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Abstract. In this paper we give incidence bounds for arrangements of curves
in F

2
q . As an application, we prove a new result that if (x, f(x)) is a Sidon set

then either A+A or f(A)+ f(A) should be large. The main goal of the paper
is to illustrate the use of graph spectral techniques in additive combinatorics.
This is an extended version of the talks I gave in the Additive Combinatorics
DocCourse held at the CRM in Barcelona and at the conference ”Fete of
Combinatorics” held in Keszthely.

1. Introduction

The main goal of the paper is to illustrate the use of graph spectral techniques
in additive combinatorics. The problem of finding non-trivial incidence bounds on
lines and curves in F

2
q is closely related to sum-product estimates. In the first section

we will prove Garaev’s sum-product bound [14] using combinatorial arguments.
Such techniques were used in similar context by Vu [27] and by Vinh [26]. Vu
gave incidence bounds on polynomial curves and Vinh reproved Garaev’s result, an
improvement on the Bourgain-Katz-Tao incidence bound for large (larger than q)
sets of points and lines in F

2
q.

In Section 3 we sketch a spectral proof for Roth’s theorem, that every dense set of
integers contains three-term arithmetic progressions. There are several examples
where one can choose between the Fourier method or a proof based on eigenvalues.
A classical example is a discrepancy theorem for arithmetic progressions by Roth
[23], who used the Fourier transform. Later, Lovász and Sós proved the theorem
using eigenvalues. (see in [3] or in [8] on page 20.)

In the third part of the paper we present new results. We partially answer a
question of Bourgain [6], giving incidence bounds similar to Garaev’s, but for a
more general family of curves. It is a finite field extension of a theorem of Elekes,
Nathanson, and Ruzsa. Applying Elekes’ incidence method [11], Elekes, Nathanson,
and Ruzsa proved in [13] the following. Let f : R → R be a convex function. Then
for any finite set A ⊂ R,

max{|A + A|, |f(A) + f(A)|} ≥ c|A|5/4 (1)
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In the inequality A+A denotes the set of pairwise sums, A+A = {a+ b : a, b ∈ A}
and f(A) = {f(a) : a ∈ A}. We don’t have the notion of a convex function in Fq,
so we will use a weaker condition on f to get results in Fq similar to (1).

2. The Sum-Product problem

An old conjecture of Erdős and Szemerédi states that if A is a finite set of integers
then the sumset or the productset should be large. The sumset of A was defined
earlier and the productset is defined in a similar way,

A · A = {ab|a, b ∈ A}.
Erdős and Szemerédi conjectured that the sumset or the productset is almost qua-
dratic in the size of A, i.e.

max(|A + A|, |A · A|) ≥ c|A|2−δ

for any positive δ.

Bourgain, Katz, and Tao proved a nontrivial, |A|1+ε, lower bound for the finite
field case [5]. Let A ⊂ Fp and pα ≤ |A| ≤ p1−α. Then there is an ε > 0 depending
on α only, such that

max(|A + A|, |A · A|) ≥ c|A|1+ε

It is important that p is prime, otherwise one could select A being a subring in
which case both the product set and the sum set are small, equal to |A|. For the
case, Fq, where q is a power of an odd prime, the best known bound is due to Garaev
[14]. It follows from a construction of Ruzsa, that his bound is asymptotically the
best possible in the range |A| ≥ q2/3. Garaev’s proof uses bounds on exponential
sums. We are going to derive similar sum-product estimates using spectral bounds
for graphs.

Sum-product bounds have important applications , not only to number theory, but
to computer science, Ramsey theory, and cryptography.

