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ABSTRACT
It is shown that every set of n points in the plane has an
element from which there are at least cn6=7 other elements at
distinct distances, where c > 0 is a constant. This improves
earlier results of Erd}os, Moser, Beck, Chung, Szemer�edi,
Trotter, and Sz�ekely.

Categories and Subject Descriptors
G.2.1 [Combinatorics]: Counting problems; F.2.2 [Analysis
of algorithms and problem complexity]: Nonnumerical
Algorithms and Problems

Keywords
planar point set, Szemer�edi-Trotter theorem, crossing num-
ber

1. INTRODUCTION
The following well known problem is due to Paul Erd}os

[6] (see also [9]): Given n distinct points in the plane, what
is the minimum number of distinct distances determined by
them?
Denoting this minimum by G(n); Erd}os [6] conjectured

that G(n) = 
(n=
p
log n), and showed that this bound is

attained by the
p
n � p

n grid. Moser [8] proved that the

number of distinct distances is at least 
(n2=3). Chung [3]
and Chung, Szemer�edi, and Trotter [4] improved this bound

to 
(n5=7) and 
(n4=5= logc n), respectively, where c is a
small positive constant. Finally, Sz�ekely [11] proved that

G(n) = 
(n4=5), and that there always exists at least one

point from which there are at least 
(n4=5) distinct dis-
tances. Our main result is
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Theorem 1 Any set P of n points in the plane has an el-
ement from which the number of distinct distances to the
other points of P is at least 
(n6=7).

The proof relies on three results: (a) Beck's theorem [2]
on the minimum number of lines connecting points in a pla-
nar point set; (b) the Szemer�edi-Trotter theorem [12] on
the number of incidences between points and lines; and (c)
Sz�ekely's method [11] for estimating the number on inci-
dences using a previously known upper bound on crossing
numbers of graphs drawn in the plane. It is worth noting
that these three ingredients are related to each other. Beck's
result follows from the Szemer�edi-Trotter theorem, which, in
turn, has a very elegant proof using Sz�ekely's method.
A topological (multi-)graph is a (multi-)graph G(V;E)

drawn in the plane such that the vertices of G are repre-
sented by distinct points in the plane, and its edges by con-
tinuous arcs between the corresponding point pairs. Any two
arcs representing distinct edges have �nitely many points in
common. We will make no notational distinction between
the vertices (resp., edges) and the points (resp., arcs) repre-
senting them.
Unlike in the standard de�nition of topological graphs,

we allow arcs representing edges of G to pass through other
vertices. Such topological graphs were �rst employed by
Pach and Sharir [10]. Two edges of a topological graph are
said to form a crossing, if they have a common point which
is not an endpoint of both arcs. Thus, two crossing edges
together have four distinct endpoints. The crossing number
of a topological graph or multigraph is the total number of
crossing pairs of edges. The crossing number of an abstract
graph or multigraph G is the minimum crossing number
over all possible representations (i.e., drawings) of G as a
topological graph.

2. PROOF OF THEOREM 1
For a set P of n points in the plane, let t be the maximal

number of distinct distances measured from one point, that
is t = maxp2P jfdist(p; q) : q 2 Pgj. Suppose that t =

o(n) and t � c1n
3=4, for some constant c1 > 0. This latter

assumption follows from the earlier results [4, 5]. We apply
Beck's theorem to the point set P .

Theorem 2 (Beck [2]) Given n points in the plane, at
least one of the following two statements holds:

1. There is a line incident to at least n=100 points.

2. There are at least 
(n2) lines incident to at least two
points.
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Let L denote the set of all lines connecting at least two
points of P . An easy corollary of the Beck's theorem is the
following.

Corollary 3 There is an absolute constant c0 > 0 with the
property that the number of points in P incident to at least
c0n distinct lines of L is at least c0n, provided that t <
n=100.

Let B denote the set of points in P incident to at least
c0n lines of L. By Corollary 3, jBj � c0n.
Fix a point a 2 B. Let Pa � P n fag be a maximal set

such that for each point q 2 Pa the line aq contains no other
point of Pa. Consider the set Ca of all circles centered at
a 2 B that contain at least 3 points of Pa. Let P 0

a denote
the set of all elements of Pa which belong to a circle in Ca.
Clearly, jP 0

aj = 
(n), because jPaj = 
(n), and t = o(n), by
assumption.
After deleting at most two points from each circle in Ca,

partition the remaining points into pairwise disjoint consec-
utive triples (q1; q2; q3). Clearly, the number of such triples
over all circles around a is 
(n).
A line ` is called rich if ` is incident to at least m points

in P , where m is a number to be speci�ed later. A triple
(q1; q2; q3) is said to be good if the bisector of at least one
of the segments q1q2, q1q3, or q2q3 is not rich; otherwise
it is called bad. A point p 2 B is good, if at least half of
the triples associated with it are good, otherwise it is bad.
Denote by g the number of good points in B.
The outline of the rest of the proof is as follows. First,

we choose an m so that at least half of the points in B will
be bad. Then we deduce a lower bound on the number of
rich lines incident to a �xed bad point, which then implies
a lower bound for the overall number of incidences between
bad points and rich lines. On the other hand, a theorem
of Szemer�edi and Trotter, mentioned in the introduction,
provides an upper bound on the same quantity. Comparing
the two bounds, the desired inequality for t will follow.
De�ne a topological multigraph G on the vertex set V =

P , as follows. If a triple (q1; q2; q3) is good, add to the
graph one edge between a pair of points from fq1; q2; q3g
whose bisector is not rich. We generate exactly one edge
for each good triple. Draw each such edge along the circle
determined by the triple.
The number of vertices of G is jV j = n; the number of

edges of G is E = g �
(n) = 
(gn). The graph G may have
multiple edges when two points, u and v, happen to be-
long to more than one good triple, associated with di�erent
points of B (as centers of the corresponding circles). How-
ever, the multiplicity of each edge is at most m, because all
of these points of B must lie on the perpendicular bisector
of u and v, which, by assumption, is not rich.
The following lemma of [11] is a straightforward exten-

sion of a result of Ajtai, Chv�atal, Newborn, and Szemer�edi
[1] and of Leighton [7], to topological multigraphs. As we
pointed out in the introduction, we use a slightly non-standard
de�nition of topological multigraphs, which allows edges to
pass through vertices, but Sz�ekely's proof applies verbatim
to this case as well.

