Arithmetic Progressions in Sets with Small Sumsets

JÓZSEFSOLYMOSI ${ }^{\dagger}$
Department of Mathematics, University of British Columbia, 1984 Mathematics Road, Vancouver, BC, Canada V6T 1Z2
(e-mail: solymosi@math.ubc.ca)

Received 11 January 2004; revised 24 August 2004

Abstract

We present an elementary proof that if A is a finite set of numbers, and the sumset $A+{ }_{G} A$ is small, $\left|A+{ }_{G} A\right| \leqslant c|A|$, along a dense graph G, then A contains k-term arithmetic progressions.

1. Introduction

A well-known theorem of Szemerédi [15] states that every dense subset of integers contains long arithmetic progressions. A different, but somehow related result of Freiman [5] says that if the sumset of a finite set of numbers A is small, i.e., $|A+A| \leqslant C|A|$, then A is the subset of a (not very large) generalized arithmetic progression. Balog and Szemerédi proved in [1] that a similar structural statement holds under weaker assumptions. (For correct statements and details, see [8].) As a corollary of their result, Freiman's theorem, and Szemerédi's theorem about k-term arithmetic progressions, Balog and Szemerédi proved Theorem 1.1 below. The goal of this paper is to present a simple, purely combinatorial proof of this assertion.

Let A be a set of numbers and G be a graph such that the vertex set of G is A. The sumset of A along G is

$$
A+{ }_{G} A=\{a+b: a, b \in A \text { and }(a, b) \in E(G)\} .
$$

Theorem 1.1. For every $c, K, k>0$ there is a threshold $n_{0}=n_{0}(c, K, k)$ such that if $|A|=n \geqslant n_{0},\left|A+{ }_{G} A\right| \leqslant K|A|$, and $|E(G)| \geqslant c n^{2}$, then A contains a k-term arithmetic progression.

[^0]
2. Lines and hyperplanes

There are arrangements of n lines on the Euclidean plane such that the maximum number of points incident with at least three lines is $\frac{n^{2}}{6}$. Not much is known about the structure of arrangements where the number of such points is close to the maximum, say cn^{2}, where c is a positive constant. Nevertheless, the following is true.

Lemma 2.1. For every $c>0$ there is a threshold $n_{0}=n_{0}(c)$ and a positive $\delta=\delta(c)$ such that, for any set of $n \geqslant n_{0}$ lines L and any set of $m \geqslant c n^{2}$ points P, if every point is incident to three lines, then there are at least δn^{3} triangles in the arrangement. (A triangle is a set of three distinct points from P such that any two are incident to a line from L.)

Proof. This lemma is implied by the following theorem of Ruzsa and Szemerédi [13].
Theorem 2.2. ([13]) Let G be a graph on n vertices. If G is the union of cn^{2} edge-disjoint triangles, then G contains at least δn^{3} triangles, where δ depends on c only.

To prove Lemma 2.1, let us construct a graph where L is the vertex set, and two vertices are adjacent if and only if the corresponding lines cross at a point of P. This graph is the union of cn^{2} disjoint triangles, and every point of P defines a unique triangle, so we can apply Theorem 2.2.

The result above suffices to prove Theorem 1.1 for 3 -term arithmetic progressions. But for larger values of k, we need a generalization of Lemma 2.1.

Lemma 2.3. For every $c>0$ and $d \geqslant 2$, there is a threshold $n_{0}=n_{0}(c, d)$ and a positive $\delta=\delta(c, d)$ such that, for any set of $n \geqslant n_{0}$ hyperplanes L and any set of $m \geqslant c n^{d}$ points P, if every point is incident to $d+1$ hyperplanes, then there are at least δn^{d+1} simplices in the arrangement. (A simplex is a set of $d+1$ distinct points from P such that any d are incident to a hyperplane from L.)

Lemma 2.3 follows from the Frankl-Rödl conjecture [4], the generalization of Theorem 2.2. The $d=3$ case was proved in [4] and the conjecture has been proved recently by Gowers [6] and independently by Nagle, Rödl, Schacht and Skokan [7, 10]. For details on how Lemma 2.3 follows from the Frankl-Rödl conjecture, see [14].

3. The $k=3$ case

Let A be a set of numbers and G be a graph such that the vertex set of G is A. We define the difference-set of A along G as

$$
A-{ }_{G} A=\{a-b: a, b \in A \text { and }(a, b) \in E(G)\} .
$$

Lemma 3.1. For every $\epsilon, c, K>0$ there is a number $D=D(\epsilon, c, K)$ such that, if $\left|A+{ }_{G} A\right| \leqslant$ $K|A|$ and $|E(G)| \geqslant c|A|^{2}$, then there is a graph $G^{\prime} \subset G$ such that $\left|E\left(G^{\prime}\right)\right| \geqslant(1-\epsilon)|E(G)|$ and $\left|A-{ }_{G^{\prime}} A\right| \leqslant D|A|$.