2.1. The Sum-Product graph. The vertex set of the sum-product graph GSP

is the Cartesian product of the multiplicative subgroup and the field, V (GSP ) =
F
∗
q × Fq (as before, q is a power of an odd prime). Two vertices, u = (a, b) and

v = (c, d) ∈ V (GSP ), are connected by and edge, (u, v) ∈ E(GSP ), iff ac = b + d.
This multigraph (there are a few loops) has a very special structure which makes it
easy to compute the second largest eigenvalue of the graph. The set of eigenvalues
are given by the eigenvalues of the adjacency matrix of the graph. The matrix is
symmetric, so all q(q − 1) eigenvalues are real, we can order them, μ0 ≥ μ1 ≥ . . . ≥
μq2−q−1. The second largest eigenvalue, λ, is defined as λ = max(μ1, |μq2−q−1|).
Using λ, one can write isoperimetric inequalities on the graph. In order to do
so, we give a bound on λ. First, observe that for any two vertices, u = (a, b) and
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v = (c, d) ∈ V (GSP ), if a �= c and b �= d, then the vertices have exactly one common
neighbor, N(u, v) = (x, y) ∈ V (GSP ).

The unique solution of the system

ax = b + y

cx = d + y

}
is given by

x = (b − d)(a − c)−1

2y = x(a + c) − b − d.
(2)

If a = c or b = d, then the vertices, u, v, have no common neighbors. Let M
denote the adjacency matrix of GSP , that is aij = 1 if (vi, vj) ∈ E(GSP ), and
aij = 0 otherwise. M is a symmetric matrix, moreover

M2 = J + (q − 2)I − E,

where J is the all-one matrix, I is the identity matrix, and E is the ”error matrix”,
the adjacency matrix of the graph, GE , where for any two vertices, vi = (a, b) and
vj = (c, d) ∈ V (GSP ), (vi, vj) ∈ E(GE) iff a = c or b = d. As GSP is a (q − 1)-
regular graph, q − 1 is an eigenvalue of M with the all-one eigenvector, −→1 . The
matrix M is symmetric, so that eigenvectors of other eigenvalues are orthogonal to−→1 . It is a corollary of the Spectral Theorem, that there is an orthonormal basis, V,
consisting of eigenvectors of M. Let θ denote the second largest eigenvalue of M.
The graph, GSP , is connected so the eigenvalue q − 1 has multiplicity one, and the
graph is not bipartite, so for any other eigenvalue, θ, |θ| < q − 1. A corresponding
eigenvector is denoted by −→vθ . Let us multiply both sides of the matrix equation
above by −→vθ . The ”trick” is that J−→vθ = 0, as the eigenvectors are orthogonal to the
all-one vector, so we get:

(θ2 − q + 2)−→vθ = E−→vθ .

Note that E has the same set of eigenvectors as M has. GE is a 2q − 3-regular
graph, so any eigenvalue of E is at most 2q − 3 in absolute value.

θ2 − q + 2 ≤ 2q,

|θ| <
√

3q.
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For illustration we show the matrices M, M2, and E for the case when q = 5.

