is holomorphic with

UnY ={f =0}

and any other local holomorphic function g vanishing on Y factors as g(z) = h(z) f(z) with h a local
holomorphic function. The notion of local defining function is not unique: if f; and f; are local
defining functions, then f; = hfs where h is a holomorphic function non-vanishing on U.

We can associate a line bundle O(Y) — X in the following way. In a coordinate chart U, the
submanifold Y appears as Y n U = {fy(z) = 0} where fy(z) is a local holomorphic function. The
transition function of O(Y) is given by tyy = fu/fr on UnV. If Y nU = J, we can take

Ju=1

e Note: if another choice of local defining function is taken, by (1.5) it follows that this defines an
isomorphic bundle.

e Note: there is a global section s € HY(O(Y)) given by the local data (U, sy7) with sy = fy, since
sy = tyy sy is tautology.

Example 1.14. Let P(Zy,...,Z,) be a homogeneous polynomial of degree k, and let Y = {P =
0} < P™. Then O(Y) = O(k). To see this, in the local chart Uy < P™ the equation in coordinates
(Uo,2) is 0 = P(Zy, ..., Zn)/ZE = so and in the local chart U; the equation in coordinates (Uy, 2)
is 0= P(Zy,...,Z,)/Z¥ = s;. The transition function ¢ is then

P 2)/2F [ Z F
YT P2, Z0))ZE T | 7

which matches with the transition functions of O(k).

12



Let Y € X be a smooth analytic hypersurface. This means that at p € U, the local defining function
UnY = {f(z) = 0} has the property that J;f(p) # 0 for some coordinate direction ¢;. In this case,
there exists new holomorphic local coordinates {Z%} such that (after possibly shrinking U)

UnY ={"=0}.

To see this, let {z‘} be the original holomorphic coordinates and suppose after relabeling that
of (p) # 0. By the holomorphic implicit function theorem, after possibly shrinking U we have

ozm
UnY ={(w',...,0w"  p(w):weV}

where ¢ : V — C is a holomorphic function and V' < C"~!. New coordinates are then given
by
Fl=zl 3 =27 37 =27 (),
and these satisfy 2"(¢) = 0 if and only if g€ V.
e Canonical bundle. The canonical bundle of a complex manifold is Kx = (det T"°M)*. The tran-
sition functions on (U, z) an overlap (U, Z) are (det g—z)_l. Sections 2 € I'(Kx) are denoted
Q=fdz' Ao Ad2",

and the transformation law is f = det(2>)f.

0z4

Proposition 1.15. (Adjunction formula) Let Y < X be a smooth analytic hypersurface.
Ky = (Kx®0(Y))ly

Proof. Locally Y is given by {2" = 0} for suitable holomorphic coordinates (z!,...,2m). On an
overlap of open sets, suppose both 2" = 0 and 2™ = 0 carve out Y. Then 2"(z) is a holomorphic
function of z which vanishes on z™ = 0, and so the theory of holomorphic functions implies that we
can write
Z"(z) = 2"f(2)

for a holomorphic function f. For i < n — 1, we compute

oz" 0 oz" 0

c f,, = :f+z"—f.
07" 0zt 0z" o0z"

The transition function for 71X restricted to Y = {2" = 0} is then

0z A =
Ll - (1.8)
0z v 0 f
where A is transition function for T*°Y using coords z', ..., 2"~ !. Therefore
0z
det — = (det A 1.9
et = = (det A)f (19)

and the transition functions give the bundle isomorphism
det(T*°X)|ly = (det T*°Y)® L,

where the line bundle L has transition function f. We can take the inverse to get the formula with
Ky = (det T'°Y)~!. Note that L has the same transition function as O(Y). By definition, if
locally 2™ = 0 and 2" = 0 carve out Y, the transition function of O(Y) is 2"/2™ which in this case

is f(2). O

13



1.2.3 Constructions from the tangent bundle
We now list some bundle constructions which come from the holomorphic tangent bundle T+° M.

o Complexified tangent bundle. The conjugate of TV°M is denoted TO'M := T1.OM. A local
frame is given by
0 0
{azlr..,azn},
g

and sections denoted V' 2r. We can write the (, y) coordinate basis in terms of the (2, Z) coordinate
basis by the change of variables z* = z* + iy*, z¥ = 2% — iy* and the chain rule:
0 0 0 0 | 0 0
—, =i - =
ozF  ozk

ka9 oy

It follows that the complexified tangent bundle Tc M can be written as a direct sum

TeM =T M@ T M.
Example 1.16. We will sometimes use the notion of a complex structure J : TcM — T M. Given
a complex manifold, the complex structure J is defined by setting
Jlrron = +ild,  J|poap = —ild,
or in other words, J% = Za% and Ja%k = —ia%k. In components,
Jpq == ’i(qu, Jﬁq == 7’L.($pq, Jpg == Jﬁq == 07
in complex coordinates.

e Complexified cotangent bundle. We denote smooth sections of the dual of the holomorphic cotan-
gent bundle (T1°M)* by AL%(M), and holomorphic sections of this bundle by H°(M, (T+OM)*).
A local frame is given by

{dz',... d="}

meaning dz*(0,:) = 0%, and so that a section o € ALO(M) is written o = adz® and (V) = a;V*
for V.= Vi0,. e I(M,T"°M). Transformation laws for components and frames are

0zP . ozF
e =

Denote A% (M) = ALO(M). Complexified 1-forms ALM can be decomposed as
A = AY(M) @AY (M),

dz*.

%

from the decompositions (1.1)

1 1
dz® = 5(dz’c +dz"), dy* = ?(dzk —dz"). (1.10)
i
o Differential forms. Let z* = z*+iy* be local complex coordinates, and write w = (O L Ve VL W=
R2". A differential form on M appears in w coordinates as

1 , )
M= i dw™ A - A dw'™.

14



From (1.10), we see that this can be written in the complex basis of dz, dz. We will use the following

convention for complex components:

n= >

ptq=Fk

with
nP? = mml...ip;l...
We call n”9 a (p, q)-form, denoted AP*2(M).

e Exterior derivative. The exterior derivative acting on a function is

of o i Of i
df = =——dz' + —=dy’
i ori Y * oyt Y
which in complex coordinates becomes
_Of i Of
df = (3zidz + (%id'z'
We write this as df = df + 0f, with
of i ap_ Of i
(?f—azidz, (?f—azl.dz.

3qdz“ Ao AdZ'? AdZIY A A dF

Similarly, the exterior derivative d : A¥ — AF*1 on higher differential forms decomposes into

types.
d=0+0.

Acting on x € AP9(M), we have

a1 0 )
X = qu!@Xz‘l.--ipjlm

and
A NI
X = qu!ﬁXil-"ipjlmaq
so that 0 : AP? — APTL4 and 0 : AP9 — APatHL

Example 1.17. For a € AV, we write a = aj,;dzj A dzF and

oo = (%aj,;dzg Adzd A dzF
1 .
= 5(8gaj,-€ — Qjoup)dzt A d2d A dZF
1

~(0a) p;zdzt A d2 A dZF.
2 é_]k

and the components formula is
(0a) ik = Ovrjp — 050y
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1.3 Geometry of bundles
1.3.1 Chern connection

Let E— M be a holomorphic vector bundle of rank r over a complex manifold. A hermitian metric
on E is H € I'(E* ® E*) which is represented in a local frame {e,} of E by

H=H,e"®¢"

with H,5(p) a positive-define  x 7 hermitian matrix at all points p. The hermitian condition is

H,3 = Hpa. Our conventions for the inner product on E given by H is

(u,v) = u' Hyok,  u,vel(E)

so that (u, \v) = Au,v). The hermitian condition is (u,v) = (v,uy. The norm of a section is
uf? = <u, u).

We note that (u,v) does not depend on the choice of trivialization. Let U, U be two trivializations
of E with transition matrix [Q] = Q%s and denote components on U with tildes, so for u € T'(E)
and ¢ € T'(E*) we have

u = Qaﬂuﬁ’ Pa = Qpa(Qil)aﬁ
and the transformation law on H € I'(E* ® E*) is

Hog = Q7)o Hun(Q71) 5.

From here we can verify ﬂo‘ﬁaﬁfﬂiﬁ = uaHaniﬁ. This can also be written using matrix nota-
tion:
(u,vy = ul H,
i = Qu, H=(Q HTHQT, (1.12)

and it is straightforward to verify that 7 Ho = v Ho. In other words, though the direction of u®
as a column vector is not a well-defined quantity (depends on the choice of trivialization), its norm
|u| 7 is a measurable number.

The inverse of H is denoted in components as H*? so that HH~! = I becomes in components
HQBHﬁ’Y = 647. The inverse H~! produces a metric on E*.

<¢a§0> = Hdﬁwﬁ%a ¢7¢€F(E*)

Similarly as above, it can be verified that {(Yu, o) = (¥, ¢g), so that (1), p) takes two sections
and produces a global function on X.

The metric can be used to raise and lower indices. From u® € I'(E), we will write
UB = uaHaBa

and ug defines a section of E*. This is because if u — Qu and H — (Q~)THQ~!, then uT H >

uTHQ-! = (Q—_l)T(uTH). Said another way, given u € I'(E) and a metric H, we obtain a dual
element u* € T'(E*) defined by
u*(0) = {w, v)p.
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Similarly, from u, € T'(E*), then u® = HO‘BUB is a section of I'(F). We note that

U v® = uPvgs.
Definition 1.18. The Chern connection of a metric H on a holomorphic bundle E is a map
V:T'(E) > T(E® (TcM)*) given by

Vo, (u%q) = (Opu® + uﬁ(ﬁngg)Hm)ea
Vo (u%eq) = (gu)eq. (1.13)

We often just write this in components as
Viu® = 0Jzu”,
Viu® = Opu® + uﬁAk/@a, Apg® = 6kH,g,;Hl7a, (1.14)

or without indices as -
V=(@+0HH™) +0.

For Vis® to be a section, we need to verify that if (ﬁ, 5%) and (U, s*) are two overlapping trivial-
izations of E with §% = Q%4s”, then

Vid® = Q%3 Vis’.

This is true because 0Q® g = 0. It can also be checked directly that Vs is a section, namely
Vid® = Q%3 Vys?,

by using the transformation law for H.

Recall that a general connection V on a complex vector bundle F is amap V : I'(E) - I'(EQT*M)
such that V(as; + bsz) = aVsy + bVse and V(fs) = df ® s + fVs. We will also sometimes call V
a covariant derivative. The Chern connection is the most commonly used choice of connection on
holomorphic bundles, and it is characterized by the following uniqueness statement:

Lemma 1.19. Let (E, H) be a holomorphic bundle with hermitian metric. The Chern connection
is the unique connection satisfying V%! = 0 and

Oru, vy = {Vpu, vy + {u, Viv). (1.15)

Proof. Let V be a connection satisfying (1.15) with V%! = 9. We will solve for V1:°. Our notation
for the unknown connection is
v('/’k €a = Akaﬁeﬁ

where A are unknown coefficients to be solved. In other words
Viu® = opu® + Akgauﬁ.
If we require (1.15), then in coordinates this becomes

5k(H23u2U7) = Hﬁvkui@; + Hijuia,;vj
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which simplies to o ,7
OpHjzu'vi = H,5 Ay u'v’

If this is true for all sections u, v, then

OxHy; = A" H,

J
and solving for A gives )
Ay = opHy;H"
or A=0HH . O

There is a formula for how the Chern connection changes when changing the metric. Let H and H
be two metrics on E. Let A= ¢0HH ' and h = HH~'. Then
A = oHH™!
= o(hHYH 'h!
= Ohh™ + hARLT!
= Ohh™' 4+ hART' + (A — AhhTY)
= A+ Vhh? (1.16)
where Vh = oh + hA — Ah in matrix notation, or using index notation for the component of
ho? = HonHPP, then
Viha? = 0iha® + ho VAP — A Th.P. (1.17)
Here is the reason for the term with a minus sign. Let V be a connection on E acting on sections
ue(E) by i
Viu® = du® +uPAjp®,  Aip® = 0;Hgy H”™.

The induced dual connection acting on ¢ € I'(E*) is defined with a minus sign:
vi‘pa = ai@a - AiaBQOB'

This minus sign is introduced so that we can differentiate contracted indices using the product
rule

0i(u®pa) = (Viu)pa + u*(Viga).
The formula (1.17) follows from the rule for covariant differentiation where each upper index receives
a +A term and each lower index receives a —A term. As another example,

viTaﬂv = aiTaﬁv + Tﬂﬁ"/AiMa - TamAiBﬂ - TQBMAivua
for T e T(E ® E* ® E*). Sections of E follow the rules

a o o o v
Viu® = o;u®, Vu® = du®+u"4;,°

so that Vi = Vu for u € ['(E). For example,
ViG.5 = 0iG.5 — Aia"Gyp

for G e T(E* ® E*). From this formula and A; = (6, H)H !, we see that
ViH,; =0, V;H,5=0

when V is the Chern connection of H.
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1.3.2 Curvature

The curvature of the Chern connection defines a notion of Hessian of a metric tensor H. The
local combinations 0;0;H, 5 do not transform as the section of any bundle, and taking covariant
derivatives gives zero: V;H,5 = 0. The curvature tensor is a way to encode second derivatives of
the metric.

Definition 1.20. Let (E, H) be a holomorphic vector bundle with metric. The curvature of the
Chern connection F € T(AY* @ End E) is given by F = 0(0HH ™). In components
F = Fﬁ‘s“j,jC €q Qe dzl A dék,
the definition is )
Fo i = —0p(0;Hap H"),
or
Fip = —0p(0;HH ™),

without showing the endomorphism indices.

The action of Fj; € I'(End E) on u € I'(E) is
u® — uBFﬁaj,;.

We now verify that the formula for F}; gives a well-defined section of End E. The transformation
law H = (Q~)THQ-1 implies

Fi = —or|o@ ) HGT@HQN]
- o] Qe |+ ol i o en)|
- @] ey hQ" (L18)

using 0Q = 0, dQ = 0. This matches with (1.7), and so F;; € I'(End E) acting on sections of E on
the right.

Remark 1.21. Let L — M be a holomorphic line bundle. Then H is a 1 x 1 matrix, and the
transformation law for a metric reads
~ 1
H=———>H. (1.19)
|tUU|

The formula for the curvature is

Fip = —0;0jlog H, iF = —iddlog H € A" (M),
= F.

and it can also be checked directly that FjE e



Remark 1.22. The formula for change of curvature is
F =F+d(Vhh™).
where H, H are two metrics and h = HH . This is because (1.16) implies
0A = 0A + O(Vhh™Y).
Remark 1.23. The formula for Chern curvature is consistent with the general formula for the

curvature of a connection. In general, the curvature of a connection V on F is F = dA — A A A,
F = %Fj’,wdx” Adr’ ®e! ®e;, with

Fjilw = auAVji - 8,,Aw-i - AM'TAWi + A#jTAl““i‘

For the Chern connection, V%! = 0, so Az,” = 0. Therefore F,,”z; = 0, and since the Chern
connection is unitary then F,”j; = 0 which can also be checked directly. Therefore F only has
mixed (1,1) form indices, and

Fjimﬁ = _aﬁAmji

since mixed connection terms are zero.

Example 1.24. Fubini-Study metric on O(1) — P!. Recall that P! is covered by two trivializations
(Uo, 2), (Uy, %), with change of coordinates Z = 2! and sections s € I'(O(1)) transform as § = Zs.
The Fubini-Study metric is defined as

h(z) = (L+ 217 h(z) =+
This transforms correctly as (1.19): h = (1/|2|?)h. In other words, the norm
|s|? = s5h
gives the same result in either trivialization. The curvature is a 2-form iF € A! with components
F,: = —0:0,logh.
We compute
z 1 Els

F,: = 0: = - =(1 N2 >0.
e T Tr R Qe papE - G

Therefore i F is a closed positive (1, 1) form; this is a Kihler metric on P*. The Fubini-Study Kéhler
metric is sometimes denoted -
wrs = 1001og(1 + |z|?).

1.3.3 Hermitian geometry

In this section, we focus on metrics and curvature on the holomorphic tangent bundle 71°X. We
will denote a hermitian metric on T%°M by g, with components 9jk-

9="9jk dz’ ® dz*.
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The collection of local matrices (U, g,j) are related by

0zt ozm

gjfc = 05 ghﬁﬁ-

Locally we view ¢ as a matrix, e.g. in 2 dimensions

911 912
g —
921 G22

The inner product on T1°M is then

2 .0
0z%’ w=w 0z%

gV, W) = VigpWh, v =V

A Kahler metric on M is a metric satisfying 0;g;5 = ;g;5- Another way to express this is to
associate a (1,1) form ‘

w =ig;pdz" A dz*
and require dw = 0. Note that the factor of 7 is included in the definition so that w is real: & = w.
Direct calculation gives

n

% = det g1 idz' A dZt Ao Aid2™ A dET, (1.20)

and w™/n! is a nowhere vanishing top form which will later be used for integration.

Remark 1.25. A hermitian metric g = g;z on TH°M produces a Riemannian metric on the real
tangent bundle T M, which we also denote by g. Let us temporarily write this metric as gg. Let
27 be holomorphic coordinates (indices j,k) and w® = (z1,...,2" 2 ... z") be full coordinates

(indices «, 8). Then we define
gR(an 05) = Gap
where we declare
9ik = 9% =0, 9k = 9k;-
In other words, B B
gr(X 00, YP03) = gz XIYF + g5, XTY*

where X = X* 0‘; + X;%. From this perspective, the (1,1)-form w may be defined as w(X,Y) =

gr(JX,Y) since w(0;, 0f) = ig,p-

We can also write the metric g (we now stop using the notation gg) in terms of ¢ = (a!, 9%, ..., 2", y")
coordinates where ¥ = 2% + iy*. We give the details in complex dimension 1. Let z = = + iy be
complex coordinates, and we would like to write

g =
Gyx  Gyy
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A hermitian metric is given by a mixed type g, > 0, and we declare g,, = 0 and gz = 0. Changing
coordinates

Gz = g(az + aiaaz + 52) = 2gz27
ey = 9(32 + aivi(az - 82)) =0,
Gyy = g(i(0, — 0z),i(0. — 0z)) = 2g.=. (1.21)

The corresponding Riemannian metric in (z,y) coordinates is then diagonal with

29.z 0
0 2922

g:

Note: there is a way to go from a Riemannian metric on 7'M to a hermitian metric on T1:°M, but
this requires that g is compatible with the complex structure so that g(JX, JX) = ¢g(X, X) and we
omit the details.

We will use a normalization factor of plg! for the inner product defined on (p, q) forms. For ¢, €
AP-? with

1
L e dz® Ao A dz™ AdEPY A A dEP
and o ) )
Sbal...apﬂynﬁq _ gdlal . 'gapo‘l’gﬂlbl . .gﬁqqu
Ledpb1 by
then we will use the convention
1 oo B B
() = ppPanag b ¥ Sebrba, (1.22)

The Chern connection V on the bundle T1°X — X is defined by
ViVi= Vi, ViVi= a0V i+ VPTy Ty’ = Okgpeg”
and a direct check shows that Vg =0 and VJ = 0.

