Arithmetic Progressions in Sets with Small Sumsets

JÓZSEF SOLYMOSI[†]

Department of Mathematics, University of British Columbia, 1984 Mathematics Road, Vancouver, BC, Canada V6T 1Z2 (e-mail: solymosi@math.ubc.ca)

Received 11 January 2004; revised 24 August 2004

We present an elementary proof that if A is a finite set of numbers, and the sumset $A +_G A$ is small, $|A +_G A| \leq c|A|$, along a dense graph G, then A contains k-term arithmetic progressions.

1. Introduction

A well-known theorem of Szemerédi [15] states that every dense subset of integers contains long arithmetic progressions. A different, but somehow related result of Freiman [5] says that if the sumset of a finite set of numbers A is small, *i.e.*, $|A + A| \leq C|A|$, then A is the subset of a (not very large) generalized arithmetic progression. Balog and Szemerédi proved in [1] that a similar structural statement holds under weaker assumptions. (For correct statements and details, see [8].) As a corollary of their result, Freiman's theorem, and Szemerédi's theorem about k-term arithmetic progressions, Balog and Szemerédi proved Theorem 1.1 below. The goal of this paper is to present a simple, purely combinatorial proof of this assertion.

Let A be a set of numbers and G be a graph such that the vertex set of G is A. The sumset of A along G is

$$A +_G A = \{a + b : a, b \in A \text{ and } (a, b) \in E(G)\}.$$

Theorem 1.1. For every c, K, k > 0 there is a threshold $n_0 = n_0(c, K, k)$ such that if $|A| = n \ge n_0$, $|A +_G A| \le K|A|$, and $|E(G)| \ge cn^2$, then A contains a k-term arithmetic progression.

[†] Research partially supported by NSERC and OTKA grants.

J. Solymosi

2. Lines and hyperplanes

There are arrangements of *n* lines on the Euclidean plane such that the maximum number of points incident with at least three lines is $\frac{n^2}{6}$. Not much is known about the structure of arrangements where the number of such points is close to the maximum, say cn^2 , where *c* is a positive constant. Nevertheless, the following is true.

Lemma 2.1. For every c > 0 there is a threshold $n_0 = n_0(c)$ and a positive $\delta = \delta(c)$ such that, for any set of $n \ge n_0$ lines L and any set of $m \ge cn^2$ points P, if every point is incident to three lines, then there are at least δn^3 triangles in the arrangement. (A triangle is a set of three distinct points from P such that any two are incident to a line from L.)

Proof. This lemma is implied by the following theorem of Ruzsa and Szemerédi [13].

Theorem 2.2. ([13]) Let G be a graph on n vertices. If G is the union of cn^2 edge-disjoint triangles, then G contains at least δn^3 triangles, where δ depends on c only.

To prove Lemma 2.1, let us construct a graph where L is the vertex set, and two vertices are adjacent if and only if the corresponding lines cross at a point of P. This graph is the union of cn^2 disjoint triangles, and every point of P defines a unique triangle, so we can apply Theorem 2.2.

The result above suffices to prove Theorem 1.1 for 3-term arithmetic progressions. But for larger values of k, we need a generalization of Lemma 2.1.

Lemma 2.3. For every c > 0 and $d \ge 2$, there is a threshold $n_0 = n_0(c, d)$ and a positive $\delta = \delta(c, d)$ such that, for any set of $n \ge n_0$ hyperplanes L and any set of $m \ge cn^d$ points P, if every point is incident to d + 1 hyperplanes, then there are at least δn^{d+1} simplices in the arrangement. (A simplex is a set of d + 1 distinct points from P such that any d are incident to a hyperplane from L.)

Lemma 2.3 follows from the Frankl–Rödl conjecture [4], the generalization of Theorem 2.2. The d = 3 case was proved in [4] and the conjecture has been proved recently by Gowers [6] and independently by Nagle, Rödl, Schacht and Skokan [7, 10]. For details on how Lemma 2.3 follows from the Frankl–Rödl conjecture, see [14].

3. The k = 3 case

Let A be a set of numbers and G be a graph such that the vertex set of G is A. We define the *difference-set of A along G* as

$$A -_G A = \{a - b : a, b \in A \text{ and } (a, b) \in E(G)\}.$$

Lemma 3.1. For every $\epsilon, c, K > 0$ there is a number $D = D(\epsilon, c, K)$ such that, if $|A +_G A| \leq K|A|$ and $|E(G)| \geq c|A|^2$, then there is a graph $G' \subset G$ such that $|E(G')| \geq (1 - \epsilon)|E(G)|$ and $|A -_{G'} A| \leq D|A|$.