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1

1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0

0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0

0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0

0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0

0 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0

0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0 0

1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1 0 0 0

0 0 0 0 1 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0

0 0 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1

0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0

0 0 1 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0

0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 0

1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1

0 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 1 0

0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0

0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0

0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1

0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0

1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

M
2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

4 0 0 0 0 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1

0 4 0 0 0 1 0 1 1 1 1 0 1 1 1 1 0 1 1 1

0 0 4 0 0 1 1 0 1 1 1 1 0 1 1 1 1 0 1 1

0 0 0 4 0 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1

0 0 0 0 4 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0

0 1 1 1 1 4 0 0 0 0 0 1 1 1 1 0 1 1 1 1

1 0 1 1 1 0 4 0 0 0 1 0 1 1 1 1 0 1 1 1

1 1 0 1 1 0 0 4 0 0 1 1 0 1 1 1 1 0 1 1

1 1 1 0 1 0 0 0 4 0 1 1 1 0 1 1 1 1 0 1

1 1 1 1 0 0 0 0 0 4 1 1 1 1 0 1 1 1 1 0

0 1 1 1 1 0 1 1 1 1 4 0 0 0 0 0 1 1 1 1

1 0 1 1 1 1 0 1 1 1 0 4 0 0 0 1 0 1 1 1

1 1 0 1 1 1 1 0 1 1 0 0 4 0 0 1 1 0 1 1

1 1 1 0 1 1 1 1 0 1 0 0 0 4 0 1 1 1 0 1

1 1 1 1 0 1 1 1 1 0 0 0 0 0 4 1 1 1 1 0

0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 4 0 0 0 0

1 0 1 1 1 1 0 1 1 1 1 0 1 1 1 0 4 0 0 0

1 1 0 1 1 1 1 0 1 1 1 1 0 1 1 0 0 4 0 0

1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 0 0 0 4 0

1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 0 0 0 0 4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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E =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 1 1 1 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0

1 0 1 1 1 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0

1 1 0 1 1 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0

1 1 1 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0

1 1 1 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1

1 0 0 0 0 0 1 1 1 1 1 0 0 0 0 1 0 0 0 0

0 1 0 0 0 1 0 1 1 1 0 1 0 0 0 0 1 0 0 0

0 0 1 0 0 1 1 0 1 1 0 0 1 0 0 0 0 1 0 0

0 0 0 1 0 1 1 1 0 1 0 0 0 1 0 0 0 0 1 0

0 0 0 0 1 1 1 1 1 0 0 0 0 0 1 0 0 0 0 1

1 0 0 0 0 1 0 0 0 0 0 1 1 1 1 1 0 0 0 0

0 1 0 0 0 0 1 0 0 0 1 0 1 1 1 0 1 0 0 0

0 0 1 0 0 0 0 1 0 0 1 1 0 1 1 0 0 1 0 0

0 0 0 1 0 0 0 0 1 0 1 1 1 0 1 0 0 0 1 0

0 0 0 0 1 0 0 0 0 1 1 1 1 1 0 0 0 0 0 1

1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 1 1 1

0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 1 1 1

0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 1 1 0 1 1

0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 1 1 1 0 1

0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 1 1 1 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

2.2. The spectral bound. The small value of the second largest eigenvalue shows
us that GSP is a quasirandom graph and we can bound the number of edges between
large vertex sets efficiently. We are going to use following Cheeger-type discrepancy
bound; For any two sets of vertices, S, T ⊂ V (GSP ),

∣∣∣∣e(S, T ) − |S||T |
q

∣∣∣∣ ≤ λ
√

|S||T |, (3)

where e(S, T ) is the number of edges between S and T. (see e.g. in [10] or [1].)
Inequality (3) and the bound on λ imply that

e(S, T ) ≤ |S||T |
q

+
√

3q|S||T |. (4)

From (4) we can deduct Garaev’s sum-product bound [14]. We can suppose that
0 �∈ A, WLOG. Set S = (AA) × (−A) and T = (A−1) × (A + A). There is an edge
between any two vertices (ab,−c) ∈ S and (b−1, a + c) ∈ T, therefore the number
of edges between S and T is at least |A|3. On the other hand

|A|3 ≤ e(S, T ) ≤ |S||T |
q

+
√

3q|S||T | =
|AA||A + A||A|2

q
+

√
3q|AA||A + A||A|2.

After rearranging the inequality we get the desired sum-product bound.

|A + A||AA| � min
{

q|A|, |A|4
q

}
.

In particular, if |A| ≈ q2/3, then max{|AA|, |A + A|} � |A|5/4.
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3. 3-term arithmetic progressions

In the previous example it was enough to show that the second largest eigenvalue
is small. There are cases where we can not guarantee that the second eigenvalue is
small; however when it is large then we might find some structure in the graph. To
illustrate this, we will sketch one of the several possible proofs of Roth’s theorem
[22].

Theorem 3.1 (Roth’s Theorem). For any N ≥ 3 if S ⊂ [1, . . . , N ] and |S| �
N/ log log N then S contains a 3-term arithmetic progression.