The curvature of the Chern connection on the tangent bundle will be denoted R € AV (End T10M),
so that _ '
lemﬁ = *aﬁlﬂmjl

since A,;° = Ty’ Explicitly in terms of the metric, the curvature of the Chern connection is
given by ' B
i mk = —O0r(OmY;pg"”")-
We can lower the second index ‘
Ripmr = Bi' nr9ip

and the explicit formula in terms of the metric is

Ripmi = —050m3ip + (0m3iq) 9% (0rgap)
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using the variation formula for the inverse of a matrix §A~! = —A~1(§A)A~!. The conjugate of
this is
Rjipmi = —0mOk9pj + (Ok9pa) 9" (0m3y;)
SO L .
% = Rpjkm Rj'mk = gipRpjkm = Rijkm-

The curvature appears when exchanging covariant derivatives. We will write
[V, ViV =V, ViV = ViV, VY

where V,, ViV means: let W;? = V;V? be a tensor and compute the components V,,Wz?. The
commutator formula is

[V, VEIVI = VPR, L. (1.23)
Here is the check:
[V, VIV = 0 ViV i+ T’ ViV — 0;V,, V°
= OOV i+ D05 Ve — 0p(0m Ve + D' V)
= L'V =R, VE (1.24)

Remark 1.26. A similar calculation gives that the commutator [V,,, Vx]V? involves another
tensor, the torsion tensor, but we will not need this formula.

Taking the conjugate of (1.23) gives
[Vi, ViV = —VPR .
We can lower the index by introducing g,;, since Vig,; = 0.
[vkvv’rﬁ]va = _Rapkm‘/p.

Similarly
Let

and define the Chern-Ricci form by
iRic, = iR, dz? A dz.

Viewing R € AM1(End THYX), we have iRic,, = iTr R € AL (X) where we trace out the endomor-
phism indices and retain the 2-form indices. Using the general formula for the derivative of the
determinant of an invertible hermitian matrix A,

D det A(t) = det A(0) Tr [A(0) A(0)]
dt],_g

we obtain 0; logdet g = ¢"P0;gpr, and so

R, = —0;0;logdet g, (1.25)

23



and -
tRic,, = —iddlogdet g.

This expression can also be connected to Riemannian geometry: in the case when g,; is a Kahler
metric, then it turns out that R, is the Levi-Civita Ricci tensor of the Riemannian metric g on T'X.
This calculation can be found in K&hler’s original paper (see p.178 in [17], where (1.25) is described
as “very elegant”), and it is one of the main motivations for the field of Kéhler geometry.

We note that when g is a general hermitian metric on T"°X, the Chern-Ricci curvature R;j, (1.25)
is different than the Riemannian Levi-Civita Ricci tensor.

Remark 1.27. From the point of view of Riemannian geometry, it looks like R;; = RpP; is
tracing the wrong index in the definition of the Ricci curvature and should be zero. This is not the
case because we are only tracing over holomorphic indices. Tracing over all real indices does indeed
give zero. Let a, 3 represents real coordinates @ = (z1,...,2", 2% ..., 2") and a, b, j, k represents
holomorphic coordinates z*, and let R,g, be the Riemannian curvature tensor. Then
PR st =9 Ropii + 9 Rayiz = 9" (Rupir + Rpaiz) = 0

g afjk g abjk g abjk g abjk bajk )

since the Riemannian curvature tensor satisfies Rogy, = —Rgayu- But the trace
b
9° Ragji

is not summing over all coordinate indices «, 3, and need not be zero.

Example 1.28. We start with the line bundle O(1) — P™ with trivializations U; = {Z; # 0}.
Recall that the transition functions (U; n Uy, t;;) are t;; = Z;/Z;.

e Show that the collection (U;, h;) with
__lzp
2 [ Zk[?

defines a metric on O(1) — P™. We call h the Fubini-Study metric.

h;

e Compute the curvature iF = i00log h of the Fubini-Study metric, and show that in local coordi-
nates on U; then

iF =i0dlog(1+[2%), [2* = Y [2']% (1.26)
i=1
We will show below that iF' := wpg is a Kahler metric on the base P™.
e We also sometimes refer to the following expression
wrs = i0dlog(1 + |2%), wps = igj,;dzj A dz",

as the Fubini-Study metric on P". We see that dwrpg = 0, and to show wgg is a Kahler metric, we
need to verify that g;; is a positive-definite matrix. A computation gives

A+ 2P — 2k
9 (1+]2P)?
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For £ € C™, we have

(L + [2)I]* — |2r€"[?
(1+]2*)?
(L +[=)I€f* — |=I21¢]?
(1 +12[2)?
€I
(1 +12[2)?

gjkgjgk =

Vv

> 0. (1.27)

Therefore g is a hermitian metric.

e Compute the Chern-Ricci curvature of wpg. A computation of the determinant gives
det g;r = (14 [2)*)~ "D,

From here, one can compute that

Rj* = (TL + l)gj,;.

Another way to write this is iRic(wrg) = (n 4+ 1)wps. Kéhler metrics satisfying iRic(w) = Aw for
A € R are said to be Kéihler-Einstein.

Example 1.29. Suppose X is a complex manifold with an embedding into projective space i :
X — PV. Then i*wpg is Kéhler metric on X. In other words, projective manifolds are Kéhler.
For an interesting converse, see the Kodaira embedding theorem: this states that a compact Kéhler
manifold (X,w) with [w] € H?(X,Z) admits an embedding i : X — P into some projective space
PV,
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2 Kahler Manifolds

This section will follow the textbook by Kodaira-Morrow [20].

2.1 Hodge theory

We start with the definition of the Dolbeault cohomology groups. Let X be a compact complex
manifold and E — X a holomorphic vector bundle. Let AP(E) be smooth (p,q) forms with
coefficients in E, so that sections s € AP9(FE) are of the form s = v ® n with v € T'(E) and
1 € AP9(X). The Dolbeault cohomology groups are defined

. _ ker(0: A%(E) —» A%TH(E))
HY(X, B) = im (0: A%4-1(E) — A%4(E))

Letting E = QP be the holomorphic bundle of (p,0) forms, we also define

. - o ker(0 : AP9(X) — AP4+1(X))
HYY(X) = HY(X,QP) = im (0 : AP4-1(X) — APa(X))

and the Hodge numbers are
hP9 = dimHg’q(X).

The theme of Hodge theory is to represent the cohomology class [¢] by a unique optimal repre-
sentative ¢g € [¢]. The selected representative from the equivalence class is found by solving an
elliptic PDE. In this particular case, we will look for solutions ¢g € [¢] to the Laplace equation
A(’)(po = 0.

To define the Laplacian, we must equip (F,X) with metrics: let H be a metric on E and g a
metric on the base X. As described in earlier sections, this defines a pointwise inner product on
01,2 € APY(E):

{p1sp2)9.1 + X = C.
The L? inner product on AP(E) is then

n

w
(01, 02)12 = f <9017902>g,H7|-
X mn.

The Dolbeault operator 0 : AP9(E) — AP9+(E) has an L?-adjoint denoted o7 : AP9(E) —
AP4~1(E). The adjoint satisfies

(Pp1,p2)2 = (91,0 02) 12, 1€ APITH(E), g € API(E).
The J-Laplacian Aj : AP4(E) — AP4(E) is then defined by
Ay =33t 1 815

There is an explicit formula for the adjoint in local coordinates. Roughly speaking, 0 is a like a curl
operator while 0% is like a divergence operator. We give the formula without the additional vector
bundle £ — X, so that we consider usual (p, q) forms with adjoint 07 : AP9(X) — AP7~1(X). The
formula in local coordinates is

(@) = —(det g>-1ap[<det gw”], o€ API(X). (2.1)
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Here I = 4y ---ip, J = j1---j, are multi-indices, and we raise indices using the metric: e.g. if
© = %cpjdé‘] is (0,q) form, then ¢’/ = i@ ...gllap, 5 or eg. if ¢ = @sdz” A dz° is a
(1,1)-form, then ¢¥ = g"" g% p,.5.
Let us verify formula (2.1) in the special case of (0,2) forms. Let § € A%?(X) and p € A®1(X).
Then

¢ =pidz', (09)ir = 059% — Orj-
Using the inner product (1.22) we have

_ 1 - - . L
(0,005 = 59"9" (0501 — Orpi)0z = Do’

and

050567 (det g) = —05(67F (det g)) + 0107 (67" (det g))].
Let WF = (det g)*lai((det g)éﬁ). Multiplying by idz! A dz'--- A idz™ A dz™ and using (1.20)
gives
w"l

_ wn B ) ]_Cwn
<6ap,9>m =—piW T + duy oy

The last term involves VI = ap,;Hj F and will be explained below. Integrating this identity over X
and applying Stokes’s theorem gives

(20.0)2 = me”w”—.

We compare this with the definition of the adjoint:

(20,0) 12 = Lw,;m‘})”—“ = (p.316) 2.

n!
Thus (070)* = —W*, and since
W* = (det g) =", ((det g)6"*)

this is the formula (2.1). We now explain why

n

63[V5(det g)]idz' A dzt - Add2™ A dE" = dbvw—

n!’
First, we recall the definition of the interior product: if V' is a vector field, then s : AF — AF—1
via
(bvym) (Wi, .o, W) = Vin(0;, Wi, ..., Wi_1),
and it satisfies ty (91 A 12) = tyn1 An2 + (=1)Fn1 A vy if 1 € A¥. Therefore applying vy to (1.20)
gives

n

*Lv% = detg[VT(idzl) A (id2? A dZ2) A () 4+ V2(id2t A dzY) A (id2?) A () + .. ]

and d = 0@ + @ becomes

n

dbv% = Op[(det g)VE] (idz* A dZ') A - A (id2" A dE™),
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as claimed.

The ¢-Laplacian can be studied using techniques from the theory of elliptic PDE. We now give the

general definition of an elliptic operator.

Definition 2.1. Let E,F — X be vector bundles trivialized by a finite cover X = ON U;. An

elliptic operator of order k is a map L : T'(E) — I'(F) such that:

e In each trivialization U; < X, L appears as

(Lu)* = . Al*gou® + Y7 B'zoru’.
|I|=F o<g|I|<k

e Let pe X. Then for all £ € AY(X,R) with &, # 0, then

o(L,&)(p): Ep —

is an isomorphism. Here for € € A*(X,R) with ¢ = &dx, we define o(L,£) € T(Hom(E, F)) by

o(&)%s =& A, & =&, &,

In other words, for an elliptic operator the matriz [€1AT] is invertible.

Example 2.2. The 0-Laplacian Az : AP4(X) — AP4(X) is an elliptic operator of order 2. A

calculation (illustrated below) shows that it is locally of the form

(AY) pg = —g" " Gi0jbpg + - -

and therefore

a(A,€) = (—g7'€&5) id = — €| id.

Here we write ¢ = £;dz' + &dz' for € € A'(M,R), and since ¢ is real then £ = ¢ and &= g

(2.2)

We verify (2.2) for (0,1) forms ¢ = ¢;dz'. By using the expression for the adjoint (2.1) and

(0p)ir = 0505 — Ogp;, We compute
(39T‘P)d = (}&@TSD)
= —0Oa <(dCt 9)71519 [gqp(dct g)(pq]>

and

—
()
e
o))
S
~—
Q1
I

—(det g) "0, [(det 9)(0p)"? ] 984

= —(detg)"'o, [(9‘”’9”6 det g) (g5 — (?Wq)]gﬁa-

The terms involving 2 derivatives of ¢ are
(Ap)a = =9 0alppg — 97 0p(0qpa — Oatpq) + - - -

and cancellation gives the result (2.2).
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We say that an elliptic operator L is self-adjoint if

(quba SD)L2 = (7/)7 LSD)LQa w € F(E)v pE F<F)
For example, A3 is self-adjoint.

Theorem 2.3. Let L be a self-adjoint elliptic operator on a vector bundle over a compact manifold.
There is an L? orthogonal decomposition

I'(E) =ker L&ImL.
Thus we can solve L) = ¢ if and only if p € (ker L)*.

Proof. See Theorem 7.3 in the appendix of [19]. O

Applying this to Az, we see that we can write any n € AP7(X) as
n=h+ (00" + 070)3,
where h € ker A3, and this is usually written as
n=nh+ 0B + 0 Ba.

We will often use that - -
ker Az = {n:dn =0, d'n=0}.

This can be seen by the formula
(Aam,m) Lz = (9n,0n) 2 + (@™, d"n) 2.
As a consequence of this discussion, we obtain:

Corollary 2.4. Let X be a compact complex manifold with hermitian metric g;5. Every Dolbeault
cohomology class [n] € HP4(X) admits a unique representative h € [n] with Azh = 0. Therefore:

dimker Az|pp.e = dim HY(X, QP) = P4
Proof. Write n = h + 0 + 0'32. Since dn = 0, then

This is because (0782, 0782) = (B2,0n) = 0. It follows that [] = [h] for h € ker A;. For uniqueness,
suppose 7 = hy + 01 = hy + d51. Then

0= (hi —h1)+ (B — 1)

and so i ) ) ) )
0= (h1 —hi,ha —ha)ge + (981 = 1), ha — ha) e
and [hy — B1||2L2 = 0 since 0f(hy — Bl) = 0. .
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There is a similar theory for vector bundle valued (p, ¢) forms, and in general

HYX,E®Q) = HY(E)
{neAPU(E): Azn = 0}
= {neAPYE):dn=0, d'n=0}. (2.5)

Theorem 2.5. (Serre duality) Let E — X be a holomorphic vector bundle over a compact complex
manifold. Then
dim Hg’q(E) = dim Hg_p’”_q(E*),

which implies that
dim HY(X,FE) =dim H" (X, Kx ® E*). (2.6)

and hP1(X) = hn—Pn=1(X).

Proof. We will use the Hodge star operator. This is a linear map
* Ap’q s An*qu*p

defined by the property
_ w™
@ N *1/) = <907¢>g F? %ﬁf € Ak (27)

Here {p, 1) is defined by zero if ¢, 1) are of different (p,q) type. For example, if g is the Euclidean

metric on C™,
n

dzt A xdzt = (dzt,dzY), O;—T =0, dzt Axdt = %, (2.8)
and so *dz! = —idz! A (id2? A dZ%) A oo A (id2™ A dZT).
The Hodge star satisfies:
o x1) = x1)
o x2qYPd = (—1)PFaqypa

The first property can be verified by manipulating and taking the conjugate of (2.7). The second
property can be verified by manipulating (2.7) and using {(x¢, *¥) = (p,1). To show * preserves
the inner product, one can calculate in a similar way to (2.8) to show that * takes an orthonormal
basis of AP'9 to an orthonormal basis A"~9"~P,

Next, we extend * to vector bundle valued forms. For ¢ € AP4(E), we can write ¢ = ¢* ® nP? and
define

(" @) = % @*na.

Equip F with a hermitian metric H. The L? inner product can then be written as
(s )r2 = J@a AP H,p.

The L? adjoint of ¢ can be written as

(@"9)? = —« H'Po(H,;, » 4"). (2.9)
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This can be verified by Stokes’s theorem and substitution of (2.9) into the defining relation (dg, ) =
(¢,0%). Indeed, for ¢ € AP4(E) and ¢ € AP9T1(E), then

(0,379) = fso“ A (@O H,

@I

= (0p,9). (2.10)
Next, we define the map
#: APUE) - AVTPPTYEF)
by o
(#1)p = Hpa * P~
This satisfies ## = (—1)P*9, and formula (2.9) can be written

(OT)r = — % O(#4) g HPP.

Therefore = P
HE(E) = {ne AP9(E) :on =0, d'n =0}

can be written in this notation as

HPYE) = {ne APU(E):on=0, 0#n=0}.

It follows that
Uil
is a map from HP4(E) to H* P~ %(E*), and this is an isomorphism.
Note that here we used # because this would not have worked using * : AP4(X) — A"~ 2" P(X),

since Azn = 0 if and only if dn = 0 and dx 1 = 0, and so if Az = 0 then it is not necessarily true
that Az *n = 0.

O
On a Kahler manifold, there are the following symmetries for the Hodge numbers.
Theorem 2.6. Let X be a compact Kidhler manifold. Then
HMX,C)= P HPYX), hP9=hoP [ Pn=1 = P,
ptg=k
If by, = dim H*(X, C) denote the Betti numbers of X, then
k
by = > hPRP, (2.11)
p=0
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For example,

bl _ hl,O + hO,l _ 2h(),17
by = B0+ hbt 4 R0 = 2002 4 pl (2.12)
Here ker(d : A%(X) — ATTH(X
.\ 5 A4
He(xX,C) = Kerld: AT(X) (X))

im (d: A-1(X) — A4(X))

are the deRham cohomology groups, and A*(X) denotes differential k-forms with coefficients in C.
The Laplacians are o
Ag=dd' +d'd, A;=175=00"+ 00,

where df, 07 are the L? adjoints of d, 0. These Laplacians are elliptic operators and satisfy the
Hodge decomposition Theorem 2.3, and it follows from elliptic PDE theory that each de Rham
class [] € H*(X,C) admits a unique representative h € [n] with Agh = 0.

Proof. This theorem follows from the Kéahler Laplacian identities
1
Az =7y = §Ad. (2.13)

We will prove (2.13) below. We will show how (2.13) implies the result. From

H*(X,C) = {neAf:Am=0}
HPUX) = {neAP?:Azn =0}, (2.14)
we can decompose ) € AF asn = Zp+q:k nP9. Since Aj preserves type, we have Agn = Zp+q:k 2AznP 1.

Therefore if n € A¥ with Agn = 0, then

ne Y P

p+q=k

is a map from H*(X,C) to ®p14=rH??(X) and this is an isomorphism.

Next, we prove h?? = h@P. If n € HP1(X) with Aznp = 0, then 77 € ATP(X) and (2.13) implies
Az = Bji = Az = 0.

Therefore 1 — 7 is a map from H??(X) to H?P(X) and this is an isomorphism. O

Example 2.7. We compute the Hodge numbers of P". The cell-decomposition P"* = {pt} U C* U

C? U --- U C™ implies
dim H?*(P",C) =1, ke {0,1,...}

and all odd cohomology groups are zero. Since H*(X,C) = @ HP*4(X), we conclude
hEFP™) =1

and all other Hodge numbers are zero.
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We now show Az = Ay = %Ad. First, we note the following Kahler identities:

(@) 1z = =" Voearr, (2.15)
and
0t = 0A, — A0
—iot = oA, — ALD, (2.16)

where A, : A7 — AP~La—1 g )
(Ap) s = igab¢bafj~
For example, for w = ig;zdz? A dz" then Ayw = —n.

We will discuss (2.15) in the following section on the Kodaira vanishing theorem, and we assume it
for now. Let us verify (2.16) for ¢ € A1, Then

(0Awp); = V(19" pra) = 19"V jpra.

and )
(Aup)j = ig" (09)baj,
while
dp = (ijl;dzé AdZ A dzZP
1 .
= (Ve - Vipw)dzt A d2d A dzF
1 ¢ i gk
= 5(650)5j,;dz Andz? A dZ (2.17)

where @ was switched for V since I'}; = I'; for Kéhler metrics, as is seen by the explicit formula
I‘fj = 0;9j59"* and the Kihler definition 0;g;5 = 9;gi5. So
(Audp)j = ig™ (=Vipja + Vjoa)
Therefore ) _
(0Aup)j — (Audp); = ig™Vipja = i(0T¢);
which proves (2.16) for (1,1)-forms.
Next, using the Kéhler identity (2.16), we note
o0t = —a'o, (2.18)
since - -
100" +i070 = (0N — AO) + (OA — AD)d = 0.
Combining (2.16) and (2.18), we derive
Ay, = (00" +070)
= (0N — A0) + (A — AD)o
—id(OA — AO) — i(OA — A0)O
50t +ata
- A; (2.19)
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and

Aqg (dd" + d'd)
(@4 0)(" + ") + (0T + ") (0 + 9)
= A;+ A5+ (00" +070) + (00" + 070)

— 2A;. (2.20)

To end this section, we state the 00-Lemma.

