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1 Rényi Institute of the Hungarian Academy of Sciences
and New York University, Courant Institute

pach@renyi.hu
2 Institute for Theoretical Computer Science, ETH Zürich
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Abstract. We study intersection properties of systems of segments in
the plane. In particular, we show that there exists a constant c > 0 such
that every system S of n straight-line segments in the plane has two at
least cn-element subsystems S1,S2 ⊂ S such that either every segment
in S1 intersects all elements of S2, or no segment in S1 intersects any
element of S2. We also propose a fast approximate solution for reporting
most intersections among n segments in the plane.

1 Introduction

The problem of detecting and reporting intersections among straight-line seg-
ments in the plane is one of the oldest and most extensively studied topics in
computational geometry. It is a basic ingredient of many hidden surface removal
algorithms, and has numerous other applications in computer graphics, motion
planning, geographic information systems, etc. The first efficient techniques were
developed by Shamos and Hoey [SH76] and Bentley and Ottmann [BO79] more
than twenty years ago. The running times of the best known algorithms, due to
Balaban [B95] and Chazelle and Edelsbrunner [CE92], are O(n logn+ I), where
n and I denote the number of segments and the number of intersections, resp.
(See also [PS91].)

In the present paper, we discuss some structural properties of intersection
graphs of segments, i.e., graphs that can be obtained by assigning a vertex to
every element of a system of segments S in the plane, and connecting two of
them by an edge if and only if their intersection is non-empty. Throughout this
paper, we assume that the elements of S are in general position, i.e., no two
segments are parallel and no three of their endpoints are collinear. In particular,
if two elements of S intersect, then they determine a proper crossing.

We prove the following Ramsey-type result.

� Supported by NSF grant CR-97-32101, PSC-CUNY Research Award 61392-0030,
and OTKA-T-020914.
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Theorem 1. There exists a constant C > 0 such that every system S of
n segments in the plane has two disjoint subsystems S1,S2 ⊂ S such that
|S1|, |S2| ≥ Cn and

(i) either every segment in S1 crosses all segments in S2,
(ii) or no segment in S1 crosses any segment in S2.

In the sequel, A stands for an absolute constant smaller than 106. Theorem
1 is a direct corollary of the following two complementary results.

Theorem 2. Any system S of n segments in the plane with at least cn2 crossings
(c > 0) has two disjoint subsystems, S1,S2 ⊂ S, such that |S1|, |S2| ≥ (2c)A

660 n
and every segment in S1 crosses all segments in S2.

Theorem 3. Any system S of n segments in the plane with at least cn2 non-
crossing pairs (c > 0) has two disjoint subsystems, S1,S2 ⊂ S, such that |S1|, |S2|
≥ (c/5)A

330 n and no segment in S1 crosses any segment in S2.

The above results, combined with Szemerédi’s Regularity Lemma [S78], can
be used to establish a fairly strong structure theorem for intersection graphs of
segments. We say that two sets have almost the same number of elements if their
sizes differ by at most a factor of 2.

Theorem 4. For any ε > 0, there exists an integer K = K(ε) with the property
that any system S of segments in the plane can be partitioned into K + 1 sub-
families, S0,S1, . . . ,SK such that |S0| < ε|S|, all other subfamilies have almost
the same size, and for all but at most εK2 pairs 1 ≤ i, j ≤ K,

(i) either every segment in Si crosses all segments in Sj,
(ii) or no segment in Si crosses any segment in Sj.

Fix an element si in each Si. For any s ∈ S, let f(s) := si if and only if s
belongs Si (0 ≤ i ≤ K). We can think of f(s) as the segment representing s.
According to Theorem 4, with a very small error, two randomly selected elements
s, t ∈ S cross each other if and only if f(s) ∩ f(t) is non-empty.

A geometric graph is a graph whose vertices are points in general position in
the plane (i.e., no three points are on a line) and whose edges are straight-line
segments connecting these points. Our last two results are easy corollaries to
Theorems 2 and 3, respectively.

Theorem 5. Any geometric graph G with n vertices and at least cn2 edges
(c > 0) has two disjoint sets of edges E1, E2 ⊂ E(G) such that |E1|, |E2| ≥
(c/32)A+3

(
n
2

)
and every edge in E1 crosses all edges in E2.