Note, that it is enough to prove Roth’s theorem modulo a prime p. For any p ≥ 3
if S ⊂ Fp and |S| � p/ log log p then S contains a 3-term arithmetic progression.
Indeed, choose p that p ≥ 3N and translate S that it is in the middle third of
the interval [1, . . . , p]. In this way any arithmetic progression modulo q is also a
”regular” arithmetic progression.

3.2. The 3-AP graph. To prove the ”mod p” variant, we define a graph, G3AP ,
on 2p−1 vertices. We label the vertices by v0, v1, . . . vp−1, and v−1, v−2, . . . , v−p+1.,
A way to think of the vertices if they were the (2p− 1)-th roots of unity, assigning
vj to exp( 2πı

2p−1j). The neighbors of v0 are defined by the set S in the following
way; vi is connected to v0 by an edge iff |i| ∈ S. (Suppose that 0 �∈ S.) Extend the
graph by adding the edges necessary that the mapping, i 
→ i + 1 (mod 2p − 1),
is an automorphism of G3AP . Using the roots of unity notation, it means that
multiplying the vertices by exp( 2πı

2p−1j) is an automorphism of the graph for any
integer j. (It is the Cayley graph of Z/(2p − 1)Z with respect to S.)

1  2  3  4  5  6

Figure 1. A partial drawing of G3AP for the set shown.

For graphs with a ”nice” automorphism group, finding the eigenvectors and eigen-
values is not a hard task. (see Exercise 8. in [18], Chapter 16 in [4], or [19] for
a more detailed description) In our case it is easy to check that for this circulant
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graph, 2p − 1 linearly independent eigenvectors are given by the vectors
[
exp

(
2πık

2p− 1

)
, exp

(
4πık

2p − 1

)
, exp

(
6πık

2p − 1

)
, . . . , exp

(
2(2p− 1)πık

2p − 1

)]T

,

where 0 ≤ k ≤ 2p − 2. Then the eigenvalues of G3AP are given by the sums

θk =
∑
s∈S

exp
(

2πısk

n

)
+

∑
s∈S

exp
(−2πısk

n

)
.

There are two possibilities. Either the second largest eigenvalue is large or all
eigenvalues but the largest, μ0 = 2|S|, are small. In the former case, most of the
summands have large positive real part. It implies that there is a long arithmetic
progression having a very large intersection with S. We won’t explore this case here,
instead we show that if all eigenvalues are small then there is a 3-term arithmetic
progression in S. The interested reader will find the details for the density incre-
ment case in Roth’s original paper [22], or in one of the many books discussing
Roth’s theorem, like [15],[25], or [16]. Our moderate plan here is to show that if
|S|2/(2p− 1) > λ then S contains a 3AP.

We can find a relation between the assumption that S has no 3-term arithmetic
progressions (it is 3AP-free) and the structure of the graph G3AP . We show that if
S is 3AP-free then there are large vertex sets spanning less than expected edges.
For every edge we can define its halving point. Consider the edges as arcs between
points on the unit circle. The points are the vertices, represented by the roots of
unity and the edges are the shorter circular arcs. The halving point of the edge
is the geometric halving point of the circular arc. The number of possible halving
points is 4p− 2. The number of edges is |S|(2p− 1), so there is a point which is the
halving point of at least �|S|/2� edges. Note that if we had two edges sharing the
same halving point, such that there is another edge between the two-two endvertices
separated by the halving point, that would imply that there is a 3AP in S. (See fig.
2.)

If S is 3AP-free then between the two �|S|/2�-size sets of endvertices, A and B,
there are exactly �|S|/2� edges. Inequality (3) implies that∣∣∣∣∣e(A, B) − 2|S| �|S|/2�2

2p − 1

∣∣∣∣∣ ≤ λl �|S|/2� ,

from where we get that
|S|2

2p − 1
≤ λ,

as we wanted to show.

4. Sidon functions

In this section we extend a result of Elekes, Nathanson, and Ruzsa [13] to the finite
field case.
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Figure 2. If there are two edges sharing the same halving point,
h, then the endpoints of the edges can be written as h + d1, h− d1

and h + d2, h− d2. If h + d2 and h− d1 are connected by an edge,
it means that d1 + d2 is in S with 2d1 and 2d2, forming a 3AP.