Theorem 2.8. (00-Lemma) Let X be a compact Kihler manifold. Let o € AP9(X). Then:
o If a = dn forne APT971 then o = 008 for f e AP~1a—1,

o Ifa = 0n forne AP~59 and da = 0, then o = 0083 for B e AP~1a~L,

Proof. We prove the first statement, and the second statement has a similar proof. Using the Hodge
decomposition (Theorem 2.3) for Ay,

a=0ar +dTas +a/, o €kerA,.

Using that o/ € ker Ay = ker A4, we have (o, /) = (/,a) = (dTa/,n) = 0. Also 0 = da = 30Ty
and so (e, ') = 0. Therefore
a = 0a;.

Next, we use the Hodge decomposition for Az to write
a1 =081+ 0"+ B, B ekerA;

Substituting gives B _
a = 00B + 007 p,.

To remove the last term, we must use the Kéhler identity (2.18) which reads 00" = —070. Using
this and da = 0, we see that o
0 = 00"0p.

It follows that (01032, 0708,) = 0.

2.2 Kodaira vanishing theorem

Let L — (M,w) be a holomorphic line bundle over a compact Kéhler manifold. We say that L is
a positive line bundle if it admits a metric h such that its curvature satisfies F; > €g;; for some
€ > 0. Here the inequality is in the sense of positive-definite matrices, meaning

ik vk
Fipv?v® = egpv’o

for all v e C™.
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Example 2.9. The main example of a positive line bundle is O(1) — P", as

s
(hrs)i = =5, over U; ={Z; # 0}
2 |Zl?
defines a metric with curvature iF = —iddlog hrps = wrg > 0 as we computed in (1.26). A similar

computation shows that O(k) — P" is positive for any k& > 1. For this, equip O(k) with (hps)* so
that the curvature is iF = kwpg.

Example 2.10. Let P(Zy,...,Z,) be a homogeneous polynomial of degree k, and let Y = {P =
0} <« P™. Then O(Y) — P" is a positive line bundle by example 1.14.

Example 2.11. There is a notion of ample line bundle L — M, which means that there are sections
s; € H'(M, L) such that ¢ : M — PV with ¢(2) = [so(2),...,sn5(2)] is an embedding. We can
cover X with trivializations U; = {s; # 0} and equip L with metrics (h;, U;) with
s[>
hi=¢*hps = =——3-
D Iskl?

Then —iddlogh = p*(—iddloghps) > 0. Therefore ample line bundles are positive. Kodaira’s
embedding theorem (e.g. [20]) states that positive line bundles are ample.

Theorem 2.12. Let L — (M,w) be a positive holomorphic line bundle over a compact Kdihler
manifold. Then
HI(X,L®Kx)=0

forall g = 1.

We will show that dim HY(X,L ® Kx) = dimker Az|y0.0(zgry) = 0. We will give the proof for
q = 1 for simplicity. For the general calculation, see e.g. [20].

Let h be a metric on L, so that the inner product on sections w,v € I'(L) is {(u, vy, = uvh. Let
¢ € A%(L), which we write as

p = pdz",
where ¢y, is a local section of L. The L? inner product for u,v € I'(L) is

(1, v) JX(u@h) "

n!

and for ¢, € A»1(L) is
T N
(p,9) = J 9" (eih) — -
b'e n.
We will start by computing 0Ty € I'(L). The difference with (2.1), in addition to introducing the

line bundle L into the mix, is that we now use the assumption that g is Kahler. The formula in
this case is:

Lemma 2.13. Let (X,w) be a compact Kihler manifold and ¢ € A®9(L).

('0)g = —9""Vipaxk-
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We will verify this for ¢ € A%!(L). The definition of the adjoint is
(0"¢,u) = (g, 0u), e A (L), ueI(L).

We start with B ) o
(@, 0upg.n = g™ (p30rub) = " Oxuh
which implies ~
{p, 0uyg.n(det g) = or (¢ u(det g)h) — Ok (h(det g)p")u

The first term integrates to zero by Stokes’s theorem (see earlier notes for more justification on
this), and so wedging by dz! A --- A dz™ and integrating gives

n

(¢, u) = —L u(h(cdet g)*) (det )b = = (210, u)

where

' = —h ™" (det g) 'Ok (h(det g)g"" ;). (2.21)

On a Kéhler manifold, this is in fact
o = —g" V1, (2.22)
where the Chern connection of (h, g) acts on ¢ € A%(L) by
Voor = dpei + (W 0h)er, Vv = dpor — D' oz
To see (2.22), expand (2.21)
o = —g"orp; — K Okhg™ o7 — (det g) 7 Ok((det 9)g*) o

The last term is zero. Indeed,

ak((det 9)g™) = y(det g)g™* + (det g)drg™
= (det 9)g"*Okgap9™" — (det 9)g" Ok gapg™
- 0 (2.23)

by the K&hler condition drg,; = 0agi;- This proves (2.22). With this formula for the adjoint, we
now compute the Laplacian.

Lemma 2.14. Let (L,h) — (X,w) be a holomorphic line bundle with metric over a compact Kihler
manifold. For any ¢ € A%Y(L), we have

(A58 = —9""ViVapr + @' R + ¢'Fip.
Proof. We start with (0f)z = Vif on functions, which implies

(001 0); = Vi(—9™Vypa) = —9™V; Vipa,
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since Vg% = 0. Next,

(0"00)s = —9"Vu(09)ar
= —9"Vy(3a; — Opva)
= —9"Vi(Vags — Viga)- (2.24)

This is because I‘Z-jk = I‘jik for a Kéhler manifold since Fijk = @-gjpgﬁk. Therefore
(As0)i = =9V Vagr + [V, Vil
The commutator formula for covariant derivatives on ¢® € I'(T1°X ® L) implies
[Vo, Vi]e® = 0" Ry + 0" Fog.
In Kéhler geometry, one can see directly from R;’,,; = —(0mg;pg?") the symmetry
Ro’j = Ry’ o5
Since R,; = Ry’ 5, we conclude the formula. 0

We now let ¢ € A% (LQK x). We can apply the previous formula with ¢ € A%Y(L), and L = LK x
equipped with the product metric h = h ® (det g)~'. Using the formula R;; = —0;0;, log det g and

F;, = —0;0g log h, we see that the curvature is

Fg=Fg—Rjp

Therefore cancellation occurs and we have
(As0) = —9™ViVawp + ¢ Fij.

Suppose ¢ € ker A. Then
— o Wm ) -

0=(Ap,p) = *J VaVippth— + f ¢ Fgp"h—

b'e n. b'e !

Integrating the first term by parts and using positivity of Fjz,

wTL

0= J V“go;;va@feh w—' + sf gi,;cpicﬁ’_“h —
X n. X n.
which is
0= (Ve,Vo)rz +e(p, )2
It follows that ¢ = 0. This proves that ker A = {0}. Therefore dim H*(X,L ® Kx) = 0.

Here we used integration by parts on a Kahler manifold, which follows from the divergence theo-
rem

f V. Vo' =0, Vel(T''X). (2.25)
X
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In the above computation, this was used with V* = V“cp,;@’_“h e I(TH°X) and

n

— wTL _ wn _ w
R R A o R AL
X n! X n! X nl
and we also then used metric compatibility V,h = 0. The divergence theorem (2.25) comes

from N
J dvaf = O7

and the integrand is

n

0; (Vi det g)(idz"dz") . .. (idz"dz") = (det ¢)~'0; (V' det g)%.
We compute
(det g)~10;(Videt g) = ; V' + (det g) " *0i(det g) V' = 3,V + g%, g4 V.

Therefore
f (VI + T3tV w™ = 0.
b'e
On the other hand ‘ . .
ViVi=0;V' +Tu' VP
Since I';, = I'y;, these are equal.
This vanishing theorem can be generalized, and more generally there holds (see e.g. [20]

Theorem 2.15. Let L — (X,w) be a positive holomorphic line bundle over a compact Kdihler
manifold. Then
HI(X,QPQL)=0

for all integers p,q with p + q > n.

2.3 Sheaves and the Lefschetz hyperplane theorem
We will use the vanishing theorem (Theorem 2.15) to prove the Lefschetz hyperplane theorem.

First, we state some results from the theory of sheaves. For a nonempty open set U € X, let
O(U) denote holomorphic functions on U. Note that the only holomorphic functions defined on
the entirety of a compact manifold are constant functions. But for small open sets U < X there
are many holomorphic functions in O(U).

Here we prove: if f : X — C is holomorphic on a compact complex manifold X, then f is constant.
Let M = supy | f| be attained a point p € X. After possibly replacing f by €’ f for a constant angle
", we may assume that f(p) = M. Consider Re f = $(f+ f), so that Re f < M and Re f(p) = M.
Let S ={x € X : Re f(x) = M}. Then S is non-empty and closed. It is also in fact open: if x € S,
in a local coordinate ball By(0) centered at = then Re f is a harmonic function:

021 851Ref = %(321 (azl f) = O,
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so that »;(0,i04 + 0yi0yi)Re f = 0. By the maximum principle for harmonic functions on By (0) <
R?" since (Re f)(0) = M then Re f = M in all of B;(0). Hence S is open, and S = X. Since
Re f =M and |f| < M, then Im f =0 and f is a constant.

We will define sheaves of O(U) modules (there is also a notion of sheaves of groups, vector spaces,
etc).

Definition 2.16. A presheaf (of Ox modules) F on a complex manifold X is defined by the
following information. For any non-empty open set U € X, we associate a nonempty O(U)-module
F(U), and a collection of restriction maps py,v : F(V) — F(U) defined when U €V satisfying

puv °pv,w = puw, pPuu = idy, (2.26)

forUc V. W. The set F(U) is called the set of sections of F over U. We also use the notation
slu = puv(s) for se F(V).

Definition 2.17. A sheaf F on X is a presheaf satisfying the following glueing property. Suppose
Q=|JU, are open sets in X. If s, € F(U,) are such that

PU,AU, U, (8) = pU,v,,U, (50) (2.27)

then there evists s € F(Q) such that py, a(s) = s,. Also, if s,t € F(Q) and pu, a(s) = pu, a(t)
for all u, then s =t.

In other words, local sections of a sheaf can be uniquely glued together.
Example 2.18. We write Ox for the sheaf of holomorphic functions on a complex manifold X.

Example 2.19. Let E — M be a holomorphic bundle. We write £ for the sheaf of holomorphic
sections: £(U) are holomorphic sections over U.

Example 2.20. Sheaf T, described by holomorphic functions in C? vanishing at the origin. If U
does not contain the origin, then this is generated by 1 so Zo(U) = O(U). In a neighbourhood V'
of the origin, this is generated by = and y: any local holomorphic function f with f(0) = 0 can be
written as f(z) = g(x,y)z + h(z,y)y. Thus Zp(V) is a module of rank 2. Thus the rank jumps up
to 2. Also, at the origin, the module is not free. For example, we have the relation —y-x+z-y = 0.
In this sense, sheaves are sometimes viewed as a generalization of vector bundles where the rank
may jump.

Example 2.21. Another example to note are the constant sheaves Z, R, C. These are sheaves of
groups, meaning that F(U) attaches a group for every open set U (rather than a module). So for
example, Z(U) are locally constant Z-valued functions on U.

Definition 2.22. Stalk of a sheaf. Let x € X. The stalk F, is the set of equivalence classes in the
disjoint union | |, ., F(U) with sy € F(U1) and sy € F(Us) satisfying s1 ~ sp if s1lv = sa|v for
some V < Uy nUs. The stalk F, is an Oy x -module.

A map of sheaves ¢ : F — £ is a collection of homomorphisms ¢y : F(U) — £(U) such that ¢y,
py commute with the restriction maps. We say
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is an exact sequence of sheaves if, denoting the arrows by f;, we have that all f; are maps of sheaves
with f;11 o f; = 0 and the associated complex of stalks

is exact for all x € X. Recall that exact means that the kernel of one arrow is the image of the
previous arrow.

We will use the following two results from Cech cohomology [13]. Rather than define the Cech
cohomology groups H(X, £), we will just directly use the following two facts:

e Given an exact sequence of sheaves 0 > & - F — G — 0, there exists a long exact sequence in
cohomology § 3 i §
- — HP(X,&) - HP(X,F) - HP(X,G) — HPTY (X, &) — ---.

e Dolbeault theorem:

ker(d : AP4(E) — AP4t1(E))

HIX Q@ 8) = S a1 (B) - Ava(E))

We will write H(X, 0 ® E) as before instead of HI(X, QP ® ).

Theorem 2.23. (Lefschetz hyperplane) Let Y < X be a smooth analytic hypersurface of a compact
Kahler manifold X such that the line bundle O(Y') is positive. Then the restriction map

HI(X, Q%) —> HUY, Q)
is an isomorphism when p + q < n — 2. Thus we have equality of Hodge numbers:
hPAUY) = hPYUX), p+qg<n-—2.
As a consequence of the Hodge decomposition, we obtain that
HY(X,C) > HY(Y,C)
18 an isomorphism for g < n — 2.

Example 2.24. Let Y = {P = 0} < P" be a smooth complex manifold cut out by a homogeneous
polynomial P of degree m > 1. We showed earlier that O(Y") = O(m), which is positive. Therefore
H*(Y,C) is isomorphic to H*(P") for k < n — 2.

Proof. First, we note the exact sequence sheaves
0—-0O(-Y) > Ox - Oy —0.

Here O(—Y) is the dual bundle of O(Y). This means that sections s € T'(O(-Y)) transform as
sy = tyvsy with tyy = fv/fu, where Y has defining function fiy = 0 over an open set U. The
transformation relation shows that the combination sy fiy is a well-defined function on the manifold.

To explain the exact sequence, over an open set U where Y has defining function fy = 0, a local
holomorphic section sy € O(—Y )y gets sent to sy fu € Oy which is a holomorphic function on U
vanishing along Y.
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Tensoring with ®Q% implies the exact sequence
0— Q5L (-Y) > Q% - O |y — 0.
The corresponding long exact sequence in cohomology gives
HY(X, 0% (-Y)) — HI(X, Q%) — HI(Y,Q%|y) — H*T (X, 0% (-Y))

We note that

dim HY(X, Q5% (-Y)) = dmH" (X, (Q")*®@0(Y)® Kx)
dim H™2(Q"?(O(Y))
= 0 (2.28)

by Serre duality and the vanishing theorem (Theorem 2.15) when (n —¢q) + (n — p) > n. Also
considering this with ¢ replaced by ¢ + 1, we see that when p + ¢ < n — 1 we have

0~ HI(X,0%) — HI(Y, D ly) — 0 (2.29)
and so HY(X, Q%) — HY(Y,Q%|y) is an isomorphism.

Next, we will show that H4(Y, Q% |y) — H(Y,Q%) is an isomorphism. For this we use the exact
sequence of vector spaces

0— (N|Y)_;X< ® (Agf_l’o)y - (Agf0|Y>y - (A?/’O)y — 0. (2.30)

Here y € Y and coordinates are chosen over an open set U < X such that U n {z" =0} =UNnY,
and

(NIv); = span{d2"}
(A§0|Y)y = span{dz',...,dz""" dz"}
(M), = span{dz!,...,d2""1} 231)

and we may multiply the generators by local holomorphic functions on Y. The sequence (2.30)
implies
0—O0Y)y %™ — Q% |y — Q% -0,

as sheaves over Y. This is because
(Nly)* = 0(-Y)

which can be seen as follows: if there are two sets of coordinates z, Z where both 2z = 0 and 2" =0
locally cut out Y, then 2"(z) = 2" f(z), where f(z) is the transition function for O(Y). Note that
f(z) is non-vanishing; this is because Y = {Z"(z) = 0} smooth means that 0,»2z"(y) # 0. Next,
dz" = ‘Zfzn dz" implies dz"|y = f(z)dz"|y. This is the transformation law for the local frame dz",

so components of (N|y)* transform by the inverse 1/f which is why the dual O(-Y") appears.
Thus

HUY, Q07 (=Y) —» HIU(Y, Q% |y) — HI(Y, Q) — H (Y, 907 (-Y)).
We apply Serre duality and the vanishing theorem as before to obtain
dim H7 (Y, Q271 (—Y)) = dim H" 1Y, Q¥ P @ O(Y)) = 0.
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Here we used that O(Y)|y — Y is positive if O(Y) — X is positive. The dimension of Y is n — 1,
so the vanishing theorem applies if

m—g—-1)+(n—-p+1)>(n-1)
which holds for p + ¢ < n — 2. Therefore
0— HIY,Q%]y) > H(Y,Q}) -0
so H1(Y, Q0% |y) — HY(Y, Q) is an isomorphism, which combined with (2.29) gives that
HI(X, Q%) > HU(Y,QY)

is an isomorphism.
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3 Deformations of Complex Manifolds

3.1 Families of complex manifolds

From a complex manifold given by
X ={P=0}cP"

we can consider a l-parameter family X; by inserting a parameter ¢ € C in front of one of the
polynomial coefficients. A famous example [3] is

Xt={222—tﬁzk=o}cp4.
k=0 k=0
The total space including the parameter ¢ is
X = {(p,t) € X; x C}.
We can also consider families where ¢t € C", and we use the notation A < C" for a ball of radius 1.

The formal definition of a family of complex manifolds is:

Definition 3.1. Let Xy be a compact complex manifold. A family of deformations of Xo over A c
C" is given by ™ : X — A where X is a complex manifold, 7 is a holomorphic map, m==1(0) = X,
and the Jacobian of m has mazimal rank.

Using the definition 7 : X — A and the maximal rank theorem for holomorphic submersions, we
may cover X = |J, U; so that local coordinates on U; are of the form (z1,...,2",t), where 2% are
holomorphic coordinates on U; n X;, and

Change of coordinates on an overlap (z,t), (Z,) are of the form
= R L2, =t (3.1)

We will now show that in a family of complex manifolds, all underlying smooth manifolds are
diffeomorphic.
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A¢ C

Lemma 3.2. Let w: X — A be a family of compact complex manifolds.

Let t; € A. From any path v : [0,1] — A with v(0) = 0 and (1) = t1, we can construct a
1-parameter family of diffeomorphisms ©; : Xo — X (5) such that ©g = id.

In particular Xy, is diffeomorphic to Xo for all t; € A.

Proof. Let v(s) be a path on A from 0 to ¢y. Extend the vector field 4 arbitrarily to all of A. Let
{b'} be real coordinates on A, and write

§(8) = 34(6) o

We will lift up the vector field on the base 4 € I'(T'B, B) using a partition of unity. Cover X with
finitely many coordinates charts (2!,...,2", b%, ..., b") as described earlier where 7(z,b) = b. Let
po. be a partition of unity (3] ps = 1, supp(p) < Us) subordinate to this cover. Define on X the

vector field ]
V= oV ——1.
2.0 [” b, ]
[e3 o

It may be clearer to write V' using fixed coordinates on say Uy < X, in which case
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So we get a lifted vector field V € T'(T'X) with 7,V = 4. Next, we solve the ODE system on X
d
—0, =V, ©y=id,
de
which is well-known to produce a 1-parameter family of diffeomorphisms ©. : X — X" together with

inverses ©_. : X — X satisfying d%@_e =—V and ©.00_. =id.

The last thing to check is that this construction produces diffeomorphisms from fiber to fiber
O : Xo — X, (). Fix 2 € Xo and consider the function f(e) = 70 ©.(x) —7(¢). Then

f(0) =0, f’(s):ﬂ'*V—r’y:().

Therefore f(e) =0 and so O.(z) € X().

