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ON THE NUMBER OF SUMS AND PRODUCTS

JÓZSEF SOLYMOSI

Abstract

A new lower bound on max{|A + A|, |A ·A|} is given, where A is a finite set of complex numbers.

1. Introduction

Let A be a finite subset of complex numbers. The sum-set of A is A + A = {a + b :
a, b ∈ A}, and the product-set is A ·A = {a · b : a, b ∈ A}. Erdős and Szemerédi [7]
proved the inequality

max(|A + A|, |A · A|) � c|A|1+ε

for a small but positive ε, where A is a subset of integers. They conjectured that

max(|A + A|, |A · A|) � c|A|2−δ

for any positive δ. (In this paper, c stands for the general constant. Some authors
use the n � m or n � m notation instead of our n � cm or n � cm.)

After improvements given in [9], [8], and [3], the best bound so far has been
obtained by Elekes [4], who showed that ε � 1/4 if A is a set of real numbers. His
result was extended to complex numbers in [13] and [11]. For further results and
related problems, we refer the reader to [1] and [5].

In this paper, we prove the following theorem.

Theorem 1. There is a positive absolute constant c such that, for every n-
element set A,

cn14

log3 n
� |A + A|8 · |A · A|3,

whence cn14/11/log3/11 n � max{|A + A|, |A · A|}.

Nathanson and Tenenbaum [10] proved that the product set should be large,
namely |A|2−ε, if the sumset is at most 3|A| − 4. Chang [2], and independently
Elekes and Ruzsa [6], proved a similar bound if the sumset is at most c|A|. As a
consequence of Theorem 1, we obtain the following corollary.

Corollary 1. If |A| = n and |A + A| � Cn, then |A · A| � cn2/log n.
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2. Proof

Our proof is based on the following estimates of the number of incidences between
lines and points.

Theorem 2 (Szemerédi and Trotter [12]). The maximum number of incidences
between n points and m straight lines of the real plane is O(n2/3m2/3 + n + m).

Corollary 2 (Szemerédi and Trotter [12]). Given a set of n points on the
real plane, the number of k-rich lines (that is, lines incident to at least k points) is
O(n2/k3 + n/k).

In the proof of Theorem 1 we use Theorem 2 and Corollary 2 on Cartesian
products only; similar statements are easy to prove for complex lines in the complex
plane. (The general case has recently been solved by Tóth [13].) The following
lemma has been proved but not published by the author.

Lemma 1. Given two sets of complex numbers S1 and S2 with sizes |S1| =
n1 and |S2|= n2, let S =S1 ×S2 be the Cartesian product. The maximum
number of incidences between S and m complex lines of the complex plane is
O((n1n2)2/3m2/3 + n1n2 + m).

Proof of Theorem 1. If |A · A| = t, then the number of pairs (ai, aj), (au, av)
such that ai · aj = au · av (where ai, aj , au, av ∈ A) is at least cn4/t. Then the
number of pairs (ai, av), (au, aj) ∈ A × A, where ai/av = au/aj , is at least cn4/t
as well. Let us partition the elements of A × A into classes (lines) L1, L2, . . . , Lk

using the relation (ai, aj) ∼ (au, av) if and only if ai/aj = au/av. Each class is a
collection of collinear points, and the line through them contains the origin (0, 0).
If li denotes the size of Li, then

k∑
i=1

(
li
2

)
� cn4

t
.

We partition these lines into sets C1, C2, . . . , Cs (s � log n2) with respect to their
‘squared’ sizes. Then Li ∈ Cj ⇐⇒ 22(j−1) <

(
li
2

)
� 22j . There are at most log n2

sets, so there is at least one set, Cj , which covers many elements. Let Xj be a set of
all pairs ((aν , aµ), (a�, aρ)) such that there exists Li in Cj with (aν , aµ) and (a�, aρ)
both in Li. Then at least one of the sets Xj is large. Also,

|Xj | = |{(aν , aµ), (a�, aρ) : (aν , aµ) ∈ Li, (a�, aρ) ∈ Li, Li ∈ Cj}| � cn4

t log n
,

and therefore
22j |Cj | � cn4

t log n
. (2.1)

This is the key element of the proof: every point of A×A is incident to at least |Cj |
lines, each of them incident to at least 2j−1 points of (A+A)× (A+A). Indeed, the
translated lines (au, av) + L with L in Cj are incident to (au, av), and the points
of the lines are points from (A + A)× (A + A) (see Figure 1). We denote the set of
translated lines by L, as follows:

L = {(au, av) + L : L ∈ Cj , (au, av) ∈ A × A}.
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(A + A) × (A + A)

A

A

(au , av)

Figure 1. Translates of the lines of Cj .

Because of Corollary 2, the number of 2j−1-rich lines (that is, lines incident to
at least 2j−1 points) on (A + A) × (A + A) is

O

(
|A + A|4
(2j−1)3

+
|A + A|
(2j−1)

)
.

The first term is always larger than the second because |A+A| > |A| and 2j−1 � |A|.
Therefore,

|L| � c|A + A|4
(2j−1)3

.

Applying the bound from Theorem 2 to the number of incidences I between L
and the n2 points of A × A, we have

I = O
(
|L|2/3(n2)

2/3
+ |L| + n2

)
.

Therefore,

n2|Cj | � c|L|2/3n4/3, (2.2)

or

n2|Cj | � c|L|, (2.3)

or

n2|Cj | � cn2. (2.4)

The right-hand side of (2.2) is always at least cn2, and therefore (2.2) includes
case (2.4). The next step is to see that (2.2) covers case (2.3) as well. Let us suppose
that, on the contrary,

|L|2/3n4/3 < |L|.

Then

n4/3 < |L|1/3 → n4 < |L|,

but this is not possible, since L consists of n2 translates of less than n2 lines.
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Now we are ready for the final step of the proof. It follows from (2.1), that

22j−2 � cn4

t log n|Cj |
. (2.5)

Putting (2.2) and (2.5) together, we have

n2|Cj | � c|L|2/3n4/3 � c

(
|A + A|4
(2j−1)3

)2/3

n4/3 = c
|A + A|8/3

22j−2
n4/3

� c
|A + A|8/3

(n4/t log n|Cj |)
n4/3,

which gives
cn14

log3 n
� |A + A|8 · t3,

as stated.
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