Theorem 6. Any geometric graph G with n vertices and at least cn2 edges
(c > 0) has two disjoint sets of edges E1, E2 ⊂ E(G) such that |E1|, |E2| ≥
(c/34)A+3

(
n
2

)
and no edge in E1 crosses any edge in E2.

The rest of the paper is organized as follows. In Section 2, we establish
Theorems 2 and 3. Theorem 4 is proved in Section 3. The last section contains
the proofs of Theorems 5 and 6, as well as some concluding remarks.
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2 Proofs of Theorems 2 and 3

Three sets of points in the plane are said to be separable if each of them can
be separated from the other two by a straight line. Given three separable sets,
there is no straight line which intersects the convex hull of all of them.

Lemma 1. Every set of n points in general position in the plane has three
separable subsets of size �n/6	.

Proof. Assume without loss of generality that n is divisible by 6, and let P be
an n-element point set. Choose two lines that divide the plane into 4 regions,
containing n, 2n, n, and 2n points of P in their interiors, in this cyclic order. Let
P1, P2, P3, and P4 denote the corresponding subsets of P . By the ham-sandwich
theorem, there is a line � which simultaneously cuts P2 and P4 into two halves of
equal size (see Fig. 1). Then � avoids either the convex hull of P1 or that of P3.
Assume, by symmetry, that P1 is ‘above’ �. Then P1 and the parts of P2 and P4

‘below’ � are three separable sets. �

l
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Fig. 1.

Lemma 2. Let S and T be two systems of segments in general position in
the plane. Then there are two subsystems S∗ ⊆ S, T ∗ ⊆ T such that |S∗| ≥
�|S|/330	, |T ∗| ≥ �|T |/330	, and

(i) either every segment in S∗ crosses all segments in T ∗,
(ii) or no segment in S∗ crosses any segment in T ∗.

Proof. Let |S| = m, |T | = n, and suppose, for simplicity, that both m and n are
multiples of 330. Let P be the set of endpoints of all segments in S. By Lemma 1,
there are three separable m/3-element subsets, P1, P2, P3 ⊆ P . Color a segment
t ∈ T with color i if its supporting line does not intersect the convex hull of
Pi (i = 1, 2, 3). Let Ti denote the segments of color i. At least one third of the



Structure Theorems for Systems of Segments 311

elements of T get the same color, so we can assume with no loss of generality
that |T1| ≥ n/3.

If there are at least m/330 segments in S, both of whose endpoints belong
to P1, then we are done, because these segments are disjoint from all elements
of T1.

Hence, we can assume that at least (1/3 − 2/330)m = 18m/55 elements of
S have precisely one of their endpoints in P1. Let Q denote the set of other
endpoints of these segments. Let us choose three separable subsets Q1, Q2, Q3 ⊆
Q, each of size at least |Q|/6 = 3m/55. Just as before, color a segment t ∈ T1 with
color i if its supporting line does not intersect the convex hull of Qi (i = 1, 2, 3).
Again, at least |T1|/3 ≥ n/9 elements of T1 get the same color, say color 1; they
form a subsystem T11 ⊆ T1.

Let S11 denote set of all elements of S with one endpoint in P1 and the other
in Q1. Clearly, we have |S11| = |Q1| ≥ 3m/55.

Let us repeat now the whole procedure with T11 in the place of S and S11 in
the place of T . We obtain two subsets, T ′ ⊆ T11 and S′ ⊆ S11, satisfying

|T ′| ≥ 3|T11|
55

≥ n

165
, |S′| ≥ |S11|

9
≥ m

165
.

We can assume that at least half of the supporting lines of the elements of
T ′ cross the convex hull of S′, for otherwise we would obtain two non-crossing
systems of at least |T ′|/2 and |S′| segments. The set of all elements of T ′, whose
supporting lines cross the convex hull of S′ is denoted by T ∗. Similarly, we can
assume that the supporting lines of at least half of the elements of S′ cross the
convex hull of T ∗; otherwise, we could find two non-crossing systems of at least
|T ∗| and |S′|/2 segments. Let S∗ denote the set of all elements of S′, whose
supporting lines cross the convex hull of T ∗. It follows from the definitions that
every element of S∗ crosses all elements of T ∗ and that

|S∗| ≥ |S|′
2

≥ m

330
, |T ∗| ≥ |T |′

2
≥ n

330
. �

Given any system of segments, S and T , in general position in the plane,
define their crossing density, δ(S, T ), as the number of crossing pairs (s, t), s ∈
S, t ∈ T divided by |S| · |T |. Clearly, we have 0 ≤ δ(S, T ) ≤ 1.