A similar argument shows ©_. : X () — Xo: consider z € X (), f(r) = 10O _,.(x) —y(e —r), and
prove f(g) = 0. Since ©. 0O _. = id, we have that ©. : Xo — X,(.) is a family of diffeomorphisms.

O

Looking relative to the moving family of diffeomorphisms, we may regard X; as the fixed differen-
tiable manifold Xy, and let the complex structure tensor J; vary in ¢t. More precisely: let X — A
be a family of complex manifolds, so that (X, jt) is a complex manifold for each parameter ¢t € A.
Take a path v : (—¢,¢) — A with 4(0) = 0, 4(0) # 0, and so from Lemma 3.2 we obtain a family
of diffeomorphisms ©; : Xo — X, ;). Then we may consider

(Xo,Je), Ji= (@t);ljw(w(@t)*

which is a 1-parameter family of complex structures on a fixed differentiable manifold Xy. This
defines new complex structures because J? = —id and N(J;) = 0 (as because N transforms as a
tensor under coordinate transformation). We now define the Nijenhuis tensor N.

On a differentiable manifold X, an almost-complex structure is a tensor J € I'(EndTg X) satisfying
J? = —id. The Newlander-Nirenberg theorem (see e.g. [7] for a proof) states that an almost

complex structure J comes from holomorphic coordinates {z*} with J aja = iafa, J aga = — aga
if and only if the Nijenhuis tensor
1 L
Nkij = Z (Jri(}m]kj + JkrajJTi — (Z g ])> (32)

vanishes identically: N¥;; = 0. It can also be checked that the components of N*;; transform
correctly so that N is a legitimate tensor.

Remark 3.3. Here is some motivation regarding N. From an almost complex-structure J on a
smooth manifold X, we may split TcX = T'0X @ T%' X, where T"9X is the +i eigenspace of J
and T%'X is the —i eigenspace of J. The Nijenhuis tensor N = %Npmn dz™ A dz™ ® 0, can be
shown to satisfy N(U,V) = —[U,V]%! for U,V € I'(T1°X). In other words, N = 0 if and only if
[U, V] e THOX for all U,V € THX. Hence N measures the failure of the subbundle 79X < Tc X
being closed under the Lie bracket.
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Let X — A be a family of complex manifolds with central fiber (X,.J), together with a path
v : (—e,e) > A with 4(0) = 0 and 4(0) # 0. From this data, we would like to produce an
element

[n] e HY(X,T°X).

Given our discussion so far, from this information we can create a path of complex structures
Ji € T'(EndTX) on the fixed differentiable manifold X with Jy = J satisfying the constraints
J? = —id and N(J;) = 0. We will now show:

e Differentiation 7 = J(0) produces an element 7 € A% (T19X) which satisfies 0 = 0 and hence
defines a Dolbeault cohomology class [n] € H*(X,T'°X).

e Different choices of diffeomorphisms ©; : X — X, in Lemma 3.2 produce the same class
[n] e HY(X,T'°X).

We start by differentiating JZ = —id. Take <|,—o and obtain

JJ g+ J'J j= 0. (33)
Here J = %h:th. We will work in coordinates x = (2%,...,2", 2%, ...,2") on the fixed complex
manifold (X, J) where {z%} are holomorphic coordinates on (X, J). Let a, 8 denote holomorphic
coordinates, so that « € {1,...,n} and 0, = az%, Ja = z2=- Let i, j, p denote indices for the real
coordinates z, so that i € {1,...,n,1,...,7} and so we could have i = o or i = @&. Summations

over 1, j, k run over both unbarred coordinates z* and barred coordinates z¢.
With this convention, then J%g = i6%g, J*5 = —id%g and J%5 = J%g = 0. Then (3.3) with i = a,
j = B implies

J¥ =0.

Similarly J° 5 = 0. Since J(t) is real, so is J, and hence J is determined by the components

Next, we differentiate N(.J;) = 0. Taking |,_o of (3.2) gives
0=J"30,J% + J orJ% + J*050" 5+ J*050"5 — (B < 7)
which becomes
0= 2[ —id5J% + z‘avjaﬁ].
Since 5 € T(T"°X ® A®'), this implies
on=0, [neH"(X,T"°X)

and we call [n] the Kodaira-Spencer class.

We now want to show that [] € H'(X,T"°X) is independent of the choice of family of diffeomor-
phisms in Lemma 3.2. Suppose from the path v(¢) on A, we produce two families of diffeomor-
phisms

@t X > X’y(t), U, : X — X’y(t)a @0 = \Ifo = 1d.
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From the complex manifold (X, Jp), we produce a family of complex structures on the fixed Xy as
before by J; = (Gt)glJv(t)(@t)* and J; = (\I/t);lJ,y(t)(\I/t)*. These are related by

Jo = (f)«e(fo)3"

with f; = U; ' 0 ©;. Then f; be a l1-parameter family of diffeomorphisms with %|t=0ft =V (for
some vector field V') and fy = id.

We now compute %hzo of J;. Let y® = f(x) be a change of coordinates by the diffeomorphism.
The formulas for the pushfoward fy : T, M — Ty(,) M are

U0 = L), (Ve -

and so acting J; on V € Ty, M gives

LRV = S o)) S )V ()

The components of J; are then

Ter(ne) = S @) S n(2))

Differentiating this in time at ¢ = 0 along a path with yo(z) = « and §(0) = V gives

L . d 6#
J%% + O VE = 0, VeTF + % + T4 —
b+ OpJ 7 k bt Jp + dt|,_ oy

(ye(2))

In complex coordinates, the second term on the left is zero since the components J%, are constant.
For the last term, we differentiate in time the chain rule identity

oz’ oy* o i
@) 55 @) = 5 = 8
to obtain p ot
" )
- - y X = —(3 'VZ .
dt o ayj ( t( )) J
Therefore . ) _
J% = J% + ok VI*, — J%0, V"
We showed earlier that considering J2 = —id implies that the non-zero contributions are n® 5=

j(O)O‘B and its conjugate. So we let a = «, b = 3 and obtain

77‘13 = 77a3 — 2i§BVa.

It follows that ~
i =n— 20V

and so [n] = [7] € H}(T*°X).
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Remark 3.4. Let (X,J) be a complex manifold. This calculation shows that deformations
Jo = (f)sJ(f)z " created by 1-parameter families of diffeomorphisms f; produce the zero class
[n] =0 € HY(X,TX) (since J = 0). Deformations of complex structure coming from families of
diffeomorphisms are not counted by [n] € H(X,TX).

A central question in deformation theory is the inverse problem: given n € H HT1OX), does it
come from a family (X (¢), J(t)) of complex manifolds with J(0) = n? This statement is not true
in general, but it is true for Kéhler Calabi-Yau manifolds (this is the Bogomolov-Tian-Todorov
theorem). For more references on this topic, see for example [20, 16, 14].

3.2 Semi-continuity theorem

We start with an illustrative example from linear algebra. Let A; : R™ — R" be a family of
symmetric real n X n matrices with entries continuously varying in ¢ € R. Then there exists € > 0
such that for all || < e, then

dim ker A; < dimker Ag.

The dimension of ker A; may jump at ¢t = 0, as seen from e.g.

t 0
0 ¢

Ay =

Returning to complex geometry, let (X, J;) be a family of complex structures on a compact manifold
X with Jy = J. A differential form o € A¥(X) has different decompositions into (p,q) types for
each parameter t. Write A(l)’O for (1,0) forms with respect to the initial structure J, and Atl’O
for (1,0) forms with respect to J;. We can decompose a € A'(X) into (p,q) components via the
formula

1 ) 1 ,
a = 5(04 —iJia) + 5(0[ +iJro)
= (@) + ()" (3.4)

Here we define Ja(X) = a(JX). With this notation, we have that a € Ay° if and only if Jo = +icv.

The map ¢ : Aé’o — A%’O given by
= ()

is an isomorphism for small ¢, since @y = id and ¢; varies continuously as seen from the explicit
expression above. Similarly, we obtain isomorphisms

. AP P.q
pr AY? — A

for small t. Recall that
hP1(X;) = dimker{A,, AP AP

We will show that h?7(X;) is an upper-semicontinuous function, meaning
hP(X:) < WP9(Xy), |t <e.
To view all operators on the same space, instead of Az we will use

Ly AT — AR, Ly = w;ito Az, o @y,
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and show
dimker L; < dimker Lo, |t| <e.

To prove this, we will need some PDE estimates.

Let E — X be a vector bundle over a compact manifold. Cover X by finitely many trivializations
X = Uivzl U; where B,  U; ¢ C™ are balls of radius 1 still covering X. Let ¢ € I'(X, E) and let ¢y,
denote the vector valued function of the components of ¥ in the trivialization U;. Let 0 < o < 1.
Define

[Pl cre = sup v, llor.e (s,
1

where for a function f : B — RP the Holder norm is

i

D'f(z) — D'f(y)l
Iflcras) = Iflcrs) + sup sup -
|I|=k ©#y |z —y|
where | fllcr(p) = sup|y—gsupg [D' f|. We write ¢ € CF*(X, E) if ¢ is a k-times differentiable
section of E with finite |- ||cr.« norm. The main features of C*¥:® spaces for our purposes are:

e C%(X, F) is a Banach space.

e Compactness: suppose {¢,,} € C¥*(X, E) is a sequence of sections such that
[nlcre < C

for uniform constant C' > 0. Let 0 < o’ < a. Then there exists a limiting section v, € C** and a
subsequence {1, } such that 1, — 1y in CF .

e The Schauder estimates. (Theorem 3.5 below)

Let us prove that C%®(X, E) := C® is a Banach space and its compactness property. It is routine
to check that | - |« is a norm. To show completeness, we must show that if {¢,,} is a Cauchy
sequence, then 1, converges to 1o, € C®. By Arzela-Ascoli applied on each coordinate ball B;, a
subsequence ), converges in C° to a continuous limit 14, and since {1, } is Cauchy then the full
sequence converges

Y = Yo In .
The limit section 1y, is in C?%, since for z,y € B; with |z — y| = §, then
Yoo (@) = Yoo W] [eo(@) = (@) | [¥n() = (@) | [r(y) = v (y)]
|z —y|* |z —yl|* |z —yl|* |z —y|*
< C (3.5)

for k large enough such that |1, — ¥gllco < d. To show the sequence converges in C%, let € > 0.
There exists N such that if k,¢ > N then for all z # y there holds

[V — el () — [P — el ()]
|z —yl*

<e

Fix x,y and send ¢ — o0 to conclude

It — tesllce <e.

49



We now show compactness. Suppose {¢,} € C* is a sequence with [|[¢,]|ce < C. By the Arzela-
Ascoli theorem applied to coordinate balls B;, we obtain a subsequence ), converging in C° to a
continuous limit 1. The limiting section is Holder continuous o, € C* by estimate (3.5). To see
convergence in 0 < o/ < «, we let vy, = ¢, — 1y and write

o Ja
v () — Uk,(y)| _ (lvk(x) — v (y)| |vg(z) — ,Uk(y>|(oz/o/)—1> .
|z —yl*
This goes to zero as k — 0.
Next, we state the Schauder estimates.

Theorem 3.5. (Schauder estimates I) Let E, F — X be vector bundles over a compact manifold.
Let L :T'(X,E) - I'(X, F) be an elliptic operator of order k. There exists C > 0 such that for all
sections s € C**(X, E), then

Isllcr.e ) < Ol + [Ls] o).

Here C only depends on the constant of ellipticity and the C* norms of the coefficients of L.
For a reference, see [19], remark after Theorem 4.3 in the appendix.
We can upgrade this estimate for sections s € (ker L)*.

Theorem 3.6. (Schauder estimates II) Let E, F — X be complex vector bundles over a compact
complex manifold. Let L : T(X,E) — T'(X, F) be an elliptic operator of order k. Let H be a metric
on E and w a hermitian metric on X. There exists C > 0 such that for all s € C**(X, E) with

se (ker L)*

then
HSHC’“’(X) < CHLSHCU,@.

Here s € (ker L)* means: (s,p)r2 = 0 for all ¢ € T(X, E) with Ly = 0, and the L? inner product
on T(X, E) is as before: (s,¢)r2 = § (s, opm ™.

Proof. Suppose this estimate is false. Then there exists a sequence {s;} € (ker L)* n C** such that
Hsnﬂck,a = Mn”Lanco,a, Mn — O0.

Let u, = sp/|sn|cr.a. Then {u,} € (ker L)* satisfies

1
| Ll co.ox) < 7 lunfcre = 1.
From |u|ck.e = 1, compactness of Holder space allows us to extract a subsequence u, — ugp

converging in the C%®" norm with 0 < o/ < . Since | Lun||co.or — 0, the limit satisfies Lug, = 0.

Next, u,, € (ker L)' and uy, € ker L implies (t,, uo )2 = 0 for all n, and we conclude

U = 0.
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We want to obtain a contradiction, but we cannot take a limit of |up|cre = 1 since a > .
However, by the usual Schauder estimates, for n » 1 large enough we have

1
1= unllone < Clunlzs + [Lunleon) < Clunlzs +

and 8o |[up||Le = 1/2C for all n large. Taking a limit gives |uq| = > 0 which is a contradiction.

O

From the Schauder estimates, we can deduce the semi-continuity theorem.

Theorem 3.7. Let E,F — X be compler vector bundles over a compact manifold. Let L; :
I'X,E) > T'(X,F) be a continuous family of elliptic operators of order k. Then there exists € > 0
so that

dimker L; < dimker Lo, |t| <e

so that dimker L; is upper semi-continuous.

Proof. Let u e I'(X, E) satisfy u € (ker Ly)*. Then by the Schauder estimate,

lullera < ClLoufca
< ClLoulo +Cl(Le — Lojulo
< CHLtU‘ Co -+ C€HUHCk,a (36)

if [Ly — Lo|c~ < €. For & > 0 small enough, then Ce < 3 and we obtain
||U||Ck,a < 2CHLtuHCa
It follows that
(ker Lo)* n (ker L;) = {0}.

From

(ker L;) c T(X, E) = (ker L) @ (ker Lo) ™,
we have ker L; < ker Lg. O
To conclude semi-continuity of Hodge numbers, we let L; = ¢; * 0 Az o, : Ab? — AB'? as before.

Then
hP (X)) < hP9(Xo), |t <e

and we see that ¢ — dim H9(X,QP) is upper semi-continuous in a family of complex mani-
folds.
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3.3 Stability of Kahler metrics

Kodaira-Spencer’s stability theorem states that if X, is a compact Kéhler manifold, then any
deformation X; admits a Kéhler metric for small enough ¢ [21].

After this section, we will be restricting our attention from general complex manifolds to simply
connected Calabi-Yau threefolds. We will in this section give the proof of Kodaira-Spencer’s stability
theorem assuming that Xy is a simply connected Calabi-Yau threefold. Explicitly, the only extra
hypothesis that we will use is H%2?(Xy) = 0, so the proof here applies to any complex manifold
X satisfying this property. Our proof under this hypothesis is simpler compared compared to
Kodaira-Spencer [21], and we will follow the argument and exposition in Fu-Li-Yau [11]. The setup
in Fu-Li-Yau [11] is different as it concerns balanced metrics rather than Kéhler metrics and the
central fiber Xy has nodal singularities, but the outline of the argument is readily adapted.

Let wp be the Kahler metric on Xy, and ©; be a family of diffeomorphisms ©; : X, — X;.
Then
Ofwo = (Ofwo)*” + (Ofwo) "' + (Ofwo)™?

is a closed 2-form on X;. To obtain a Kéhler metric on X;, it must be of type (1,1), so we let
Xt = (©Fwo)'t.
But this is no longer closed.
0 = d(©fwo)
= [6(@2‘(»0)2’0] + [8(@2‘(%)2’0 + Q(wao)l’l] + [8(@2‘w0)1’1 + O(wao)O’Q] + [8(®fwo)0’2]

By type considerations, we have
oxe = —0(0Fwe)%?,  0(0Fw)*? = 0. (3.7)
So 0x¢ — 0 uniformly in all C* norms. The claim is that we can correct y; by
Wy =Xt + a[aTaTy] + a[mw] (3.8)
where v € A2 solves o B
000101y = —ox4. (3.9)
This will produce a real (1,1) form w, € AL1(X,R) satisfying
éwv = Ox¢ 4 000197y = 0.
Taking the conjugate, we conclude dw., = 0. To show that w., is a Kéhler metric, we will show its

positivity w, > 0. For this, we will show that the correction y is small.

Roughly speaking, the strategy is to correct @; = x; + da + 0@ so that « solves dda = —d@; and
so 0wy = 0. If 00 were an elliptic operator, one could try to use elliptic PDE theory to estimate
|| < C|odal = C||dx:| and show smallness of « since dx; — 0 as t — 0. To make this strategy
work, we do not use a but rather v with o = 070%y. Furthermore (3.9) is not quite an elliptic PDE
for v, but this equation can be modified to make this strategy work.
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To make (3.9) elliptic, we consider the Kodaira-Spencer operator
Ey = 00070" + 070700 + 0T00%0 + 0'00T0 + 070 + o'

and solve B
Ei(v) = 0xs-

In the definition of F, the 0,0 are with respect to the complex structure at ¢, and the adjoints
o', 0" are with respect to the non-Kihler metrics x;. The operator E is a 4th order elliptic operator
as proved by Kodaira-Spencer. The first term in F; matches with (3.9), so we will need to look
for solutions in a space where all the other terms vanish; we see that if we can find a solution to
E(vy) = 0w with dy = 0, we will solve (3.9).

By the Fredholm alternative, we can find a solution v; € (ker E;)* if dx; L ker F;. Note that
considering (E;p, ¢) and integrating by parts shows that

ker By = {p :dp =0, 70Ty =0}.
We claim that there exists u € A% with
OXt = 1004 (3.10)

Here we use the assumption of vanishing cohomology H%2(Xj) = 0. By the semi-continuity theo-
rem,

R%%(X;) < h%%(Xg) = 0

and by (3.7), we have [(©fwo)*?] € H*?(X;) = 0 and so we can write (0fw()*? = dv for v e A*L.
By (3.7), we have dx; = —ddv.

It follows from (3.10) that for 5 € ker E; then

Therefore, we can find a solution to Ey(y¢) = 0x¢ = i00us. Next, we prove that such a solution is
closed.

Lemma 3.8. If E(7) = i0du, then dy = 0.
Proof. We compute
0 = Eyy)—idom
= aé[éw% - mt] + ot [ééTa% + a%] +of [a* 00y + 0010y, + é%]
= 00a; + Ty + dlaz. (3.11)
Let 0 = d'as + 0Tas. Then the equation above implies do = 0, and
|o|? = (ag + as, (@ + d)a) = 0.

Setting o = 0, we obtain

0=2a" [aa* oV + a%] +of [a*aa% + 0070, + a%].
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and taking an inner product with +; implies
0 = [0T0v]? + [0v)? + [007:]? + 07v[* + o]
and so 0y = 0 and 0 = 0. O

In summary, by the Fredholm alternative we have 7, € (ker Et)J- with Eyy = éxt and dy; = 0.
Therefore (3.9) holds and the corrected w., (3.8) satisfies dw., = 0. To show w., is a Kéhler metric,
we prove the estimate

Il cs (x.0) < CIH- (3.12)
Then since x; > (1/2)wp for small ¢, we see that w, > 0 for small ¢.

Lemma 3.9. There exists C > 1 independent of t such that for all t small, we can estimate
Ivtlcse < ClEce, (3.13)

for all ~; € (ker Ey)* with dvy; = 0.

Proof. Suppose by contradiction that the estimate fails, and there is a sequence t; — 0 such that
IVelore = Cill Evyef oo

with C; — 0. Replacing ¢ by v¢/|7t]|ca.e, so that we have a sequence ~;, with

[yt llcae =1, | Bty lloa — 0.