Lemma 4 (Sz�ekely [11]) Let G(V;E) be a topological multi-
graph, in which every pair of vertices is connected by at most

m edges. If jEj � 5jV jm, then the crossing number of G is

cr(G) � �jEj3
mjV j2 ;

for an absolute constant � > 0.

Apply Lemma 4 to the graph G de�ned above, with

m = c2n
2=t2;

where c2 > 0 is a small constant. We distinguish two cases.
If the condition in the lemma is not satis�ed, then


(gn) = jEj < 5jV jm = 5c2n
3=t2 � (5c2=c

2
1)n

3=2;

and, by choosing c2 suÆciently small, we have g � (c0=2)n.
Otherwise, according to the statement,

cr(G) � �g3n3

(c2n2=t2) � n2 =
�g3t2

c2n
:

On the other hand, since the edges of G are constructed
along at most nt circles (at most t concentric circles around
each point), and two circles have at most two common points,
we clearly have

cr(G) � 2 �
 
nt

2

!
� n2t2:

Comparing the last two inequalities, we obtain, just as in the
previous case, that g � (c0=2)n, provided that c2 is chosen
suÆciently small.
Therefore, we can conclude that B has at least 
(n) bad

points.
Next, we estimate the number of rich lines incident to each

bad point. For this, we need the following simple lemma.

Lemma 5 Let T be a set of N triples (ai; bi; ci) of distinct
real numbers such that ai < bi < ci for i = 1; : : : ; N , and
assume that ci < ai+1 for all but at most t�1 indices i. Let
W = fai + bi; ai + ci; bi + ci j i = 1; : : : ; Ng. Then

jW j = 


�
N

t2=3

�
:

Proof. Let the range of a triple (a; b; c) of real numbers,
a < b < c, be de�ned as the interval [a; c]. The triples are
called disjoint if their ranges are disjoint. Note that T can
be partitioned into at most t sets of pairwise disjoint triples.
Consider the mapping ' : T �! W 3; (a; b; c) �! (a +

b; a+ c; b+ c). Observe that 2a < a+ b < a+ c < b+ c < 2c,
hence ' maps disjoint triples into disjoint triples. Morover,
' is an injection, as (a+ b; a+ c; b+ c) uniquely determines
(a; b; c).
For a triple (a; b; c) 2 T , let the length �(a; b; c) of (a; b; c)

be the number of elements of W in the range of '(a; b; c),
i.e. �(a; b; c) = jW \ [a+ b; b+ c]j.
Letting w = jW j, the sum of all lengths

P
(a;b;c)2T �(a; b; c)

cannot be larger than tw. Therefore, the length of at least
half of the triples in T is at most 2tw=N . The number of
triples (a; b; c) whose lengths does not exceed 2tw=N is less
than w3 � (2t=N)2. We have w � 2 choices for a + b, then
b+ c and b+ c are among the (at msot) 2tw=N elements of

W following a+ b. Hence w = 
(N=t2=3) as required.
Apply Lemma 5 to the system of 
(n) disjoint bad triples

along the circles centered at a �xed bad point a 2 B. Each
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point u which participates in such a bad triple is mapped to
the orientation of the ray ~au, i.e., to the counterclockwise
angle between the positive x-axis and ~au. By the construc-
tion of Pa, this mapping is an injection of Pa into IR. There
are at most t bad triples whose ranges are mapped into an
interval containing 0, and we discard all of them. The im-
ages of the remaining bad triples form a set of N = 
(n)
triples meeting the requirements of Lemma 5. Notice that
there are at most two orientations in W that correspond to
the same rich line trough a. Hence, Lemma 5 implies that,
for each bad point a, the number of rich lines incident to a
is 
(n=t2=3).
Therefore, the number I of incidences between bad points

and rich lines, satis�es

I = 
(n2=t2=3): (1)

The same number can be estimated from above, using the
following theorem of Szemer�edi and Trotter, which comes in
two equivalent formulations, both stated below.

Theorem 6 (Szemer�edi-Trotter [12]) (a) Given n dis-
tinct points in the plane, the number Lm of lines incident to
at least m > 2 points is

Lm = O

�
n2

m3
+

n

m

�
:

(b) Given n distinct points and ` distinct lines in the plane,
the number of point-line incidences is

I(n; `) = O(n2=3`2=3 + n+ `):

Since t � c1n
3=4, we have m = c2n

2=t2 � (c2=c
2
1)n

1=2 =

O(n1=2). Thus, by Theorem 6(a), the number Lm of rich
lines satis�es Lm = O(n2=m3) = O(t6=n4). This, in turn,
implies, by part (b) of the same theorem, that the number
I of incidences between bad points and rich lines, satis�es

I = O(n2=3L2=3
m + n+ Lm) =

= O(t4=n2 + t6=n4 + n) = O(t4=n2): (2)

Comparing (1) and (2), we obtain that t = 
(n6=7), as
required. This completes the proof of Theorem 1.

It is very likely that, if we use k-tuples instead of triples
then the above argument can be modi�ed to give a better
lower bound on the number of distinct distances determined
by a point set.
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