Theorems 2 and 3 readily follow from the next result.

Theorem 7. There exists a constant A < 106 satisfying the following condi-
tion. Let S and T be any sets of segments in general position in the plane, and
suppose that their crossing density is at least c > 0. Then there are two disjoint
subsystems S′ ⊆ S, T ′ ⊆ T such that

|S′| ≥ cA

330
|S|, |T ′| ≥ cA

330
|T |,

and every segment in S′ crosses all segments in T ′.
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Proof. Let |S| = m, |T | = n, and suppose first that both m and n are powers of
330. According to our assumption, δ(S, T ) ≥ c.

Applying Lemma 2, we obtain two subsystems, S∗ ⊂ S, T ∗ ⊂ T , such that
|S∗| = m/330, |T ∗| = n/330, and δ(S∗, T ∗) is either 1 or 0. In the first case we
are done, so assume δ(S∗, T ∗) = 0. Then we have

c ≤ δ(S, T ) = 329
3302

δ(S, T − T ∗) +
329
3302

δ(S − S∗, T ) + 3292

3302
δ(S − S∗, T − T ∗).

Therefore, at least one of the crossing densities δ(S, T − T ∗), δ(S − S∗, T ),
δ(S − S∗, T − T ∗) exceeds

c1 := c
3302

3302 − 1
.

In other words, there exist two subsystems, S1 ⊂ S, T1 ⊂ T , with |S1| ≥ m/330,
|T1| ≥ n/330 such that δ(S1, T1) ≥ c1.

Applying Lemma 2 to S1 and T1, we obtain two subsystems S∗∗ ⊂ S1, T ∗∗ ⊂
T1, such that |S∗∗| ≥ m/3302, |T ∗∗| ≥ n/3302, and δ(S∗∗, T ∗∗) is either 1 or 0.
Again, we can assume that δ(S∗∗, T ∗∗) = 0, otherwise we are done. As before, we
can find two subsystems, S2 ⊂ S1, T2 ⊂ T1, with |S2| ≥ m/3302, |T2| ≥ n/3302

such that

δ(S2, T2) ≥ c2 := c

(
3302

3302 − 1

)2

.

Since the crossing density between any two sets is at most 1, after some

k ≤
log 1

c

log 3302

3302−1

steps, this procedure will terminate. That is, when we apply Lemma 2 for the
k-th time, we obtain two subsystems S′ ⊆ S, T ′ ⊆ T such that |S′| ≥ m/330k,
|T ′| ≥ n/330k, and δ(S′, T ′) = 1. Thus, every element of S′ crosses all elements
of T ′, and |S′| ≥ cAm, |T ′| ≥ cAn, where

A ≤ log 330
log 3302

3302−1

< 106.

This completes the proof of Theorem 7 in the case whenm and n are powers of
330. Otherwise, using an easy averaging argument, we can find S0 ⊆ S, T0 ⊆ T ,
whose sizes are powers of 330, |S0| ≥ m/330, |T0| ≥ n/330, and δ(S0, T0) ≥ c.
Applying the above argument to S0 and T0, the result follows. �

Proof of Theorem 2. Assume, for simplicity, that n is even. Given a system of n
segments in general position in the plane, which determine at least cn2 crossings,
one can partition it into two equal parts so that the crossing density between
them is at least 2c (see e.g. [PA95]). Applying Theorem 7 to these parts, the
result follows. �
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Theorem 3 can be established analogously, by repeated application of Lemma
2. However, here we deduce it from Theorems 2 and 3.

Proof of Theorem 3. Let S be a set of n segments in general position in the plane
with at least cn2 non-crossing pairs. For any s ∈ S, let �(s) denote the supporting
line of s. The set �(s) \ s consists of two half-lines; denote them by h1(s) and
h2(s) . Let H1 := {h1(s) : s ∈ S}, H2 := {h2(s) : s ∈ S}, T := S ∪ H1 ∪ H2.
Further, for any h ∈ H1 ∪ H2, let s(h) be the unique segment s ∈ S, for which
h1(s) or h2(s) is equal to s.