The E;, — Ej smoothly, and after relabeling a subsequence we have that v, — o in C*H*/2 with
FEovy = 0 and dyy = 0. This limit is non-trivial due to the Schauder estimates

Ivillose < Cllvelze + [ Evyillo=)

where C' > 1 is uniform in ¢ as E; is a smoothly varying family of elliptic operators on a fixed
smooth manifold, and by compactness of ¢, the coefficients of FE; and its ellipticity are uniformly
bounded. Taking ¢ — oo implies |yo > = C~1.

Since Fyyo = 0, we showed earlier that 6797~y = 0. Since 079 = 0, we have 00Ty, = 0 by the Kihler
identities on the Kéahler central fiber Xo. Now Tyo € H%2(Xy) and we are assuming H%2(X,) = 0,
so 0Ty = dq. Therefore dTdq = 0, and so dq = 0. It follows that

670 = 0, 8T70 =0.
Hence v € ker Ap, and in Kéhler geometry Ay = Ay, so
dyo =0, dT’VO =0.

We will now use 7; € (ker Ey)*, dy; = 0, to show that 9 = 0, which is a contradiction. Since
AY2 = Im E; @ ker E;, we can write 73 = E;(3;), and so

v = 00P1 + O Ba + 07 Bs.
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Since dv; = 0, we have - -
0= (v,0"B2 + 0"B3) = 0782 + 3.

So v = day. We note
(e:70) £2(x0) = (0, diy0) £2(x0) = 0.
Let t — 0, we conclude
(70,70) L2 (x0) = 0

which is a contradiction.

Using this lemma, we obtain

[rlesa < Cloxdce = Clla(O©Fwo)™

lge
The estimate (3.12) now follows from

[(©Fwo)™? e < Ciltl.

This is because Oy = id, wy € ALt and

(O wp)??

t t t
J d—(@;“wo)o’st <J | Ly, wolds < CJ ds.
o as 0 0

and similarly for any C* norm of (©Fw)%2.

We now prove that the forms w,, — w as t — 0.
oy, = wllcox,go) < Ixe = wlco(x,g0) + Clitles(x,90) < Clt-

Similarly, w,, — w as t — 0 in any C* norm.

Corollary 3.10. Let X — A be a family of complex manifolds with Xy a compact Kdhler manifold.
Then hP1(X;) = h?9(Xy) for all small enough t.

Proof. By the Kodaira-Spencer theorem, X; is a Kéhler manifold for all ¢ small enough. By the
semi-continuity theorem, h?9(X;) < h?%(X,) for small ¢, so we suppose by contradiction that there
exists ¢ and p, ¢ such that h?9(X;) < h??(Xy). Let p + ¢ = k, and

DUR(X) < YT R (X) =bF = Y RM(Xy)
itj=k it+ji=k i+j=k

which is a contradiction. Here we used that Xy and X; are diffeomorphic so they have the same

Betti numbers b*, and the Hodge decomposition b* =Y, ik h¥J for Kihler manifolds. O
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4 Calabi-Yau Threefolds

4.1 Parameters of threefolds

There are various inequivalent definitions of Calabi-Yau manifolds used in the literature. The
Wikipedia page for Calabi-Yau manifolds gives some of the commonly used definitions. In these
notes, we will use the following definition:

Definition 4.1. Our definition of a Kdhler Calabi-Yau manifold is a simply-connected compact
complex manifold of dimension n admitting a Kdahler metric w and a nowhere vanishing holomorphic
(n,0) form Q.

The section € is a nowhere vanishing holomorphic section of the canonical bundle Kx = (det 710X )*,
and so Kx = Ox is the trivial holomorphic bundle.

Let (Y,Q,®) be a Kahler Calabi-Yau threefold. Since we assume that Y is simply connected, we
have b1(X) = 0 and so by the Hodge decomposition (2.11) then

RLO — p01 _
In addition to the Hodge symmetries
hPd — htmo7 hPd — h3—p,3—q,
Calabi-Yau threefolds satisfy
hoP = B3P,

This is just HP(X, Kx) = HP(X,Ox). Therefore, the only Hodge numbers to consider are

By the Hodge decomposition (2.11), we have by = h''! and b3 = 2+ 2h*!. The Euler characteristic
is defined by

6
X(Y) = (=1,

i=1

which becomes in this case
x(Y) = 2(hb! = h?1).
In summary, for each Calabi-Yau threefold, we associate two parameters (b1, A1),
o W11 encodes the Kihler classes of X. A Kihler metric w produces a non-zero class
[w] € Hip(X,R) n HY(X,R).

To see [w] # 0 € Hig, consider §, w". If w" = da, then {,w™ = 0. On the other hand,
w" = (det g)idz' A dz' A --- Addz™ A dZ". Since (det g) > 0 at all points, then {, w™ > 0.

Let C be the set of all [a] € H1'1(X,R) such that there exists a Kithler metric w with w € [a]. We
call C the Kéhler cone. It turns out that C is an open convex cone in H*!(X,R) (see e.g. Tosatti’s
note [28]). Therefore the Kihler cone has real dimension h'''. By the 0d-Lemma, if [w] € C,
then

[w] = {w +i00p > 0 with p € C*(X,R)}
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and a given Kéhler class [w] is parametrized by functions.

e h%1 encodes the infinitesimal complex structure deformations of X. We discussed earlier how
a l-parameter family of complex structures (X, .J(t)) produces an element [n] € H'(X,T"°X) by
n = J(0). Note that by Serre duality

dim HY(T*°X) = dim H*(Kx ® (T"°X)*) = dim H*(Q') = h'2.

On a Calabi-Yau manifold, the inverse problem can be solved.

Theorem 4.2. (Bogomolov-Tian-Todorov Theorem) Let (X, J) be a Kdhler Calabi- Yau threefold.
Let [n] € HY(X, TY°X). Thenn can be attained by a path of complex structures (X, J(t)) such that

J(0) = J and [J(0)] = [n].

Textbook references for the proof of this include e.g. [14, 16]. Since dim H*(X,T*°X) = dim H?(X, Q')
on a Calabi-Yau threefold, the number A% is understood as parametrizing deformations of complex
structure.

4.2 Ricci flat metrics

Let X be a complex manifold with holomorphic volume form €2 and hermitian metric w. In local
holomorphic coordinates, then

w =1ig;k dz? A dzF, Q= fdz* A...dz"
where f(z) is a local nowhere vanishing holomorphic function. The norm of €2 induced on (det 79 X )*
is

f(2)f(2)
Q) = ==
det g,z
The Chern-Ricci curvature R, = —d;d; logdet g can also be written
R = 005 log |7
Indeed,
030, log det |2 = 0;0; log | f|* — 00; log det g,

and 00, log |f|> = 0 for any such function f. This is because

forf Orf
= (337 =0.
f

ff

The hermitian metric w is Chern-Ricci flat if R = 0 which implies

(7]‘(}]; log |f|2 = (3j

0 = g7 3;0 log 2.

The maximum principle on compact manifolds implies that |{2|,, is constant. Here is a quick proof
if w is Kéhler. (Note: this PDE result holds without the K&hler assumption. The general proof
uses the Hopf maximum principle instead of integration by parts. The general statement is: if
a”0;0;f +b'0;f = 0 on a compact manifold with a* positive-definite, then f is constant.)
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First, note the identities for a real function v : X — R:

- 1
i00u A Wt = —(g
n

and )
i0u A du AW = =|oullw".
n

These can be checked at a point p € X with w|, = >, idz* A dz*. By Stokes’s theorem and
dw =0,

J (log |©22)iddlog |22 A w™ ™t = —f d(log|Q[2) A idlog |2 A w"

X X
which implies

0= [ (1o [02)(o7 2,05 log 1902) " = — [ |olog 22 [2w"
X X ’

and so |01og|©2|2 = 0 and log |2 is a constant.

In summary, on a compact complex manifold with trivial canonical bundle, then R,;; = 0 is equiv-
alent to |[Q2|2 = const. To find such metrics, we fix w an arbitrary hermitian metric, and look for
solutions to this equation of the form
9ik = 9k + Ji0rp >0

or in differential form notation B

@W=w+1i00p > 0.
The equation |Q2|2(x) = e, b€ R, can be written

b Q2 giep  [detg] jogiap
e’ = —=e v =|—=le W
19152 det g
which leads to the complex Monge-Ampeére equation
det(gjff + (pﬂg) _ elog |Q|ifb
det g,z

When dw = 0, the constant b can be identified from the initial data (w,2), since the equation can
also be written B
(w4 i00p)" = e °|Q)2w™

and integration of both sides and Stokes’s theorem gives

J w":J e P02 W
X X

WwF A (i00p)F

Indeed:

€
3
+
L]+
=

JX (w +i00p)"

b
Il
—

d(w" ™ A (i0p) A (100p)* 1)

=
Il
—

I
TR
£
3
+
0=
=
N
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Another way to write the Kahler-Ricci flat metric equation is
(w +i00p)" = e QA Q,
because of the identity
"0 Q=02
i AQ =] “*’F
Yau’s theorem states:

Theorem 4.3. [31] Let (X,w) be a compact Kdhler manifold. Let e be an arbitrary function and
b be the constant e’ = Sy ehwn/ Sy w™. Then there exists a unique smooth solution u : X — R
solving

(w+i0du)™ = " bw",  w+iddu >0

and §y uw™ = 0.
References for the proof of this theorem include: Chapter 2 of Siu’s notes [24] and Chapter 3 of G.
Szekelyhidi’s book [26].

The complex Monge-Ampere equation can also be solved for a pair (u,b) on a general hermitian
manifold (X,w): this theorem is due to Tosatti-Weinkove [29].

As a consequence of Yau’s theorem, a Kéhler Calabi-Yau manifold admits Kéhler Ricci-flat metrics.
These are also called Calabi-Yau metrics wcy and they solve

Ric(wey) =0, dwey =0.

Furthermore, each Kéhler class [w] € H"!(X,R) contains a unique Calabi-Yau representative wcy €
[w] by solving the Monge-Ampere equation with ansatz w + i00p.

4.3 Deformations of complex structure

By the BTT theorem, on a Calabi-Yau threefold X then any element [n] € H'(X,T%%X) can
be attained by a family of complex manifolds. Here we note that a deformation of a Calabi-Yau
threefold also carries a Calabi-Yau structure.

Proposition 4.4. Let (X, J, w,Q) be a Kdhler Calabi-Yau threefold. Let (X, J(t)) be a smooth path
of complex structures with J(0) = J and |t| < €. For e > 0 small enough, then there exists a family
(w(t), Q) with (w(t),2(t)) = (w,N) as t — 0 such that w(t) is a Kahler metric and Q(t) is a
nowhere vanishing holomorphic volume form on (X, J(t)).

Proof. The existence of the family of Kéhler metrics w(t) = wy with w; — w is Kodaira-Spencer’s
stability theorem [21] which we discussed earlier. We now describe how to construct (¢) = ;. The
3-form € is defined on (X, .J(t)), however it does not necessarily have type (3,0). So we take the
(3,0) part (2)>°, and this is nowhere vanishing for small ¢ by continuity of the complex structures
J(t). We now need to correct ()2 to make it holomorphic. Write

Q)30 = oydz} A dz? A dz
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Note a = o; 004 is a well-defined (0,1)-form on X;. This is because of the transformation law
o — tyyo with tyy holomorphic, which implies ag — af. We also note that da = 0, since

oa=—0"200 A 0o+ 0 10% =0.

We claim that we can find a smooth function u; such that
Opuy = —ay, J uwy =0
Xt

This is because X is assumed to be simply-connected, and so H*(X,Ox) = 0. By the semi-
continuity theorem, H'(X;,Ox,) < HY(X,Ox), hence H'(X;,Ox,) = 0. The definition of Dol-
beault cohomology states that the closed (0,1)-form a comes from 0 of a function. Using u, we
define

Q; = e"topdzt A dz? A dzp.

This solves 0€; = 0 since
Op(e"o) = €“Opuo + " 0o = e“(—a 1 (dgo)o + d5a) = 0.

Therefore €; defines a nowhere vanishing holomorphic volume form on (X, J;). Next, we show
Q; — Q. For this, we show
lug| < CJt]. (4.2)

Then since o; — ¢ smoothly,

leYor — o] < |otlle” — 1| + |or — o]
< Cle“M — 1]+ Ot
31
< C ), =(ClEhF +Cltl < Cltl. (4.3)
= k!

Hence |2 — Q|, < C|t|. To prove (4.2), we will use the complex Laplacian
Ay, : CP(X,R) > C*(X,R),

given by B

Ag f = (9)"0;01f.
We proved earlier that ker A;, = R -1 are constants. Therefore since SXt uswi = 0, we have that
Uy € ker(Agt)l with respect to the g; inner product for all . By elliptic estimates,

|u|c2a(x,9) < ClAg, ut]ca(x,g)-

One should verify that the constant C' is uniform in t. We omit the proof, but it follows an outline
similar to (3.13): the usual Schauder estimates ||ulc2.« < C(|u|L> + ||Au|ce) are uniform in ¢, and
to remove the extra |u|p= we assume the estimate fails as ¢ — 0 and derive a contradiction.

Therefore since dju = o; ' 0304
lutlcza(x,g) < Cllg?™ 0; (07  po)|| < Clt|

since o tends smoothly to the holomorphic o with do = 0.
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Let (X,J(t),w(t),Q(t)) be a family of Kéhler Calabi-Yau threefolds with J(0) = 1. We use the
notation § = %\tzo. To end this section, we will compute the variation

X =09

and relate it to n via
Z’ "
Xapy = 5 [ -7 &Quﬁv}
Here everything is evaluated at holomorphic coordinates with respect to the initial (X, J,€2). We
will show x € A>!(X,J), and since dn = 0, it follows that oy = 0.

We start by differentiating
I T T Qs = —iQ 5, (4.4)

to obtain
— i(SQijk = (SJTiJSjthQTSt + JTZ‘(SJS]‘thQTSt + Jrijsj(sc]tkﬂrst + JriJsttk(Sth (4.5)

In holomorphic coordinates «, 8,7, then J%g = i6%g, JaB = —10“g, and the only non-zero compo-
nents of ) are unbarred, which implies

0557 =0, 0Qz5,=0 (4.6)
and
—i0Qapy = —0J"6Qrpy + 05 Qasy + 6T %k Qapr + (—1)i*6Qa s+ (4.7
which implies .
Xapy i= 08apy = ;[ - 5J'anuﬂv]- (4.8)
We can also invert the formula for x to get ¢J from 6. At a point where g;; = d;5, then
Q= f(2)dz" Ad2? A d23, QP =|f(2), (4.9)
and
QBW[ — ;Qmaﬂa] = —i|Q20J" 4. (4.10)
Thus ;
5T = mﬂﬂ’wmm (4.11)
or ,
n'a = ﬁﬁm”x&ﬁ#. (4.12)
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4.4 Quintic threefolds
4.4.1 Holomorphic volume form
Consider X < P* given by {P = 0}, where
P =)+ 2} + 25 + 2} + 23,
In the coordinate chart Uy = {z # 0} with coordinates z; = z;/x¢, X appears as
{(f=1+284+20+25+2;=0}cCh
Since
Df = [521,525,525,52}]

we see that Df has maximal rank except at z = 0, which is not included in the set {f = 0}.
Therefore X is a smooth complex manifold of complex dimension three. This manifold admits a
holomorphic volume form 2. This can be seen by the adjunction formula, but also by the explicit

expression
dz1 A dzg A dzg

Quynv, =
0o = o,

over the set Uy = {xo # 0} intersected with V; = {0f/0z4 # 0}. We now verify that 2 extends
from Uy n V to a holomorphic volume form on all of X.

(4.13)

e Extending from Vj to V3. On the intersection V3 n Vy, by the implicit function theorem we can
write zg = g(z1, 22, 24). Therefore

Q- dzy ndzo Adg  0g/0z4
B Of /024 - 0f/024

Differentiating f(z1, 22, 9(21, 22, 24), 24) = 0 in 24 gives

dz1 A dza A dzy.

83f84g + 84f =0.

Hence
le VAN dZQ VAN dZ4

vorvs = —
o oF /o

This is holomorphic and nowhere vanishing on V3, therefore 2 extends from V,; to V3. Similar
arguments show that 2 defines a holomorphic volume form on all of Uy. Next, we need to extend
Q beyond Uy < X.

e Extending from Uy to U;. On Uy we have coordinates z; = x;/xg, and on U; we have coordinates
wy = xo/x1, and for ¢ = 2 then w; = x;/z1. The change of coordinates on Uy n Uy is then

-1 -1 -1 -1
21 = wyp o, Z2 = Wy Wa, Z3 = W, w3, Z4 = Wy W4.
The holomorphic volume form on Uy n Uy n V4 becomes

dwit A d(w] w) A d(wy  ws)

0
524

62



since 0f/0zy = 52§, and therefore

_dw1 A dws A dws

=
Swi‘

Over Uy, {P = 0} appears as {f = 1 + w} + w} + w] + w = 0}, and so

Q) i 7_dw1 A dwa A dws
St T T o

As before, Q) extends from U; n V, to all of Uy, and similarly € extends to a nowhere vanishing
holomorphic form on Us, Us, Uy.

Putting everything together, we see that the local expression (4.13) defines a holomorphic volume
form on all of X.

4.4.2 Hodge numbers

The Hodge numbers of the quintic threefold X are

Rt =1, Ab? =101.

e h'! = 1. This follows from the Lefschetz hyperplane theorem, which we recall states: let Y € X
be a complex hypersurface such that its associated line bundle O(Y) — X is positive. Then

hPAUY) =hPUX), p+qg<n-—2.

We computed that for Y = {P = 0} < P" with P of degreen k, then O(Y) = O(k). We also
computed that the Fubini-Study metric on O(1) has positive curvature, hence O(k) = [O(1)]" is
also a positive bundle. Therefore the Lefschetz hyperplane theorem applies to the quintic Y < P4,
and

hl,l(y) _ hl’l(P4).

We computed earlier that A1 (P") = 1, and so h'! = 1 for the quintic.

e h!»2 = 101. We only give here a heuristic argument from the string theory literature, but a real
proof can be found in e.g. [23]. We discussed earlier that h':? parametrizes complex structure
deformations. We can deform the complex structure of the quintic

4
Z Z3 =0
i=0

ez =0, Zy=ZY 7} 2R 78 75 (4.14)
|1]=5

The number of parameters are: number of ways of placing 5 objects (the powers) in 5 bins (the Z;),
which is (5 + 4)!/514! = 126. But some of these 126 coefficients do not give genuine deformations
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of complex structure. There are 52 degrees of freedom coming from matrices A € GL(5) which
produces a biholomorphism

A:{P(Z) =0} cP* - {P(AZ) = 0} c P

So we are left with 126 — 25 = 101 parameters, which matches up with A2 = 101. This is not a
proof because a priori there could be ways to deform the complex structure of a quintic which is
not by (4.14).

4.4.3 Nodal singularities

We now the quintic by a parameter ¢ € C and consider
4
X, = {Qt = 72} — 5t20 21 Z2 23 Zs = 0} c Pt
i=0

We note in passing that this family was used by [3] to construct one of the first examples of mirror
symmetry. We first notice that at ¢ = 1, this is no longer a smooth manifold as it contains singular
points. To find the singular points, we set all derivatives of Q; to zero.