Proof. Let us consider the arrangement of points given by a subset of the Cartesian product $A \times A$ and the lines $y=a, x=a$ for every $a \in A$, and $x+y=t$ for every $t \in A+{ }_{G} A$. The pointset P is defined by $(a, b) \in P$ if and only if $(a, b) \in E(G)$. By Lemma 2.1, the number of triangles in this arrangement is δn^{3}. The triangles here are right isosceles triangles. We say that a point in P is popular if the point is the rightangle vertex of at least αn triangles. Selecting $\alpha=\frac{\delta(\epsilon c)}{\epsilon c}$, where $\delta(\cdot)$ is the function from Lemma 2.1, all but at most $\epsilon c n^{2}$ points of P are popular.

A $t \in A-A$ is popular if $|\{(a, b): a-b=t ; a, b \in A\}| \geqslant \alpha n$. The number of popular t s is at most $D n$, where D depends on α only. $A \times A$ is a Cartesian product; therefore every triangle can be extended to a square adding one extra point from $A \times A$. Every popular point p is the right-angle vertex of at least αn triangles. Therefore p is incident to a line $x-y=t$, where t is popular, because this line contains at least αn 'fourth' vertices of squares with p.

Proof of Theorem 1.1, case $k=3$. Let us apply Lemma 2.1 to the pointset P^{\prime} defined by $(a, b) \in P^{\prime}$ if and only if $(a, b) \in E\left(G^{\prime}\right)$ and the lines are $y=a$ for every $a \in A, x-y=t$ for every $t \in A-{ }_{G^{\prime}} A$, and $x+y=s$ for every $s \in A+{ }_{G} A$. By Theorem 2.2, if $|A|$ is large enough, then there are triangles in the arrangement. The vertices of such triangles are vertices from $P^{\prime} \subset A \times A$. The vertical lines through the vertices form a 3-term arithmetic progression and therefore A contains δn^{2} 3-term arithmetic progressions, where $\delta>0$ depends on c only.

4. The general, $k>3$, case

Following the steps of the proof for $k=3$, we prove the general case by induction on k. We prove the following theorem, which was conjectured by Erdős, and proved by Balog and Szemerédi in [1]. Theorem 4.1, together with the $k=3$ case, gives a proof of Theorem 1.1.

Theorem 4.1. For every $c>0$ and $k>3$ there is an n_{0} such that, if A contains at least $c|A|^{2}$ 3 -term arithmetic progressions and $|A| \geqslant n_{0}$, then A contains a k-term arithmetic progression.

Instead of triangles, we must consider simplices. Set $k=d$. In the d-dimensional space we show that $A \times \cdots \times A$, the d-fold Cartesian product of A, contains a simplex in which the vertices' first coordinates form a $(d+1)$-term arithmetic progression.

The simplices we are looking for are homothetic ${ }^{1}$ images of the simplex S_{d} whose vertices are listed below:

$$
\begin{gathered}
(0,0,0,0, \ldots, 0,0) \\
(1,1,0,0, \ldots, 0,0) \\
(2,0,1,0, \ldots, 0,0) \\
(3,0,0,1, \ldots, 0,0) \\
\vdots \\
(d-1,0, \ldots, 1,0) \\
(d, 0,0,0, \ldots, 0,0) .
\end{gathered}
$$

[^1]An important property of S_{d} is that its facets can be pushed into a 'shorter' grid. The facets of S_{d} are parallel to hyperplanes, defined by the origin $(0,0,0,0, \ldots, 0,0)$, and some ($d-1$)-tuples of the grid

$$
\{0,1,2, \ldots, d-1\} \times\{-1,0,1\} \times\{0,1\}^{d-2}
$$

For example, if $d=3$, then the facets are

$$
\begin{aligned}
& \{(0,0,0),(1,1,0),(2,0,1)\} \\
& \{(0,0,0),(1,1,0),(3,0,0)\} \\
& \{(0,0,0),(2,0,1),(3,0,0)\} \\
& \{(1,1,0),(2,0,1),(3,0,0)\},
\end{aligned}
$$

and the corresponding parallel planes in

$$
\{0,1,2\} \times\{-1,0,1\} \times\{0,1\}
$$

are the planes incident to the triples

$$
\begin{gathered}
\{(0,0,0),(1,1,0),(2,0,1)\} \\
\{(0,0,0),(1,1,0),(2,0,0)\} \\
\{(0,0,0),(2,0,1),(2,0,0)\} \\
\{(0,0,0),(1,-1,1),(2,-1,0)\} .
\end{gathered}
$$