Proof. Let us consider the arrangement of points given by a subset of the Cartesian product $A \times A$ and the lines y = a, x = a for every $a \in A$, and x + y = t for every $t \in A +_G A$. The pointset P is defined by $(a, b) \in P$ if and only if $(a, b) \in E(G)$. By Lemma 2.1, the number of triangles in this arrangement is δn^3 . The triangles here are right isosceles triangles. We say that a point in P is *popular* if the point is the right-angle vertex of at least αn triangles. Selecting $\alpha = \frac{\delta(\epsilon c)}{\epsilon c}$, where $\delta(\cdot)$ is the function from Lemma 2.1, all but at most $\epsilon c n^2$ points of P are popular.

A $t \in A - A$ is popular if $|\{(a, b) : a - b = t; a, b \in A\}| \ge \alpha n$. The number of popular ts is at most Dn, where D depends on α only. $A \times A$ is a Cartesian product; therefore every triangle can be extended to a square adding one extra point from $A \times A$. Every popular point p is the right-angle vertex of at least αn triangles. Therefore p is incident to a line x - y = t, where t is popular, because this line contains at least αn 'fourth' vertices of squares with p.

Proof of Theorem 1.1, case k = 3. Let us apply Lemma 2.1 to the pointset P' defined by $(a,b) \in P'$ if and only if $(a,b) \in E(G')$ and the lines are y = a for every $a \in A$, x - y = t for every $t \in A - G'A$, and x + y = s for every $s \in A + GA$. By Theorem 2.2, if |A| is large enough, then there are triangles in the arrangement. The vertices of such triangles are vertices from $P' \subset A \times A$. The vertical lines through the vertices form a 3-term arithmetic progression and therefore A contains δn^2 3-term arithmetic progressions, where $\delta > 0$ depends on c only.

4. The general, k > 3, case

Following the steps of the proof for k = 3, we prove the general case by induction on k. We prove the following theorem, which was conjectured by Erdős, and proved by Balog and Szemerédi in [1]. Theorem 4.1, together with the k = 3 case, gives a proof of Theorem 1.1.

Theorem 4.1. For every c > 0 and k > 3 there is an n_0 such that, if A contains at least $c|A|^2$ 3-term arithmetic progressions and $|A| \ge n_0$, then A contains a k-term arithmetic progression.

Instead of triangles, we must consider simplices. Set k = d. In the *d*-dimensional space we show that $A \times \cdots \times A$, the *d*-fold Cartesian product of *A*, contains a simplex in which the vertices' first coordinates form a (d + 1)-term arithmetic progression.

The simplices we are looking for are homothetic¹ images of the simplex S_d whose vertices are listed below:

 $(0, 0, 0, 0, \dots, 0, 0)$ $(1, 1, 0, 0, \dots, 0, 0)$ $(2, 0, 1, 0, \dots, 0, 0)$ $(3, 0, 0, 1, \dots, 0, 0)$ \vdots $(d - 1, 0, \dots, 1, 0)$ $(d, 0, 0, 0, \dots, 0, 0).$

¹ Here we say that two simplices are homothetic if the corresponding facets are parallel.

An important property of S_d is that its facets can be pushed into a 'shorter' grid. The facets of S_d are parallel to hyperplanes, defined by the origin (0, 0, 0, 0, ..., 0, 0), and some (d-1)-tuples of the grid

$$\{0, 1, 2, \dots, d-1\} \times \{-1, 0, 1\} \times \{0, 1\}^{d-2}.$$

For example, if d = 3, then the facets are

 $\{(0, 0, 0), (1, 1, 0), (2, 0, 1)\} \\ \{(0, 0, 0), (1, 1, 0), (3, 0, 0)\} \\ \{(0, 0, 0), (2, 0, 1), (3, 0, 0)\} \\ \{(1, 1, 0), (2, 0, 1), (3, 0, 0)\},$

and the corresponding parallel planes in

$$\{0, 1, 2\} \times \{-1, 0, 1\} \times \{0, 1\}$$

are the planes incident to the triples

$$\{(0, 0, 0), (1, 1, 0), (2, 0, 1)\} \\ \{(0, 0, 0), (1, 1, 0), (2, 0, 0)\} \\ \{(0, 0, 0), (2, 0, 1), (2, 0, 0)\} \\ \{(0, 0, 0), (1, -1, 1), (2, -1, 0)\}.$$