5Z% =5t] | Z:
i#k

(112) -#(112)

If one of the Z; = 0, then they all are, which is not a point in projective space. So we conclude
that singular points occur when t° = 1.

and so

We let t = 1 and investigate the singular quintic which we denote X. There are 125 singular points:
these occur when Z§ = Z7 = -+ = Zj = [ | Z;. Dividing the singular points by [ | Z; (in projective
space), singular points are given by roots of unity Z = 1.

q=1[¢"....¢™], =1

with a; € {0,1,2,3,4}. Since ¢ € X, we must have >, o; = 0 mod 5. We can always represent ¢ in
projective space with the first entry equal to 1, so that leaves 3 free parameters oy, as, ag with ay
determined by »;, o; = 0, so there are (5)(5)(5) = 125 singular points.

We now look locally near the point ¢ = [1,1,1,1,1]. In the coordinate chart (Uy, 2), ¢ = (1,1,1,1)
and the equation of the singular quintic is

4
fz)y=1+ Z 20 — B21202324 = 0.

i=1

The holomorphic function f satisfies f(¢) = 0 and Df(q) = 0. Its holomorphic Hessian matrix
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2

Troer At Qs

This is a non-singular matrix. Thus we have a holomorphic function f(z1,...,24) with f(g) = 0,
df(q) = 0, but D?f(q) is non-degenerate. There is a holomorphic Morse lemma (e.g. Lemma
2.11 in the book [30]) which gives the existence of holomorphic coordinates w with ¢(w) = 0 such

that
4

flw) =) wi.
i=1
We give the proof in complex dimension n = 2 following (Lemma 42 p.242 in [8]). First, shift
coordinates so that ¢ = 0 and f(z1, 22) is a holomorphic function with f(0) = 0, Df(0) = 0, and
0;0; f(0) a non-degenerate symmetric matrix. For a symmetric complex matrix A, there is a unitary
matrix U such that UAUT = D where D is diagonal (Autonne-Takagi factorization). Since A is
non-degenerate the diagonal elements are non-zero, so we may multiply on both sides by a diagonal
complex matrix to form SAST = I.

So we can write ST[D?f(0)]S = I for a complex matrix S, and let z*¥ = S%,y*. By the chain
rule of of
2P
I B S )
oyk  0zP Oy kfos

Written in matrix notation, this is

2 f
dy? dy* = 5k loSs:
2 T2
D2£(0) = ST[D2F(0)]S = I.
Hence we may assume that the power series of f is
f=2+2+ Z aijz{’z%.
i+5>2

Let fo = % Since 2 f2(0) # 0, by the holomorphic implicit function theorem there is a function
a(z1) with a(0) = 0 such that f2(z1,a(z1)) = 0. Differentiating this gives a’(0) = 0. Define new
coordinates by

Z1 =21, Zo=2z3—a(z)

and let f(Z1,%) = f(z1,22 — a(z1)). We will compute the power series of f. We start with 1st
derivatives:

of=0o1f—dof, oof =0af.
The key observation is that (?gf = (0 when 25 = 0, and so

Oof = £Q(%1, %) (4.15)
Next, we move on to second order derivatives.

0102f = 501Q(%1, 22),
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0101 f = 101 f — 20/ 0102 f + (a')?0202f — a" 0o f
0202f = 02021
Evaluating all these at zero, and using that (4.15) implies 050 f(0) = 0, we get the expansion

52 sk 32 sizJ
f = zi+ Z brpzy + Z5 + Z Qi 21 %y
k>3 i+j=3, j>2

5%(1 + bsz) + 32 <1 + ) a,;jzjsg> (4.16)

k=1 i+j=3, j=0

We can now let
1/2 N\ 1/2
wy = 5 (1 + bsz) . Wo = 3y <1 + )] aijzizg) ,
k=1 i+7=3, j=0

using that a holomorphic function 1) : C — C with ¥(0) # 0 has a local square root defined in a
neighborhood of the origin. In these new coordinates then, f = w? + w32.

In summary, the singular quintic X has holomorphic coordinates around each singular point where
the singularity appears as
4
{ Z 22 = 0} cch
i=1

Such singularities are called nodes, or nodal singularities, or ordinary double points (ODP).

4.4.4 Examples of conifold transitions

Example 4.5. There are 2 ways to desingularize

4 4
X={ZZ§—5HZZ»=O}§IP’4
i=0 i=0

which is the singular quintic discussed in the previous section.

e The first way is called a smoothing, which is to realize X as the central fiber of
4
X, = { Z 73— (54 1) 20721727374 = 0} c P (4.17)
i=0

We discussed earlier how for ¢ # 0, the space X; no longer has singular points. In the chart (Up, z),

we see the zero set
4

filz) =1+ Z zf — bz1292324 — tz1292324 = O.
i=1

Near (1,1,1,1), we apply the holomorphic Morse lemma to

4 5
1+ E Lz
g(z — 1=1"1 _57
21%22%23%4
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and write g(w) = Y, w? (here w = 0 corresponds to the point (1,1,1,1)) so that the zero set
{f+ = 0} becomes

{i w? =t} < Ch (4.18)

for new coordinates w;. Locally, the ODP singularities , w? = 0 has been replaced by D wi =t.

e The second way to desingularize X is by small resolution. We will discuss how this is done in full
detail in the next section, but it results in a map

c: X —->X

where X is a complex manifold, 0~1(p) = P! for each singular point p, and ¢ is a biholomorphism
outside the singular set on X. In other words, each singular point of X is replaced by P!.

The holomorphic volume form Q on X defines a holomorphic volume form @ = ¢*Q defined on
X\E with E = UP!. By Hartog’s theorem, Q) extends to all of X and so X has trivial canonical
bundle. We will show later that x(X) — 2N = x(X;) where N is the number of nodes. Therefore
the two threefolds have different topologies.

Note Hartog’s theorem (e.g. p.46 in [7]) states: Let X be a complex manifold. Let S < X be a
closed complex submanifold of complex codimension > 2: this means there are local coordinates
where U n S is given by z; = -+ = z, = 0 for p > 2. Then every holomorphic function f on X\S
extends holomorphically to X. This is major difference with complex analysis in C: f(z) = 1/z
does not extend on C\{0}, but any holomorphic f(z1,22) extends on C?\{0}.

Example 4.6. Here is another example from Greene-Morrison-Strominger [12] (see also the expo-
sition in [23]). Define a singular quintic X < P* by the polynomial

P=Z3G<Z0,...,Z4)+Z4H<Zo,...,Z4)=0. (419)

where G = Z§ + Z5 — Z§ and H = —Z} — Z} — Z;. The singular points are where DP = 0, which
happens when
Zs =0, Z4=0,G=0, H=0. (4.20)

There are 16 singular points. (This is also expected by Bezout’s theorem: n homogeneous poly-
nomials of degrees d; in projective space of dimension n has d; - d,, intersection points generically.
16 = (1)(1)(4)(4) singular points.) We now look at the local model for these singularities. Suppose
p € X is a singular point with p € Uy = {Z; # 0}. In coordinates z; = Z;/Z; the equation for X is

z3g(z) + z4h(2) = 0. (4.21)

Since g(z) has surjective derivative, by the implicit function theorem there is a holomorphic change
of coordinates
wy = g(21, 22, 23, 24), Wit1 = Zig1 (4.22)
with inverse z; = p(wy, w2, w3, wy). We can repeat this for h(z) and obtain coordinates w; with
Wy = h(wy,ws, w3, ws). Then in these coordinates, the equation for X is a neighborhood of the
origin in
{3 + Wiy = 0} < C. (4.23)
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This is the model for a nodal singularity. There is another change of coordinates
1I)1 + Z’(I)g 1D1 - Z’(I)Q U~13 + Z’lI)4 w3 — Z"ll)4
1 = 9 ) Z2 = 9 ) z3 = 2 ’ 24 = 9 . (424)

such that this singularity is represented by

{i 22 =0} c Ch (4.25)
i=1

One way to resolve X is to consider the family of quintics

X ={Z3G + Z,H = tZy 7, Zo Z3 74} < P*.
which is now non-singular for ¢ # 0. As a quintic, it has h11(X;) = 1.
Another way is by small resolution. Let X < P* x P! given by

UZ,—VZ3=0, UGZ)+VH(Z)=0
with [U : V] e P!, [Zo: -+ : Z4] € PA. There is a map
0: X—>X, o([Zo:-:Za),[U:V])=[Zo:+-: Za].

(check lands in X). When P € Sing(X) is a singular point Z3 = Z, = G = H = 0, then 0~ (P) is
a full PL. Otherwise if one of these is non-zero, there is a single point in ¢~*(P). So we have a map

such that o=1(p;) = C; = P! for p; € Sing(X) and o~ is a biholomorphism on X\Sing(X). There
are 16 exceptional curves C;, and we notice that they are not linearly independent in homology.

Zai[ci] =0 in Hy(X,C).

This is because ba(X) = hP!(X) = 2. To show this, we use the Lefschetz hyperplane theorem
applied to
XcX ={UZ,—VZ3 =0} c P*xP.

Let P=UG(Z)+VH(Z)so X ={P =0} < X'. Then O(X) - X" is [Ops(4) ® Op: (1)]| x» — X".
Let’s verify this in two specific charts. Take a chart U; with coordinates u = U/V € P! and
z = 7/Zyin P and chart Uy with v = V/U and w = Z/Z,. In chart Uj, the defining equation of
X is in coordinates:

pi(u,2) = P/VZi =0,

and in chart Uy the defining equation is po = P/UZ}. The cocycle of O(X) on Uy n Us is by
definition py/ps = UZ}/V Z§, which is the cocycle of Opa(4) ® Op1 (1).

By the Lefschetz hyperplane theorem, we conclude
hl,l(X) _ hLl(X,).

Similarly, we can show

RbY(X') = BB (P x PY).
By the Kunneth formula, by (P* x P) = 2. Since by = h''! + 2h%° and pullbacks of Kihler metrics
give b1 > 2, we have R (P* x P1) = 2. So

RMH(X) = 2.
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5 Conifold Transitions: Local Model

5.1 Blowing-up a nodal singularity
5.1.1 Blow-up review

We start this section by recalling the blow-up construction. The blow-up of C" at 0 is
X ={(x,[u]) eC" x P" ! : z e [u]},

where z € [u] means z = Au for some A € C. The exceptional divisor E < X is the set of points
(0,[u]), so that x = 0 and E is a copy of P*~L. The projection

7: X >C" 7(x,u]) =z
satisfies 771(0) = E = P"~! and 7 is a biholomorphism on X\E.
We work out the coordinates for n = 2. In this case, X consists of pairs
{(z,y), [u:v]} e C* x P!

such that
Ty

u v
To obtain coordinate charts on X, we use the coordinate charts on P'. So in this case, there are
two charts:

e Chart U = {u = 1}. Coordinates are defined by

SER
Il
8
<

so that we only keep the two coordinate (x,v) on this patch on X. The exceptional divisor (where
(xz,y) = (0,0)) appears as EnU = {z = 0}, and v is a free coordinate.

e Chart V = {v = 1}. Coordinates are defined by

= uy
=Y

S g w 8

= 1

)

and we only keep the coordinates (y,u) on this set. The exceptional divisor is EnV = {y = 0}
with free coordinate u.

On U n V, the change of coordinates from (z,v) to (y,u) on the overlap is

T =uy, v=u""
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Indeed, in chart U, we have v = y/x which substituting in chart V givs v = y/uy = u=!. The
change of coordinates v = v~ ! is the coordinate change on P'. The change = = uy is the coordinate
change on a line bundle over P'. Recall in general a section over a line bundle over P! transforms
as

o(v) =71(u)o(u)

where 7(u) is a local function on P* which is the transition function of the bundle. In the case
above, we have 7(u) = w. This transition function defines a line bundle

O(—-1) — P

So X is the total space of this line bundle. The other way to define O(—1) is to cover P! = {[u; : uz]}
by Uy = {u; # 0} and Uy = {us # 0}. Then declare the transition function on the overlap Uy n Uy
to be

u1

Ti2 = —,

U2
so that local sections transform as o1 = T1209. Coordinates over Uy are ( = us/uy and coordinates
over Uy are & = uj/uz. Then & = (7! and over Us, we do have 715(&) = &. Thus this is the same

space as above.

5.1.2 ODP in C?

We now illustrate how the blow-up procedure can be used to resolve singularities. Consider the
space

X ={xz—y* =0} c C>
This space is of the form F(z,y,2) = 0 with DF = (z, —2y, x), and there is a singularity preventing
it from being a submanifold at (0,0,0). We can resolve this singularity

c: X > X
by blowing up the origin. That is, we look at pairs
{(z,y,2), [u:v:w]} e C?x P?

with the relation

u

r_Y¥Y_~%
voow
The P? will produce 3 coordinate charts that we now describe:
e Chart U = {u = 1}. Coordinates (z,v,w) satisfy:
r=z, Yy=0vr, 2=WI.
and u = 1, v = v, w = w. The defining equation for X becomes
z(wr) — (vr)? =0

which is 2%(w — v?) = 0. Recall En U = {z = 0} is the exceptional divisor, so we throw out the
x2. The resolution of X is in this chart is then defined by

w—10v2=0
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which is smooth, and called the proper transform. Therefore X has two coordinates (x,v), and the
exceptional divisor in X is the curve x = 0 with v a free coordinate.

e Chart V = {v = 1}. Coordinates (y,u,w) satisfy

r=uy, y=Yy, =z=wYy,

and the proper transform is
uw —1=0.

If g = uw — 1, the only problem with Dg = (w,u) is when (w,u) = 0 which is not on the curve
uw —1 =0. So X is smooth with two coordinates (y,u) and exceptional divisor at y = 0.
e Chart W = {w = 1}. Coordinates (z,u,v) satisfy:
r=uz, yYy=vz, z=2z.
and u = u, v = v, w = 1. The proper transform is
u—v?=0.

Therefore X has two coordinates (z,v), and the exceptional divisor is the curve z = 0 with v a free
coordinate.

Next, we note that X is the total space of the line bundle @(—2) — P'. To see the P! coordinate,
convert from U to V on U NV to obtain

v=y/r=y/uy = 1/u.
For the fiber,
r=Yy

on U n V, so nothing going on here. Converting U to W on U n W gives v = v, but for the
fiber

CL':’LLZ:’UQZ.

which is the transition function for O(—2). Recall that by definition sections of O(—2) transform

as

5=r1%0

where 7(v) = v is the transition function on O(—1).

5.1.3 ODP in C*

Before discussing singularities, we recall that the blow-up of C™ along a subspace Z replaces Z by
the projectivization of its normal bundle P(NZ). We give the concrete example of the blow-up
of

Z = {29 =24 =0} cC.

The blow-up along Z is

X = {((21722723524)7 [u : v]) eC'xP": (22724) € [u : U]}a
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in other words

The P! provides two charts for Z.
e Chart U = {u = 1}. Coordinates (21, 22, 23, v) are defined by

21 =21, Zo =29, 2Z3=23, Z24=002, u=1 v=v
with exceptional divisor E N U = {z1 = 29 = z3 = 0}.
e Chart W = {v = 1}. Coordinates (z1, 23, 24, u) are defined by

Z1 =21, R9=1UZy, R23=23, 24=24, U=Uu, v=1
with exceptional divisor E NV = {z1 = z3 = 24 = 0}.
Consider now the ODP singularity

V = {2120 — 2324 = 0} < C*.

Note that this singulariy is the same as {3, 2? = 0} by a change of coordinates (4.24). We can
desingularize this space by blowing-up C* along Z = {23 = z4 = 0} and taking the proper transform
V.

e Chart U = {u = 1}. Using the relations above, the equation for V' becomes
2129 — z3(vz2) = 0.
We throw out z5 = 0 to obtain the proper transform
21 —vzs =0,
which is now smooth. Therefore here V has three coordinates (22, 23, v), and the relations are
2] = V23, 2o =23, Z3=23, Z4=0Z
on U.
e Chart W = {v = 1}. Similarly as above, the proper transform appears as
uz1 — 23 =0,
and here V has three coordinates (#1, 24, u) and the relations are
z21 =21, 29 =UZy, 23=UZl, 24 = 24.
on W.

We note that V can be identified with the total space of O(—1) @ O(—1) — P'. For this, we
compute the change of coordinates on the overlap U n W. Relabel

(07574) = (2272371})7 on U
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(575,5) = (21,247’11,) on W.

Then chasing relations gives for example,

and altogether

This is the change of coordinates on the total space of O(—1) ®O(—1) — P! with fiber coordiantes
5,0 and P! coordinate ¢. Thus we have a resolution of singularities

c: V-V

where the origin in V is replaced by o~!(0) = P'. This can be seen since in local coordinates on U
then o~1(0) is freely parametrized by coordinate v (and coordinates 2o = z3 = 0), and on V then
o~ is freely parametrized by coordinate u (and coordinates z; = z4 = 0), and on the overlap we
noted u = v—!. We note that the modulus

4
212 = 3] l=if?
i=1

on V c C* becomes on V the function
121 = Jvzs|* + |22l + [25]* + vzel* = (1 + [C1*)(lo]* + |s*)
over the U chart. In the V' chart, then
[2? = @+ &) (|5 + [3]).

We recognize this as
[21% = (0, Ol s

|
where hpg is the Fubini-Study metric on the O(—1) fibers.

In summary, the total space of the bundle O(—1) ® O(—1) — P! is given by two trivializations
{U,(0,5,¢)} and {V,(5,5,€)} with £ = 1/¢ and § = (s, 6 = (0. The set |z| = 0 is a P

Definition 5.1. A (—=1,—1) curve C in a compact threefold X is defined by C =~ P! and there
exists a neighborhood of C which is biholomorphic to a neighborhood of {||z|| = 0} in the total space
O(-1)@®0(-1) - P

5.2 Smoothing a nodal singularity

We return to the nodal singularity

4
V={>(z)=0cC"
i=1

We see that V' is a cone, since if z € V then so is Az for A € C. We also have the radius function

EREDNETS
i
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On this cone, we have the holomorphic volume form
1
Q= Z—dZQ Adzg A dzg, on {z1 # 0}
1

and the corresponding formula on the other open sets {z; # 0}. These local expressions glue on V
to give a global holomorphic volume form. Next, we write

2k = T + 1Yk

The equation becomes
0= (|z[* = [y[*) + 2z, ).

Since |z|? = |x|? + |y|?, this constraint is equivalent to

2
z
w2 =L @y =0

For each fixed r > 0, the cross-section where |z|| = 7 is seen from here to be a S? bundle over S3.
These are topologically trivial, so for each 7 > 0, the cross section where |z| = r is S% x S2.

The smoothing of V' is given by
4
Vi={D (=) =1t}
i=1

This is smooth because the only point where the derivative of Z?zl(zif is not surjective is at the
origin, which is not included in V.

After rotating coordinates z, we may suppose t > 0. The defining equation becomes
t= |.’I,‘|2—|y‘2, <$,y>=0

Since |z|? =t + 2|y|?, we see that
2] > .

The point {||z|?> = 0} = V has been inflated to {||z]? =t} = V4, which is

|$‘2 =t y=0.
The space of  describes an S? of vanishing radius as t — 0. This is sometimes called the vanishing
sphere.

Lastly, we note that V; also admits a holomorphic volume form, given by local expressions such
as

1
Q = ;dzz A dzs A dzy, on {z # 0}.
1
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5.3 Candelas-de la Ossa metrics
To summarize our discussion so far, we have described two ways to resolve the singular space
V={Zzi2=0}c(c4
The first is by small blow-up, which replaced the origin by P! = S2. We call this the small
resolution )
oc: V-V
The second is by smoothing, which replaced the origin by S3.
Vi={) |zl =t} C"

Candelas-de la Ossa [2] constructed a sequence of metrics on both sides. We will discuss how one
side of the sequence sends the area of a holomorphic curve P! to zero, and the other side sends the
area of a special Lagrangian 3-sphere to zero.