In general, if a facet of S_{d} contains the origin and the 'last point' $(d, 0,0,0, \ldots, 0,0)$, then if we replace the later one by $(d-1,0,0,0, \ldots, 0,0)$, the new d-tuples define the same hyperplane. The remaining facet f, given by

$$
\begin{gathered}
(1,1,0,0, \ldots, 0,0) \\
(2,0,1,0, \ldots, 0,0) \\
(3,0,0,1, \ldots, 0,0) \\
\vdots \\
(d-1,0, \ldots, 1,0) \\
(d, 0,0,0, \ldots, 0,0),
\end{gathered}
$$

is parallel to the hyperplane through the vertices of $f-(1,1,0,0, \ldots, 0,0)$,

$$
\begin{gathered}
(0,0,0,0, \ldots, 0,0) \\
(1,-1,1,0, \ldots, 0,0) \\
(2,-1,0,1, \ldots, 0,0) \\
\vdots \\
(d-2,-1, \ldots, 1,0) \\
(d-1,-1,0,0, \ldots, 0,0) .
\end{gathered}
$$

In a homothetic copy of the grid

$$
T_{d}=\{0,1,2, \ldots, d-1\} \times\{-1,0,1\} \times\{0,1\}^{d-2}
$$

the image of the origin is called the holder of the grid.

As the induction hypothesis, let us suppose that Theorem 4.1 is true for a $k \geqslant 3$ in a stronger form, provided that the number of k-term arithmetic progressions in A is at least $c|A|^{2}$.

Then the number of distinct homothetic copies of T_{d} in

$$
\mathbb{A}_{d}=\underbrace{A \times \ldots \times A}_{d}
$$

is at least $c^{\prime}|A|^{d+1}$ (c^{\prime} depends on c only). Let us say that a point $p \in \mathbb{A}_{d}$ is popular if p is the holder of at least $\alpha|A|$ grids. If p is popular, then, for any facet of S_{d}, f, the point p is the element of at least $\alpha|A| d$-tuples, similar and parallel to f. If α is small enough, then at least $\gamma|A|^{d}$ points of \mathbb{A}_{d} are popular, where γ depends on c and α only.

A hyperplane H is β-rich if it is incident to many points, $\left|H \cap \mathbb{A}_{d}\right| \geqslant \beta|A|^{d-1}$. For every facet of S_{d}, f, let us denote the set of β-rich hyperplanes which are parallel to f by \mathscr{H}_{f}.

Lemma 4.2. For some choice of β, at least half of the popular points are incident to $d+1$ β-rich hyperplanes, parallel to the facets of S_{d}.

Suppose to the contrary that, for a facet f, more than $\frac{\gamma}{2 d}|A|^{d}$ popular points are not incident to hyperplanes of \mathscr{H}_{f}. Then, more than

$$
\begin{equation*}
\alpha|A| \frac{\gamma}{2 d}|A|^{d}=\frac{\gamma \alpha}{2 d}|A|^{d+1} \tag{4.1}
\end{equation*}
$$

d-tuples, similar and parallel to f, are not covered by \mathscr{H}_{f}. Let us denote the hyperplanes incident to the 'uncovered' d-tuples by $L_{1}, L_{2}, \ldots, L_{m}$, and the number of points on the hyperplanes by $\mathscr{L}_{1}, \mathscr{L}_{2}, \ldots, \mathscr{L}_{m}$. A simple result of Elekes and Erdős [2,3] implies that hyperplanes with few points cannot cover many d-tuples.

Theorem 4.3. ([3]) The number of homothetic copies of f in L_{i} is at most $c_{d} \mathscr{L}_{i}^{1+1 /(d-1)}$, where c_{d} depends on d only.

The inequalities

$$
\sum_{i=1}^{m} \mathscr{L}_{i} \leqslant|A|^{d}, \text { and } \mathscr{L}_{i} \leqslant \beta|A|^{d-1}
$$

lead us to the proof of Lemma 4.2.
The number of d-tuples covered by L_{i} s is at most

$$
c_{d} \sum_{i=1}^{m} \mathscr{L}_{i}^{1+1 /(d-1)} \leqslant c_{d} \frac{|A|^{d}}{\beta|A|^{d-1}}\left(\beta|A|^{d-1}\right)^{1+1 /(d-1)}=c_{d} \beta^{1 /(d-1)}|A|^{d+1} .
$$

If we compare this bound to (4.1), and choose β such that $\frac{\gamma \alpha}{2 d}=c_{d} \beta^{1 /(d-1)}$, then at least half of the popular points are covered by $d+1 \beta$-rich hyperplanes parallel to the facets of S_{d}.