In general, if a facet of S_d contains the origin and the 'last point' (d, 0, 0, 0, ..., 0, 0), then if we replace the later one by (d - 1, 0, 0, 0, ..., 0, 0), the new d-tuples define the same hyperplane. The remaining facet f, given by

$$(1, 1, 0, 0, \dots, 0, 0)$$

$$(2, 0, 1, 0, \dots, 0, 0)$$

$$(3, 0, 0, 1, \dots, 0, 0)$$

$$\vdots$$

$$(d - 1, 0, \dots, 1, 0)$$

$$(d, 0, 0, 0, \dots, 0, 0),$$

is parallel to the hyperplane through the vertices of f - (1, 1, 0, 0, ..., 0, 0),

$$(0, 0, 0, 0, \dots, 0, 0)$$

$$(1, -1, 1, 0, \dots, 0, 0)$$

$$(2, -1, 0, 1, \dots, 0, 0)$$

$$\vdots$$

$$(d - 2, -1, \dots, 1, 0)$$

$$(d - 1, -1, 0, 0, \dots, 0, 0).$$

In a homothetic copy of the grid

$$T_d = \{0, 1, 2, \dots, d-1\} \times \{-1, 0, 1\} \times \{0, 1\}^{d-2},\$$

the image of the origin is called the *holder* of the grid.

As the induction hypothesis, let us suppose that Theorem 4.1 is true for a $k \ge 3$ in a stronger form, provided that the number of k-term arithmetic progressions in A is at least $c|A|^2$.

Then the number of distinct homothetic copies of T_d in

$$\mathbb{A}_d = \underbrace{A \times \ldots \times A}_d$$

is at least $c'|A|^{d+1}$ (c' depends on c only). Let us say that a point $p \in \mathbb{A}_d$ is *popular* if p is the holder of at least $\alpha |A|$ grids. If p is popular, then, for any facet of S_d , f, the point p is the element of at least $\alpha |A|$ d-tuples, similar and parallel to f. If α is small enough, then at least $\gamma |A|^d$ points of \mathbb{A}_d are popular, where γ depends on c and α only.

A hyperplane *H* is β -rich if it is incident to many points, $|H \cap \mathbb{A}_d| \ge \beta |A|^{d-1}$. For every facet of S_d , *f*, let us denote the set of β -rich hyperplanes which are parallel to *f* by \mathscr{H}_f .

Lemma 4.2. For some choice of β , at least half of the popular points are incident to d + 1 β -rich hyperplanes, parallel to the facets of S_d .

Suppose to the contrary that, for a facet f, more than $\frac{\gamma}{2d}|A|^d$ popular points are not incident to hyperplanes of \mathscr{H}_f . Then, more than

$$\alpha |A| \frac{\gamma}{2d} |A|^d = \frac{\gamma \alpha}{2d} |A|^{d+1}$$
(4.1)

d-tuples, similar and parallel to f, are not covered by \mathscr{H}_f . Let us denote the hyperplanes incident to the 'uncovered' *d*-tuples by L_1, L_2, \ldots, L_m , and the number of points on the hyperplanes by $\mathscr{L}_1, \mathscr{L}_2, \ldots, \mathscr{L}_m$. A simple result of Elekes and Erdős [2, 3] implies that hyperplanes with few points cannot cover many *d*-tuples.

Theorem 4.3. ([3]) The number of homothetic copies of f in L_i is at most $c_d \mathscr{L}_i^{1+1/(d-1)}$, where c_d depends on d only.

The inequalities

$$\sum_{i=1}^m \mathscr{L}_i \leqslant |A|^d$$
, and $\mathscr{L}_i \leqslant \beta |A|^{d-1}$.

lead us to the proof of Lemma 4.2.

The number of *d*-tuples covered by L_i s is at most

$$c_d \sum_{i=1}^m \mathscr{L}_i^{1+1/(d-1)} \leqslant c_d \frac{|A|^d}{\beta |A|^{d-1}} (\beta |A|^{d-1})^{1+1/(d-1)} = c_d \beta^{1/(d-1)} |A|^{d+1}.$$

If we compare this bound to (4.1), and choose β such that $\frac{\gamma \alpha}{2d} = c_d \beta^{1/(d-1)}$, then at least half of the popular points are covered by d + 1 β -rich hyperplanes parallel to the facets of S_d .