5.3.1 Metrics on the small resolution

We work on the total space O(—1) @ O(—1) — P! with two coordinate charts (\,u,v) and (X, @, ?)
satisfying the change of coordinates

We have the well-defined function
7= 1+ M) (Jul? + [v?),

which measures the distance to the zero section P! (coordinate \) along the O(—1) fibers (coordi-
nates u,v) using the Fubini-Study metric. For a > 0, the Candelas-de la Ossa ansatz is

Weo,a = 100 fo(T) + da’wrg.

for some function f,. Note that
L’l Weo,a = 4a2V01(IP’1,wFS) — 0, a—0.
We want to solve for f, such that these metrics are Ricci-flat. We expand the ansatz as
ia[f’TB log T:| + 4a’wps
and using wpg = 100 log(1 + |A|?),
Weo,a = [(f” + 77 fYior A 87'] + [f’n'(?a log(|ul?® + |’U|2):|
+ [(f/T + 4a2)WFS]- (5.1)
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3

co,a*

To compute the Ricci curvature, we first compute w
to zero. For example

We note that these 3 terms each square

2
[iaé‘log(|u|2 + |v|2)] = 0. (5.2)
Indeed,

d0log(|ul? +|v|*) = ! - { [(|u|2+ |v[?)(du A dti+ dv /\dv)] — [(udu+vdv) A (udu+vdv)] }

(lul? + [v[?)

Squaring this is of the form (« — 3)? where 82 = 0. A direct computation then shows a? — 2af3 =
2(Jul? + [v|*)? = 2(Ju|? + |v|*)? = 0. This verifies (5.2).

Going back to (5.1), computing w?, , is of the form (a + b+ ¢)® = 6abe since a® = b*> = ¢* = 0. We
have
Wi =6+ T (f'T + 4a?)ioT A 0T A wps A i00log([ul? + |v]?).

co,a

Next, we have -
wrs = (1+[A2)"2id\ A d),

and
0T A OT = <(|u|2 + [vHAAN + (1 4 [A?)(adu + vdv)) <(|u|2 + [vHAdX + (1 4 |A?) (uda + vdv))
and

d0log(|ul? + |v]?) = ! 5 ((|u|2 + [v*)(du A da + dv A dv — (ddu + vdv) A (udi + vd@))

(lul® + [v[?)
Using this, direct calculation gives

i0T A OT A wps A i001og(Jul? + [v]?) = c(idA A dN) A (idu A di) A (idv A dD).
Therefore, writing weo, = i(gco,a)j,;dzj A dZz*, then up to a constant we have
det geoa = (f"f'm + (f)?)(f'm + 4a®).

Side note: at A = 0, in (A, u,v) coordinates the metric is

f'T + 4a? 0 0
9eo,a(0,u,v) = 0 o fruo
0 frow [l

Let v(7) = 7f’. The determinant in terms of +y is

det geo,a =7 Y(v + 4a?) !

To find a Ricci-flat metric, from R;; = —0d;0; logdet g we look for solutions to det geo,a = const,
which is the equation (with convenient choice of constant)

2
Yy +4a%) = o7
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This has solution

73+ 6a%y? = 72

This is

7(f2)® + 6a*(f7)? = L.
From here, we note that if f; is a solution for a = 1, then f, = a®f1(7/a®) is a solution for arbitrary
a. We discuss the solution f for ¢ = 1 and obtain the other f, by rescaling.

We look for a positive solution of 7y3 + 6y% = 1 with y = f/(7). At 7 = 0, we choose the solution
y = 1/4/6. It turns out that there is an explicit solution y(7) > 0 on 7 > 0 given by

T z

1 4
y== [z +- - 2], 2 =273 + (r* — 327212 — 16) /5. (5.3)
The function f; is then defined on [0,0) and given by

fin = | "yt

0

By construction, it solves
(" fr+ ()7 +4) =1
The form we,, 1 is > 0, since it is given by (5.1) with f' > 0 and f”7 + f' > 0.

Next, we show that f, — fo smoothly on compact sets away from u = v = 0. We study the
asymptotic behavior of f; as 7 — . For 7 > K, then the Puiseux series of (5.3) turns out to
be

16

2
y=71"Y3 - 4553 _ 37*7/3 +...
T

Integrating gives

2/3 —2/3

f1(r) = com° + c1log T + ot +oegT M3 4L
Therefore when 7 > Ka?, then

—23 4 03a67_4/3 + ...

fa(T) = com3 + c1a®log a1 + cpa’r
Therefore f, — cofo as a — 0 on compact sets disjoint from {7 = 0}, where
fo=7Y3 Weopo = i00TY3.
At the level of metrics, the expansion is
Weo,a — Weo,0 = 4a’wpg — c1a%i00logr — caa*iddr—2 — czabioor— + ...

on {r = Kpa}, where r = 713 Therefore Weo,a = Weo,0 s a — 0 uniformly on compact sets which

are disjoint from the exceptional curve P! = {7 = 0}.

Remark 5.2. Let us rewrite things slightly differently. Rescale the metrics so that ¢y = 1, let
r =13 so that r = (1 + |A?)Y3(Jul?> + |v]?)"/? and

A7 2 2 ok
Weo,0 = 10017, Weo,a = a8 _1Weo,1
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where
Sr(A\ u,v) = (A, R34, RB/QU)

satisfies SHr = Rr and Shweo0 = R%weo0. Let Ag = {R < r < 2R} and note Sg : Ay —> Ap. We
pullback the compact set estimate

[i00(f1 — fo)lw, < C, {1 <7 <2}

to obtain -
1008} (f1 = fo)lgtw, <C, {p™' <7 <2p7!}

which, using |T|S,"fw0 =|T|,2w, = p 2T |u, for T = [T};], implies

2
sup |wco,1 - wco,0|w0 < CP
p—ISTSQP—l

and
-2
|Weo,1 = Wolweyo < O™ 7.

We now pullback this estimate via S,-1.

[Sa-1(@eon = wWeo o)l wpyo S Ca*r=2.

Therefore
* -2 —2
|Sa—lwco,1 —a wco,0|wco,0 < CT )

and
-2 2
|wco,a - Wco,0|wco,g < CT a

which shows that wee ¢ — Weo,0 as @ — 0 on sets {r > €}.

5.3.2 Metrics on the smoothings

In this section, we construct Kahler Ricci-flat metrics on V;. For t € C, consider as before
4
Vi={) (w)* =t}
i=1

with radius function 7 = Y |w;|%. Consider potentials of the form

for f to be determined. To find Kéahler Ricci-flat metrics, we solve
(i00p)® = iQ A Q.

We compute - -
Jdp = f'or,
and ~ - -
i00p = f'iooT + f"iot A OT.
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Its Monge-Ampeére mass is
(i00p)® = (f")3(ioor)® + 3(f")2 f"(i00T)* A idT A OT. (5.4)

‘We have - B
0T A 0T = wijw;dw; A dwj, 00T = Edwk A dy,.
k

We now compute in coordinates (wi,ws,ws) on V; over the chart {wy # 0}. On {ws # 0}, we
have

1
O = — dwy A dwy A dws.

Wy

Therefore
iQt AN Qt = 2dw1 AN d’tf)l) A (Zd’wg AN d’lz}g) A (Zdwg A d’lf)g,)

1
w2
We write 1

du = e (idwy A dy) A (idwg A diwg) A (idws A didg)
4
for simplicity. We need to equate this to (iddy)? (5.4). For this we will use the defining relation of
V4, which gives

4

1
Z wrdwg =0, dwg = —— (wrdwy + wadwy + wsdws).
k=1 Wa

Using this, we can compute the first term in (5.4) to be
(i0oT)® = (3\)rdp.
Indeed,
(i00r)* = (i®3)[dwita2s3 + dwita41 + dwitssar + dwasssail

= (i33!)[1 +

5 (lws]? + wa|® + [w1[?) | dwy12333- (5.5)
|wa

Next we compute the second term in (5.4). We start with

(idwy A diy) A (idws A dig) A iOT A OT
= M1 A Aoz A (JwsPAgz + [wal* Mgz + wa@3Asg + wadady3) (5.6)
with the notation A;; = idz; A dz;. By the defining relation
AT A Agg AGOT A OT
wy (w3)? 3 w4(w3)2)

Wy Wy

2(|u/3|2|w4|2 —Re (w4w3)2)d/¢ (5.7)

(Jws|* + |ws]* -

AT A Aoz A Azg

We also have

MI A Agg A GOT A OT

= A1 A Mg A (JwePAaz + [ws|*Agz + wataAez + wahsAsz) (5.8)

79



which by the defining relation becomes

MI A Mg A GOT A OT

lwo?lws|*  |wal?|ws]?  (wswa)?  (Waws)
= + - - At A Aoz A Mgz
( IPAE |wa? wa 2 a2 JAMT A Aoz A Ag3
= 2(Jwo]*|lw3|* — Re (w3w2)?)dp. (5.9)

By symmetry,

(i00T)* A 0T A OT

= 4(|w1|2|w4|2 + [wo?|wa? + [ws]? wa]? + [wa]? [ws]? + [ws]? [wi]? + [we]? [wy]?

—Re {(’LUﬂI)Q)Q + (w1w3)2 + (w1w4)2 + (’lU21I}3)2 + (wzﬂ]4)2 + (w3w4)2}) du

Since [t|? = | Y w?|? and 72 = (] |w;]?)?, we obtain
(1007)% A Q0T A OT = 2(7% — |t|*)dp.
Substituting this into (5.4) gives
(1080)° = 31| (17 + (PP = o) |

Thus to solve (i0d¢p)3 = i A Q, we need to solve

()7 + (F)2f" (2 = t?) = 1/6,

for a function f(7), and where t is a fixed parameter. Here is the result. When ¢ = 0, the solution
is proportional to

folr) =3

and for given ¢ # 0, the solution is proportional to
cosh™ 1 (7/|t])
fi(r) = 2_1/3|t|2/3f (sinh(2)) — 2) /34,
0

Remark 5.3. Let’s work out how to find this solution when ¢t = 0. The ODE is
6r[(f)° + (7S] = 1
Let 7 = 52 and v(s) = s2f’(s?). Then we have
() = (L)) = 6% + (B2 (@s)f" = 651 + 521"

The equation becomes
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which admits the solution 3 = is‘l. Therefore

which for f’ > 0 is the ODE

The solution is f(7) = ¢;7%/3.

Remark 5.4. Let’s compute the asymptotics of f;. Its derivative is

1/3
1
fi(r) = (sinh(2 cosh™ (7)) — 2cosh ™! 7'> N
2 _
We have sinh(2cosh™!(7)) = 27(7 — 1)Y2(r 4+ 1)"/2 and cosh™' 7 = log(t + v/72 —1). Then as
T — 00, the series expansion turns out to be

f(r) = QBB 4 a7 P log T + aor T3 + 0(7_10/3)
Integrating gives
f(r) = cor?® + ayr 3 log T + asT Y3 + 0(7_7/3).

Therefore, if we let r = 7'/3, then

01 = cor?® + arr~tlogr + agr~t + O(?"_7).

Remark 5.5. The metrics w1 are asymptotically conical. We now describe what this means (see
[6] for more on asymptotically conical Kéhler-Ricci flat metrics). Let the Kéhler-Ricci flat metrics
be denoted

Weo,0 = 7/869007 Weo,1 = Zaa(ﬂl

We consider the map ® : V n {|z| > R} — V; given by

O(z) =2+ ——.
(z) x+2‘x|2

We will estimate the order of ®*w.,1 — weo,0- By the asymptotics of p1 and r = |lz]|%/3,

|()[Y* + O(|8()] ") log |@(x)])
= [2[*® + O(l| VD7 2|71 + O(|1@ ()|~ log |8(x))
— 7'2 + O(T_l) (510)

(®%@1)(x)

Therefore
O*p; — g = O(r 7).

Next, we start from

*
sup |(I) Weo,1 — Weo,0

Weo,0 < C’
1<r<2
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and pull this back via Sy : V — V, Sx(z) = A*?2 to get

sup |S¥i00(®*p1 — o)

A lgrg2) !

< C.

|S;‘\<UJ0070 ==

The definition of Sy is such that S§r = Ar and SFweo,0 = A2weo 0. Since
1SXi00(2* 01 — @o)l st 0., o = AATHi00(2 01 — 0) Lo

we conclude

wego < COTT2, (5.11)

Metrics satisfying estimates of this form are said to be asymptotically conical (with rate 3).

*
|® Weo,1 — Weo,0

Remark 5.6. Next, we notice that Sy(z) = A32z implies
Sy V1 — Vi

We assume t > 0. We have that
Weo,t = t2/352|11/3wco71

is a natural sequence of metrics, and we can check that it does agree with the sequence of explicit
metrics obtained earlier. The reason for the t¥/3 out-front is that far out on the cone r » R, then
Weo,1 ~ i00r? and S:‘,l/_gi&érQ =t~2/3 50 that these metrics Weo,+ are asymptotic to the cone idor2.
More precisely, let

q)t = St1/3 odo St*1/3 V- Vt,

then
|(I);:kwco’t - "JCO,0|wco,o < C|t|7“_3 (5.12)

Indeed, pulling back (5.11) gives

-3
St*—l/3w00:0 < C|t"/‘

* * %
|St_1/3(1) Weo,1 — St—l/:swco,O
which combined with
—2/3 F % —2/3 *
|t / (pt Weo,t — t / wco,0|t*2/3wco’0 = ‘(I)t Weo,t — Weo,0 Weo,0

gives the estimate (5.12). This estimate can be interpreted as weo i — Weo,0 ON compact sets away
from the cone singularity as ¢ — 0.
5.3.3 The cone metric

We return to the cone

4
V={Zzi2=0}g(c4
i=1

with holomorphic volume form Q = %dZQ A dzs A dzg. We will now equip this with a natural
Calabi-Yau metric.

Both sequence of metrics geo.q and geo+ agree at geo 0. Recall that O(—1) ® O(—1) — P! with zero
section removed can be identified with V' and the function 7 in both previous sections agrees in this
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identification. So we will work on V', and the Candelas-de la Ossa cone metric derived in the two
previous sections is, up to a constant, -
Weo,0 = ioor?

where r = | z||?/3.

Vo = {fz;";o} et V= {éz,-ifg e

= 2
wcoJo: 1 99or

= 12173

Here is the reason why the power 2/3 is natural. We are looking to solve Wg’o,o =i A Q. We can
rescale z — Az on both sides, which gives

(A1/3)3 = (A"1A3)(A~1N3)
which is consistent.
Since the cone radius is r, the natural scaling on the cone is
t- (21, 22, 23, 24) = (t3%20, 3229, 13 25,132 2})
since r(t - z) = tr.

We have explained why this metric is Kéhler-Ricci flat. We will now discuss why this is a cone
metric. Note that V is a cone, since if z € V' then Az € V for any A € C. In general, a cone metric
is a metric on (0,0) x 3 of the form

g=dr@dr+rgs. (5.13)

This type of metric is very useful in Riemann geometry. To see why, convert the Euclidean metric
gEue on R™ to polar coordinates (r,6%). It will be of the form (5.13) with gx, the metric on the
sphere S"~!. Riemannian geometry with metrics of the form (5.13) behaves like polar coordinates:
for example, the kernel of the Laplacian A, can be decomposed by separation of variables.

Here is why weo,0 can be put in this form. We insert a factor of (1/2) in the definition of we, = §i00r?
for convenience. Compute

Weo = 10(r?dlogr) = 2idr A Or + %00 log .
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We can write this as )

Weo = —dr A Jdr + 12 < — ;djdlogr>
where (J3)(X) = B(JX). This can be seen by writing dr = or + dr and Jdr = idr — ior.
Let n = —Jdlogr. To obtain the metric, we use gqo(X,Y) = weo(X, JY).

Jeo = dr @ dr + 2n®@n + r2dn(-, J-).
It remains to show that ‘ A _

n=mn(0)do*, dn(-,J) = a;;(0)df" ® db’ (5.14)

where the implicit function theorem gives local coordinates (r, %) near a given point.
e First, we note the following nowhere vanishing holomorphic vector field on V:

4 A
0 o . 0
é-:?)z]lzlg _T&,G_ZJ[T&F],

?

with 70, = %xza—i + %yl% This vector field generates the t- action on V in the sense
& =22 gtz
=2— <2, Z).
dt|,_, ’
From here, it follows that
¢(logr) =1,

so taking real and imaginary parts gives
0 0
—(1 =1 — (1 =0.
rar(ogr) , J[rar](ogr) 0

In R? with polar coordinates 7e*, we can think of J(rd,) = rds. This discussion implies 1(0,) =
—J(0r)logr =0 and so _

n= 771‘(7"7 e)dGZ
The next step is to show that 7; does not depend on r, and for this we will use the Lie deriva-
tive.

e Next, we note
L¢J = 0.

The Lie derivative is
Le(JX) = (LeJ)(X) + JLe(X)

and L¢(X) = [€, X] for vector fields X. So this amounts to showing

[ga Jaa] = J[fa aa]a (515)

fol

0 0 :
for 8a = EE or 5a = FET Since f = 32’1'07%,

this is readily verified directly.
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e We now show that
er?,,.n = O.

By Cartan’s formula, L,5. = dtys,.m + tra,dn. Since ty9,m = 0, we need to show
dn(ré,,-) = 0. (5.16)
Indeed, the invariant formula for dn gives
dn(rop, X) = romn(X) — Xn(ro,) —n([rér, X1])

= —ro.JXlogr + J[rd,, X]logr

= —rd,JXlogr + [r0,, JX]logr

= —JXrd.logr =0. (5.17)
Here we used the real part of [¢, JX]| = J[¢, X] (5.15).

e Altogether, since
4
dt

it follows that in a local chart we can write n = 1;(6)df* and n; does not depend on r. In other
words, n = p*ns where p: V — X is p(r,0) = 6. Similarly, (5.16) implies

dn(-,J-) = ayj(r, 9)d9i ® df’,

i (t’f‘, 9) dez

t=1

0= LT(?,-n =

and L,p,dn = 0 and L,s,J = 0 implies that «;;(#) does not dependent on r. We have proved (5.14),
and obtain the cone formula g = dr? + r2gs.

5.4 Special Lagrangian cycles
In this section, we show that the vanishing cycle is special Lagrangian with respect to the Candelas-
de la Ossa metric.

5.4.1 Definition of special Lagrangian cycles

We start with a review of calibrated cycles [15]. We say that ¢ € A¥(M) on (M, g) is a calibration
if for all k-dimensional submanifolds L then

lele], <1

pointwise. The norm is defined as: write |, = f(x)dvoly, and then take |f(x)|. Here dvoly, is
the volume form of the induced metric g|;. A submanifold L is calibrated with respect to ¢ if
SD‘L = dVOlL.

Let [L] € Hi(M,Z) be a fixed homology class. Any other representative can be written as L' =
L — d%. We consider the functional on [L] defined by

E(L) = J dvoly, —&—J dp, L =L-0%. (5.18)
/ b
In the standard definition of a calibration, we require dyp = 0 and the bulk term does not appear so

that this is the area functional. The more general definition is here for potential future application
to non-Kahler geometry.
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Proposition 5.7. Let L be a calibrated submanifold with respect to w. Then L minimizes the
functional E(L) in a given homology class.

Proof. First, we note

E(L) = L dvoly, = JL ®

When dp = 0, this is the topological number [¢] - [L]. We will show that this is the lower bound
of the functional. By Stokes’s theorem,

E(L) =L/dvoly + [L@—J/gp].