Note that if two segments s, t ∈ S do not cross each other, then the crossing
between their supporting lines, �(s) and �(t), gives rise to a crossing between a
pair of elements of T , involving at least one half-line. Therefore, the number of
crossing pairs in T involving at least one half-line is at least cn2. There are three
possibilities:

1. for some i = 1, 2, the number of crossing pairs in Hi is at least cn2/5;
2. the number of crossing pairs between H1 and H2 is at least cn2/5;
3. for some i = 1, 2, the number of crossing pairs between Hi and S is at least

cn2/5.

In Case 1, applying Theorem 2 to Hi, we obtain two subsystems, Hi1,Hi2 ⊂
H, whose sizes are at least (2c/5)A

660 n > (c/5)A

330 , and every half-line in Hi1 crosses
all half-lines in Hi2. Then S1 := {s(h) : h ∈ Hi1} and S2 := {s(h) : h ∈ Hi2}
meet the requirements in Theorem 3.

In Case 2, apply Theorem 7 to obtain H′
1 ⊆ H1, H′

2 ⊆ H2, whose sizes are
at least (c/5)A

330 n, and every element of H′
1 crosses all elements of H′

2. Setting
S1 := {s(h) : h ∈ H′

1}, and S2 := {s(h) : h ∈ H′
2}, the result follows. Case 3 can

be treated similarly. �

3 Proof of Theorem 4

The proof is based on a variant of Szemerédi’s Regularity Lemma, which was
discovered by Komlós (see [KS96]) and can be established by an elegant argu-
ment.

For any graph G and for any disjoint subsets X,Y ⊂ V (G), let E(X,Y ) ⊆
E(G) denote the set of edges of G running between X and Y . Clearly, we have
|E(X,Y )| ≤ |X ||Y |. For any γ, δ > 0, we call the pair (X,Y ) (γ, δ)-superregular
if for every X ′ ⊆ X and Y ′ ⊆ Y satisfying

|X ′| ≥ γ|X |, |Y ′| ≥ γ|Y |,

we have
|E(X ′, Y ′)| ≥ δ|X ||Y |.

Lemma 3. ([KS96]) Let γ > 0 be a sufficiently small constant, and let δ > 0.
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Then any graph with n vertices and at least δn2 edges has a (γ, δ)-superregular
pair (X,Y ) with

|X | = |Y | ≥ δ1/γ2
n.

First we establish

Theorem 8. For every δ > 0, there exists an integer k = k(δ) > 0 with the
following property. The intersection graph G of any system of n segments in the
plane has k bipartite subgraphs, which altogether cover all but at most δn2 edges
of G.

Proof. Set G0 := G, and let β be a small positive constant to be specified later.
Suppose that for some i ≥ 1 we have already defined Gi−1. If G does not have
a complete bipartite subgraph Hi, which contains at least βn2 edges of Gi−1,
then stop. Otherwise, pick such a subgraph Hi, and let Gi denote the graph
obtained from Gi−1 by the deletion of all edges belonging to Hi. Obviously, this
procedure will terminate in

j ≤ |E(G)|
βn2

≤ 1
2β

steps, with a graph Gj .
We claim that Gj has fewer than δn2 edges, provided that β is sufficiently

small. Suppose that this is not true. Then, according to Lemma 3, Gj has a
(γ, δ)-superregular pair (X,Y ) with

|X | = |Y | ≥ δ1/γ2
n,

where γ := δA

330 . Let SX and SY denote the corresponding families of segments.
In view of Theorem 7, there are two disjoint subsystems TX ⊆ SX and TY ⊆ SY

with

|TX | = |TY | ≥ δA

330
|X | = γ|X | = γ|Y |

such that every segment in TX crosses all elements of TY . Let X ′ and Y ′ denote
the subsets of X and Y , corresponding to TX and TY , resp. Then X ′ and Y ′

induce a complete bipartite subgraph in G. Furthermore, using the fact that
(X,Y ) is a (γ, δ)-superregular pair in Gj , we obtain that at least

δ|X ′||Y ′| ≥ δγ2δ2/γ2
n2

edges between X ′ and Y ′ belong to Gj . Therefore, if we choose β so small that
this last quantity exceeds βn2, then we could continue our procedure and define
the next graph Gj+1. This contradiction completes the proof. �

Obviously, a similar result holds for G, the complement of a segment inter-
section graph G.
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Theorem 9. For every δ > 0, there exists an integer k = k(δ) > 0 with the
following property. The complement G of the intersection graph G of any system
of n segments in in the plane has k bipartite subgraphs, which altogether cover
all but at most δn2 edges of G.