Finally we can apply Lemma 2.3 with the pointset P of 'well-covered' popular points of \mathbb{A}_d and with the sets of hyperplanes $L = \bigcup_{f \in S_d} \mathscr{H}_f$. The number of points is at least

 $\frac{\gamma \alpha}{2} |A|^d$. For a given f, $|\mathscr{H}_f| \leq \frac{|A|^d}{\beta |A|^{d-1}} = |A|/\beta$. The number of hyperplanes in L is at most $(d+1)|A|/\beta$. By Lemma 2.3, we have at least $\delta'|A|^{d+1}$ homothetic copies of S_d in \mathbb{A}_d . Let us project them onto x_1 , the first coordinate axis. Every image is a (k+1)-term arithmetic progression, and the multiplicity of one image is at most $|A|^{d-1}$. Therefore there are at least $\delta'|A|^2$ (k+1)-term arithmetic progressions in A.

5.
$$G_n = K_n$$

When the full sumset A + A is small then it is easier to prove that A contains long arithmetic progressions. We can use the following Plünnecke-type inequality [8, 9, 12].

Theorem 5.1. Let A and B be finite subsets of an abelian group such that |A| = n and $|A + B| \leq \delta n$. Let $k \geq 1$ and $l \geq 1$. Then

$$|kB - lB| \leq \delta^{k+l}n$$

It follows from the inequality that, for any dimension d and d-dimensional integer vector $\vec{v} = (x_1, ..., x_d)$, $x_i \in \mathbb{Z}$, there is a c > 0 depending on d, δ and \vec{v} such that the following holds: If $|A + A| \leq \delta |A|$, then \mathbb{A}_d can be covered by c|A| hyperplanes with the same normal vector \vec{v} . Using this, we can define our hyperplane-point arrangement, with the hyperplanes parallel to the facets of S_d containing at least one point of \mathbb{A}_d , and the pointset of the arrangement is \mathbb{A}_d . Then we do not have to deal with rich planes and popular points, and we can apply Lemma 2.3 directly.

References

- Balog, A. and Szemerédi, E. (1994) A statistical theorem of set addition. Combinatorica 14 263–268.
- [2] Elekes, G. (2002) Sums versus products in number theory, algebra and Erdős geometry. In Paul Erdős and his Mathematics II, Budapest, Vol. 11 of Bolyai Society Mathematical Studies, p. 277.
- [3] Elekes, G. and Erdős, P. (1994) Similar configurations and pseudo grids. In *Intuitive Geometry*, Vol. 63 of *Coll. Math. Soc. János Bolyai*, North-Holland, Amsterdam, pp. 85–104.
- [4] Frankl, P. and Rödl, V. (2002) Extremal problems on set systems. Random Struct. Alg. 20 131–164.
- [5] Freiman, G. A. (1973) Foundations of Structural Theory of Set Addition, Vol. 37 of Translation of Mathematical Monographs, AMS, Providence, RI, USA.
- [6] Gowers, W. T. Hypergraph regularity and the multidimensional Szemerédi theorem. Manuscript.
- [7] Nagle, B., Rödl, V. and Schacht, M. The counting lemma for regular k-uniform hypergraphs. Random Struct. Alg. 28 113–179.
- [8] Nathanson, M. B. (1996) Additive Number Theory: Inverse Problems and the Geometry of Sumsets, Vol. 165 of Graduate Texts in Mathematics, Springer.
- [9] Plünnecke, H. (1969) Eigenschaften und Abschätzungen von Wirkungsfunctionen, Vol. 22, Berichte der Gesellschaft für Mathematik und Datenverarbeitung, Bonn.
- [10] Rödl, V. and Skokan, J. (2004) Regularity lemma for k-uniform hypergraphs. Random Struct. Alg. 25 1–42.
- [11] Roth, K. F. (1953) On certain sets of integers. J. London Math. Soc. 28 245-252.
- [12] Ruzsa, I. Z. (1989) An application of graph theory to additive number theory. *Scientica Ser. A* 3 97–109.

- [13] Ruzsa, I. Z. and Szemerédi, E. (1978) Triple systems with no six points carrying three triangles. In Vol. 18 of *Colloquia Mathematica Societatis János Bolyai* (Proc. 5th Hungarian Colloq., Keszthely, Hungary, 1976), North-Holland, pp. 939–945.
- [14] Solymosi, J. (2004) A note on a question of Erdős and Graham. Combin. Probab. Comput. 13 263–267.
- [15] Szemerédi, E. (1975) On sets of integers containing no k elements in arithmetic progression. Acta Arithmetica 27 199–245.