Using the calibration property, ¢|r/ < |¢|gdvol|r < dvol|rs, so

w12 oo [ [,

Let Q be a holomorphic volume form. Let w be a hermitian metric, conformally rescaled so that
Q] = 232 A special Lagrangian cycle is a submanifold calibrated with respect to Re. The
calibration argument implies that special Lagrangian cycles minimize the area functional

O

E(L) = JL dvoly,

in a given homology class [L]. We now show that Re () is indeed a calibration.

Lemma 5.8. Re(Q is a calibration. Furthermore, if L is a calibrated submanifold so that Re Q| =
dvoly, then w|r, = 0.

Proof. We closely follow Harvey-Lawson’s proof [15]. Let L € M. Suppose vy, va, v3 are orthonor-
mal vectors spanning 7, L. Harvey-Lawson’s identity is

|Q(U17U2,’L)3)|2 = |U1 N Uy N V3 AN JUl A JUQ AN J’U3|. (519)
(The norm of a top form u is |ﬁ|) Assuming this, then
|Q(’01,1}2,1}3)|2 < ‘U1||JU1‘ s |U3HJ’I)3| =1.

In fact, equality in Hadamard’s inequality is achieved if and only if the vectors are orthogonal. This
implies (v;, Ju)y = 0, which translates to w(v;,v;) = 0 and so w|r = 0. The inequality above is

|ReQ(vl,v2,v3)|2 + |ImQ(v1,v2,v3)|2 <1

Therefore, since the v; are orthonormal, then |[Re|z|, < 1 and Re(Q is a calibration. If equality
Re Q)| = dvoly, holds, then w|;, = 0 and Im Q| = 0.
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We now prove Harvey-Lawson’s identity (5.19). We start with the left-hand side. Let eq, €2, e3, Je, Jea, Jes
be an orthonormal basis for T, M. Since Q|, is an element of the 1 dimensional vector space A>°
it can be written |, = f(p)e' A &2 A &3 with

1
L = i(ek — iJek).

To find f(p) € C, we take the norm and use that |Q|,, = c. For suitable normalization (¢ = 2%/? as

will be computed below), we conclude |, = e@®)gl A g2 A g3,

Next, we expand v; in the basis e, &
Vg = Aék&'[ + Agka

Since Uy, = v, using uniqueness of expansion of a basis we obtain that A¢; = A%;. Since Q|, =
eel A e? A e?, we have

Qv1,v9,v3) = Q(A€1€g, A gem, Asey) = e’ det A.

Next, we compute the right-hand side of (5.19). Let e4 = Jey, e5 = Jea, eg = Jeg so that {e;} is
an oriented basis. Define a linear map M by its action on this basis

M(@Z) = v, M(J@Z) = J'Ui.

Then
vy A Jor A coug A Jug| = M(ep) A M(eg) A+ A M(eg)| = | det M|

To compute det M, we compute it in the basis €;,g;. We compute

M(ex) %(M(ek) —iM(Jex)) — %vk - %Jvk.

Using our earlier matrix A%y, and Jey, = iy, JE; = —igx, this is

7

1 _ _
M(Ek) = i(Ank;En + Anka) 5 (ZAnkEn — ZAnka) = A"pe,.

Similarly M (z;) = A%, and so in this basis

M =
0 A

Therefore det M = | det A|?, which proves the identity.
O

A useful formula for calibrated cycles are the special Lagrangian equations. The submanifold L is
special Lagrangian if it solves the equations

w|L = O, ImQ|L = 0. (520)

These equations imply that L is a calibrated cycle.
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Proposition 5.9. If L © (M,w,Q) solves the special Lagrangian equations (5.20), then L is a
calibrated cycle. This means we can orient L such that Re Q| = dvoly and L minimizes the area
functional in its homology class.

Proof. The key identity is that if w|;, = 0, then

ei& |Q‘w
23/2

Qlp = dvol. (5.21)

Therefore the conditions w|z, = 0, |, = 2%/? and ImQ|;, = 0 imply Re Q| = +dvol|.

To prove (5.21), fix a point p € T,,L and an orthonormal basis e1, 2, e3 of T,,L with dual basis e*.

Since w(e;, e;) = g(e;, Je;), the condition w|; = 0 implies that
{e1, ea, €3, Je1, Jea, Jeg}
is an orthonormal basis of T, M. Let {e*} the dual basis, and
eb = ek riget. (5.22)

One can check by the definition w(e;, e;) = g(e;, Jej) that w|, = >, €¥ A Je*, which in the basis
(5.22) is
wlp = %Zk:ak A &R,

The (3,0) form is
Ql, = f(p)et e ne?

2

for f(p) € C, since ¥ span A}D’O(M) and so any (3,0) form is a multiple of ! A 2 A 3. To identify

f(p), we use the formula for the norm

3

P p W
ZQ N Q = |Q|w§.
We see that
o 123133 IS . 1T, 05, a3
ilf|%e = o5 leieTie

Therefore |f|? = |©2]?/23 and

Ql, = 3z € NE NE
Thus »
e,
Q. 21‘%/2| et ne? A ed,
which is (5.21). O
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5.4.2 Examples on the smoothing

We give two examples of special Lagrangian cycles on
Vi={2+25+22+25=t}cC*

for t > 0, with 3-form

1
Oy = —dzy Adzo A dzs.
24

The Calabi-Yau metric on V; is the Candelas-de la Ossa metric weo ;.

e Vanishing cycle L = S3. For this, we use the Candelas-de la Ossa metric
Weot = 100fi (1), T = Z EAR
A special Lagrangian 3-sphere is given by
L={lz1*+ 22> + |23* + |24|* =t} < Vi

If 2, = @, + iyg, the constraint for V; implies t = |z|? — |y|?, (x,y) = 0, and the constraint for L is
|z|? + |y|? = t. Therefore y = 0 and |z|?> = t, so L is topologically a 3-sphere. Since y = 0, we see
that (Im ;)| = 0. Since 7 is constant, we see that weo |1, = 0.

e Special Lagrangian discs. Here we will use the metric wgye = idz® A dZ* restricted to V;. It
is not Calabi-Yau, so this example involves a more general setup. Consider the two discs Ly, L_
given by

Ly ={af+a5+a23 <t} Vin{y=0}.

z4 = tq/t — 2% — 23 — 23

These share the same boundary 0L which is a 2-cycle S? which lies on the holomorphic surface
z4 = 0. Since y = 0, we have (Im )|, = 0 and wgy.|r, = 0.

with
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6 Conifold Transitions: Global Geometry

6.1 Overview

Let X be a compact Calabi-Yau threefold. A conifold transition X - Xo v~ X; is defined as
follows:

Step 1: Find holomorphic curves C; < X with a neighborhood biholomorphic to the open set
{|z]| < 1} in the total space O(—1) ® O(—1) — P!, with C; = {|z|| = 0}. Such curves C; are called
(—1,—1) curves.

Step 2: Contract each C; to a point p; and obtain singular space Xy. A change of variables shows
that each p; admits a neighborhood biholomorphic to {Z?Zl 22 =0} < C* (§5.1.2).

Step 3: Realize X as the central fiber of a deformation 7 : X — A such that X; is smooth for
t # 0 and locally near p; we see the local smoothing {>)2? = t}. For this to exist, we need to
satisfy Friedman’s condition on the initial curves, and the global smoothing result of Friedman-
Tian-Kawamata is stated below. The smoothing has the effect of replacing each p; € Xy with
3-sphere S3 (§5.2).

Theorem 6.1. [9, 27, 18] Let X be a Calabi-Yau threefold with (—1,—1) curves C; ¢ X. Let
©: X — Xo be the blow-down map sending C; to nodal singularities p; € Xqo. If the curves are
linearly dependent in homology, so that

Z/\Z[CZ] =0¢€ H4(X,C)

with \; # 0, then Xy admits a smoothing X;. This means there is a complex space X with a proper
flat map © : X — A such that 7=1(0) = X and 7= 1(t) = X; is a smooth complex manifold for
t#0.

Let C; be an initial configuration of (—1, —1) curves on X satisfying Friedman’s condition }} A;[C;] =
0. The theorem above guarantees the existence of a conifold transition X — Xy v X;. Here is a
summary of known results on the geometry and topology of such a transition:

e X, is a compact complex manifold with trivial canonical bundle. [9]

e It is conjectured [1] that all Calabi-Yau threefolds can be connected to each other by conifold
transitions.

e However, a conifold transition may produce an X; which is non-K&hler. (Examples at the end
of §6.2) This suggests that these limiting non-Kéhler objects should be included in the web of
Calabi-Yau threefolds.

e Though non-Kéahler in general, X; is expected to satisfy the ddbar lemma, but as far as I can
tell, this is still unknown in full generality [10].

e The topological change is
N=Fk+c¢,

where N is the number of nodes, k is the decrease of by, and 2c is the increase of b3. (§6.2)

e [11] There is a sequence of metrics (X, go) with dw? = 0 such that g, — go uniformly on compact
sets for a limiting metric go on Xy locally modeled near the singularities by a scaling of gco,0,
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and
Vol(Cy,94) — 0, a— 0.

On the smoothing side, for small ¢ there is a sequence of metrics (X;, g;) with dw? = 0 and g; — go
uniformly on compact sets with

VOl(Li’t, gt) — 07 t— 07

where L;; = {|z]|? = |t|} € V4 © X are the vanishing 3-spheres. This result is due to Fu-Li-Yau
[L1]. Near the singularities, the FLY metrics are modeled by the Candelas-de la Ossa metrics:
|gt - )‘igco,t|gca,t < C|t‘2/37 on X N {T < 1}
Here 7 : X — (0,00) is a function which agrees with r = [2|?® near the singular points and
r~1(0) = Sing(Xy). Each ith component of X; n {r < 1} is biholomorphic to V; n {r < 1}, and the
metric g; is close to a A;-scaled version of g, for A; > 0. For higher order derivatives, the estimate
is
V50 (90 = Ageo)lgeae < CultPPr™", on X 0 fr < 1}

Let us give a few more details of the Fu-Li-Yau construction. There are two steps:

(A) The construction of a balanced metric wg on X satisfying:

- On Xo\{r < 1}, we have wyg = wey, where wey is a Calabi-Yau metric on X.

- On Xy n {r < e}, we have wy = Rwe, 0. Here € > 0 and R > 1 are chosen parameters.
- On Xy n {e <7 < 1}, we have wg = i0df for some € AV (X, R).

Here we go freely between X(\Sing(Xo) and X\ u C; since these are biholomorphic.
(B) The construction of a balanced metric w; on X;:

This starts by constructing an approximate metric w;:

- On X, n {r < ¢}, we have w; = Rweo .

- On compact subsets K < X\Sing(X), we have that @; converges to wy smoothly uniformly as
t— 0.

This metric w; is not balanced, and is globally corrected by

w2 =2 +60; + 0,

The correction # comes from solving Ey(vy;) = 07 (E; is the Kodaira-Spencer operator) and
0; = 00707y, —00; = Ey(7y¢). Fu-Li-Yau show that the correction is §; is small: it satisfies |0;]s, <
C|t>/3.

e [5] The vanishing cycles L; ; € X; can be represented by special Lagrangian 3-spheres with respect
to the global geometry g;. Thus from the point of view of submanifold geometry, the transition
exchanges holomorphic 2-cycles with special Lagrangian 3-cycles.

e [4] The compact manifolds X; for small ¢ admits a pair of metrics (g¢, ht) solving

gijpjfc = Oa gijqufc =0
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where H is the 3-form field strength H = i(0 — 0)w and F is the 2-form field strength F =
d(h~10h). In particular, X; admits balanced metrics and has stable tangent bundle. (The equation
¢'"H ;. = 0 is equivalent to dw® = 0.) Note that Calabi-Yau metrics goy solve these equations for
h = g = gcy, so these are generalizations of Calabi-Yau metrics on the non-Kéhler spaces reached
by conifold transitions.

o It is conjectured by S.-T. Yau that the pair (g, h) can be further deformed to solve the Strominger
system: _
d(|Qew®) =0, ¢*FP 5 =
i00w = o (Tr Ry A Ry, — Tr Fy, A Fy). (6.1)

The equation d(|2|,w?) = 0 can be solved by conformally changing the Fu-Li-Yau metric on X,
but whether (6.1) is solvable through conifold transitions is unknown.

6.2 Topological change
In this section, we follow the exposition given in Rossi’s survey [23].

Let X — X v X be a conifold transition with N nodes. We denote the N holomorphic curves
which are being contracted by C; < X, and [C;] € H2(X,R) their homology class. A transition
decreases by and increases bz, and we define the jumps in homology rank by

bo(Xy) = ba(X) — K, bs(Xy) = bs(X) + 2c.
With this notation, the fundamental identity for topology change to be explained in this section
is:
N=Fk+ec. (6.2)

and k is also equal to
k = dim subspace in Hy(X,R) generated by [C}]. (6.3)

As a consequence of N = k + ¢, we see that if a transition exists then there must be a linear
dependence relation between the N curves [C;]. Viewed another way, we can deduce the change in
bs by the initial position of the 2-cycles C; by ¢ = N — k. Also, ¢ > 1 is the number of independent
vanishing 3-cycles in Xj.

We will need the following properties:

e There is a neighborhood U; of each (—1,—1)-curve C; in X which is diffeomorphic to S? x B4,
This means that though the bundle O(—1) ® O(—1) — P! is not holomorphically trivial, it is in
fact a trivial rank 4 real vector bundle. For the diffeomorphism to S? x B*, see [23].

e There is a neighborhood Uy ; of each vanishing cycle L; in X; which is diffeomorphic to S3 x B3.
We discussed earlier how the equations of V; can be written as t = |z|> — |y|?, (z,y) = 0. Let
p = z/(t + |y|?)"/?, so that (p,z) € R* x R* satisfy |p| = 1, (p,y)> = 0. This is diffeomorphic to
the total space of T'S3, which is known to be a trivial bundle over S3. (A construction of a global
basis of sections of T'S® can be constructed using quaternions.)

. Letffi - Qi be two nested neighborhoods of a (_13 —Al)—curve in X as above. Then the annulus
A = U;nU, is homotopic to 5% x 3. This is because V\U; is diffeomorphic to the cone Vo\{|z|| < 1},
whose cross-section is S% x S?. Similarly, 4, = Uy n U, ; < X, is homotopic to S* x 5.
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Let U = uzNzlﬁi c X be an open set containing all curves C; with U= 18? x B%, and U, =
UN Ui € X, be an open set containing all vanishing cycles with U; = 0uS® x B2 We now
compute the topology of X; based on the knowledge of X. We start with:

Lemma 6.2. by (X) = by (Xy).
Proof. Recall the Meyer-Vietoris sequence: if X = U u V then
s H(UNV) > Hy(U)®H;(V) > Hy(X) > H, ((UnV) > H_ 1 (U)®H;_1(V)...
We apply this to X = (X\U) u U, so that
Hy(uS? x §2) - H{(X\U) @ Hy(uS?) — Hy(X) — Ho(uS® x §?) — Hy(X\U) @ Ho(S?)

while on X, we have

Hy(uS? x §%) — Hy(X\U) @ Hy(u{pt}) — Hi(X) — Ho(uS® x §%) — Ho(X\U) @ Ho(u{pt})
and on X; we have

Hy(US3 x 8?) — Hy (X \Uy) @ Hi1(uS?) — Hi(X,) — Ho(uS? x 5?) — Ho(X\Uy) ® Ho(uS?)

To connect these diagrams, we use the contraction maps X > Xand X; > X , and that X \U and
X¢\Uy are both diffeomorphic to X\U (as they are a smooth family of complex structures). The

5-lemma implies that Hy(X) = H1(X) = H1(X:). Recall the 5-lemma: given a diagram between
two exact sequence

A B C D E
f g h li J
A’ B’ o D’ E'
If g, 7 are isomorphisms, f surjective and j injective, then A is an isomorphism. O

Since we are assuming that Xisa simply connected Calabi-Yau threefold, it follows that b1 (X;) =0
on the other side of a conifold transition.

Lemma 6.3. by(X) = by(X,) — K, where k is the dimension of the subspace in Hy(X,R) spanned
by the [C;].

Proof. Let C = UC; © X be degenerating 2-cycles and L = UL; < X, be the vanishing 3-cycles.
The long exact sequence for relative homology gives

o= Hy(C)HBHy(X) — Ho(X,C) — H (C)S - (6.4)

Recall that relative homology H (X' ,C') means: homology of space where we identify all points in
C' to be a single point (or cycles a € Z,,(X) such that do € Z,_;(C)). But we will not need to have
intuition for this definition here; the only properties we will use is the exact sequence above, and
the Lefschetz duality

Hi(X,C) =~ H'(X\C)
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which holds for topological manifolds and implies in our setup that
Hi(X,C) = Hy(X,,L), (6.5)
since X\C =~ X;\L. The long exact sequence for relative homology gives

N
U[Ci]ﬁHQ(X>£’H2(X7 C)—0.

i=1

By the rank-nullity theorem and (6.5),

dim Hy(X) dim Hy (X, C) + dimker ¢

= dim Ho(Xy, L) + dim im ¢y. (6.6)

If x is the dimension of the subspace in Hy(X) generated by [C;], we conclude

k= bo(X) — dim Ho(X;, L). (6.7)
Since Hy (X}, L) =~ Ho(X}), we obtain
k= bo(X) — ba(Xy). (6.8)
This can be seen by the exact sequence
Hy(L) — H(X¢) — Ha(Xy, L) — Hi(L)

which for L = ul¥ ;| S% implies Ha(X;) = Ho(X;, L). O
Lemma 6.4. N =k +c¢

Proof. Recall the Euler characteristic x = 22:1(—1)kbk. The excision property for the Euler
characteristic is: for U € X open,

X(X\U) = x(X) = x(U).
In our setup, this gives o X
X(X\U) = x(X) = Nx(5? x BY)
and
X(X\Ur) = x(X¢) = Nx(5° x B?).

Since X\U and X,\U, are diffeomorphic, and x(S2) = 2 and x(53) = 0, plus x(S? x B*) = x(5?)
by deformation retraction, it follows that

X(X) — 2N = x(Xy).

We proved that X and X; have by =0, so x = 2 + 2by — b3 and we obtain

N = (ba(X) — ba(X31)) +

5 (5(X0) = bs (D).
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Remark 6.5. If the initial manifold has by(X) = 1 (if for example X is a quintic threefold in
P%), then two homologically linearly dependent curves C7,Cy produce a conifold transition where
the resulting manifold has ba(X;) = 0. A compact Kéhler manifold cannot have by = 0, since w
represents a non-zero cohomology class in H?. We see that conifold transitions possibly take us out
of Kéahler geometry.

Example 6.6. Here is another example of a non-K&hler transition from [2]. Start with a small
resolution X of a singular quintic P = Z3 G(Zo,...,Zs)+Zys H(Zy,...,Z4) = 0. This has ht! =2,
and there are 16 (—1,—1) curves C; = X from the small resolution, but they are all linearly
dependent. Suppose they are generated by C;. Take 2 curves Cy,Csy; they satisfy Friedman’s
condition so we can produce a transition X - X v~ X;. Now the other 14 curves are trivial in
homology [C;] = [0D;]. Furthermore by [Remark 3.2.8, Lemma 3.3.1] in McDuff-Salamon [22], the
(—1,—1) curves deform along the family so that C;, are holomorphic curves. If X; admits a Kéahler

metric w;, then
0< f Wt = J dwy = 0,
Ci¢ D¢

which is a contradiction. So X; is non-Kahler, but by (X;) = 1.
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