Finally we can apply Lemma 2.3 with the pointset P of 'well-covered' popular points of \mathbb{A}_{d} and with the sets of hyperplanes $L=\bigcup_{f \subset S_{d}} \mathscr{H}_{f}$. The number of points is at least
$\frac{\gamma \alpha}{2}|A|^{d}$. For a given $f,\left|\mathscr{H}_{f}\right| \leqslant \frac{|A|^{d}}{\beta \mid A^{d-1}}=|A| / \beta$. The number of hyperplanes in L is at most $(d+1)|A| / \beta$. By Lemma 2.3, we have at least $\delta^{\prime}|A|^{d+1}$ homothetic copies of S_{d} in \mathbb{A}_{d}. Let us project them onto x_{1}, the first coordinate axis. Every image is a $(k+1)$-term arithmetic progression, and the multiplicity of one image is at most $|A|^{d-1}$. Therefore there are at least $\delta^{\prime}|A|^{2}(k+1)$-term arithmetic progressions in A.

$$
\text { 5. } G_{n}=K_{n}
$$

When the full sumset $A+A$ is small then it is easier to prove that A contains long arithmetic progressions. We can use the following Plünnecke-type inequality [8, 9, 12].

Theorem 5.1. Let A and B be finite subsets of an abelian group such that $|A|=n$ and $|A+B| \leqslant \delta n$. Let $k \geqslant 1$ and $l \geqslant 1$. Then

$$
|k B-l B| \leqslant \delta^{k+l} n
$$

It follows from the inequality that, for any dimension d and d-dimensional integer vector $\vec{v}=\left(x_{1}, \ldots, x_{d}\right), x_{i} \in \mathbb{Z}$, there is a $c>0$ depending on d, δ and \vec{v} such that the following holds: If $|A+A| \leqslant \delta|A|$, then \mathbb{A}_{d} can be covered by $c|A|$ hyperplanes with the same normal vector \vec{v}. Using this, we can define our hyperplane-point arrangement, with the hyperplanes parallel to the facets of S_{d} containing at least one point of \mathbb{A}_{d}, and the pointset of the arrangement is \mathbb{A}_{d}. Then we do not have to deal with rich planes and popular points, and we can apply Lemma 2.3 directly.

References

[1] Balog, A. and Szemerédi, E. (1994) A statistical theorem of set addition. Combinatorica 14 263-268.
[2] Elekes, G. (2002) Sums versus products in number theory, algebra and Erdős geometry. In Paul Erdős and his Mathematics II, Budapest, Vol. 11 of Bolyai Society Mathematical Studies, p. 277.
[3] Elekes, G. and Erdős, P. (1994) Similar configurations and pseudo grids. In Intuitive Geometry, Vol. 63 of Coll. Math. Soc. János Bolyai, North-Holland, Amsterdam, pp. 85-104.
[4] Frankl, P. and Rödl, V. (2002) Extremal problems on set systems. Random Struct. Alg. 20 131-164.
[5] Freiman, G. A. (1973) Foundations of Structural Theory of Set Addition, Vol. 37 of Translation of Mathematical Monographs, AMS, Providence, RI, USA.
[6] Gowers, W. T. Hypergraph regularity and the multidimensional Szemeredi theorem. Manuscript.
[7] Nagle, B., Rödl, V. and Schacht, M. The counting lemma for regular k-uniform hypergraphs. Random Struct. Alg. 28 113-179.
[8] Nathanson, M. B. (1996) Additive Number Theory: Inverse Problems and the Geometry of Sumsets, Vol. 165 of Graduate Texts in Mathematics, Springer.
[9] Plünnecke, H. (1969) Eigenschaften und Abschätzungen von Wirkungsfunctionen, Vol. 22, Berichte der Gesellschaft für Mathematik und Datenverarbeitung, Bonn.
[10] Rödl, V. and Skokan, J. (2004) Regularity lemma for k-uniform hypergraphs. Random Struct. Alg. 25 1-42.
[11] Roth, K. F. (1953) On certain sets of integers. J. London Math. Soc. 28 245-252.
[12] Ruzsa, I. Z. (1989) An application of graph theory to additive number theory. Scientica Ser. A 3 97-109.
[13] Ruzsa, I. Z. and Szemerédi, E. (1978) Triple systems with no six points carrying three triangles. In Vol. 18 of Colloquia Mathematica Societatis János Bolyai (Proc. 5th Hungarian Colloq., Keszthely, Hungary, 1976), North-Holland, pp. 939-945.
[14] Solymosi, J. (2004) A note on a question of Erdős and Graham. Combin. Probab. Comput. 13 263-267.
[15] Szemerédi, E. (1975) On sets of integers containing no k elements in arithmetic progression. Acta Arithmetica 27 199-245.

[^0]: ${ }^{\dagger}$ Research partially supported by NSERC and OTKA grants.

[^1]: ${ }^{1}$ Here we say that two simplices are homothetic if the corresponding facets are parallel.