Now we are in a position to prove Theorem 4. Let G denote the intersection
graph of S. Let δ be a small positive constant which will be specified later. By
Theorems 8 and 9, there is a family

F = {A1, B1, A2, B2, . . . , A2k, B2k}

of subsets of V (G) such that

1. Ai and Bi are disjoint (1 ≤ i ≤ 2k);
2. Ai ×Bi is contained either in E(G) or in E(G) (1 ≤ i ≤ 2k);
3. all but at most 2δn2 pairs {u, v} ⊂ V (G) are covered by ∪2k

i=1Ai ×Bi.

We say that two vertices of V (G) are of the same type, if every member of F
contains both or neither of them. The number of different types is at most 32k.
A given type is negligible, if fewer than

s :=
εn

32k

vertices have it. Letting V0 denote the set of all vertices with negligible types,
we have |V0| < εn.

Divide the elements of V (G) − V0 into groups V1, V2, . . . , VK of almost the
same size: for every 1 ≤ i ≤ K, let s ≤ |Vi| ≤ 2s. Clearly, we have

(1− ε)n
2s

≤ K ≤ n

s
.

A pair (i, j), 1 ≤ i �= j ≤ K is called exceptional, if Vi×Vj is not contained in
∪2k

i=1Ai ×Bi. For every non-exceptional pair (i, j), Vi and Vj induce a complete
bipartite subgraph either in G or in G.

Let m denote the number of exceptional pairs. The total number of pairs
{u, v} ⊂ V (G) for which u ∈ Vi, v ∈ Vj for some exceptional pair (i, j) is at
least ms2. On the other hand, by condition 3 above, this number cannot exceed
2δn2. Thus, we obtain that

m

K2
≤ 2δn2

s2K2
≤ 2δn2

s2
4s2

(1− ε)2n2
=

8δ
(1− ε)2

.

This is smaller than ε, if δ is sufficiently small, so the partition of S corresponding
to V0 ∪ V1 ∪ . . . ∪ VK meets all the requirements of Theorem 4.
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4 Concluding Remarks

First we show how Theorems 5 and 6 follow from the previous results.

Proof of Theorem 5. Let G be a geometric graph with n vertices and at least cn2

edges. The next result of Ajtai, Chvátal, Newborn, Szemerédi [ACNS82] and,
independently, Leighton [L83] (see also [PA95], [PT97]) implies that there are at
least c

64e
2 crossings pairs of edges.

Lemma 4. Let G be a geometric graph with n vertices and e > 4n edges, for
some c > 0. Then G has at least e3

64n2 crossing pairs of edges.
Thus, we can apply Theorem 2 to the system S = E(G). We obtain two

subsets E1, E2 ∈ E(G) such that every edge in E1 crosses all edges in E2, and
|E1| = |E2| ≥ (c/32)A

336 cn2 > (c/32)A+2
(

n
2

)
. �

Theorem 6 can be proved similarly. The only difference is that, instead of
Theorem 2 and Lemma 4, we have to use Theorem 3 and

Lemma 5. ([P91]) Let G be a geometric graph with n vertices and e ≥ 3n/2
edges, for some c > 0. Then G has at least 4e3

27n2 pairs of edges that do not cross
and do not share an endpoint.

The above theorems can also be established using Szemerédi’s Regularity
Lemma [S78]. However, then the dependence on c of the sizes of the homogeneous
subsystems whose existence is guaranteed by our results gets much worse.

According to an old theorem of Kővári, Sós, and Turán [KST54], every graph
with n vertices and at least cn2 edges has a complete bipartite subgraph with
c′ logn vertices in its classes, where c′ > 0 is a suitable constant depending on
c. This immediately implies that Theorem 2 holds with the much weaker bound
c′ logn instead of c′n.

For some computational aspects of recognizing intersection graphs of seg-
ments, see [KM94].
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