Theorem 4.1 (Elekes, Nathanson, and Ruzsa). Let f : R → R be a convex func-
tion. Then for any finite set A ⊂ R,

max{|A + A|, |f(A) + f(A)|} ≥ c|A|5/4

4.2. Sidon functions. We need a notation which substitutes convexity in finite
fields. The graph of a convex function is a Sidon set in R

2, this is the property
we are going to use for finite fields. A set H ⊂ Fq × Fq is a Sidon set if for any
hi, hj , hk, hl ∈ H the equation

hi − hj ≡ hk − hl (mod q)

implies i = k and j = l. A function, f : S → Fq for some S ⊂ Fq, is said to be a
Sidon function if its graph H = {(x, f(x)) : x ∈ S} is a Sidon set. Note that the
graph of any convex function in R

2 forms a Sidon set.

Theorem 4.3. For any integer, k, and for any S ⊂ Fq, |S| ≥ q − k, if f : S → Fq

is a Sidon function, then for any set A ⊂ S, and sets B, C ⊂ Fq,

|A + B||f(A) + C| ≥ min
{

q|A|
2

,
|A|2|B||C|
8(k + 1)q

}
.

Using the right substitution for C and D, Theorem 4.3 gives the following corol-
laries.
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Figure 3. The graph of any convex function in R
2 forms a Sidon set.

Corollary 4.4. For any integer, k, there is a constant, c = c(k), such that for any
S ⊂ Fq, |S| ≥ q − k, if f : S → Fq is a Sidon function, then for any set A ⊂ S,

|A + A||f(A) + f(A)| ≥ c min
{

q|A|, |A|4
q

}
.

It is remarkable that the inequality above matches to the Elekes-Nathanson-Ruzsa
bound for sets A such that |A| ≈ q2/3. It has a single term variant, which we state
in a separate statement.

Corollary 4.5. For any integer, k, there is a constant, c = c(k), such that for any
S ⊂ Fq, |S| ≥ q − k, if f : S → Fq is a Sidon function, then for any set A ⊂ S,

|A + f(A)| ≥ c min
{√

q|A|, |A|2√
q

}
.

4.6. A bipartite incidence graph. The proof of Theorem 4.3 is based on the
following incidence bound. Let f be a function, S → Fq, for some S ⊂ Fq. The
graph of f is the set of points {(x, f(x)) ∈ Fq × Fq : x ∈ S}. A translate of f by a
vector u = (u′, u′′) ∈ Fq × Fq, is the set Tu(f) = {(x + u′, f(x) + u′′) : x ∈ S}. The
translate of the mirror graph of f is defined as Tu(f)τ = {(u′−x, u′′−f(x)) : x ∈ S}.
Lemma 4.7. For any integer, k, and for any S ⊂ Fq, |S| = q − k if f : S → Fq is
a Sidon function, then for any set P ⊂ Fq × Fq, the number of incidences between
P and s translates of f, the set {Tui(f)}s

i=1, ui = (u′
i, u

′′
i ), is bounded as follows;

s∑
i=1

|{x ∈ S : (x + u′
i, f(x) + u′′

i ) ∈ P}| ≤ |P |s
q

+
√

2(k + 1)q|P |s.

Proof: Define a bipartite graph, G(A, B), as follows. The vertex set of G consists
of two copies of Fq × Fq.
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The edges of G(A, B) are given by the graph of f. Two vertices, u = (u′, u′′) ∈
A = Fq × Fq, and v = (v′, v′′) ∈ B = Fq × Fq, are connected by an edge in G if

f(v′ − u′) = v′′ − u′′. (5)

The neighborhood of a vertex u ∈ A is given by N(u) = Tu(f) ⊂ B, and neighbor-
hood of a vertex u ∈ B is described by N(v) = Tv(f)τ ⊂ A. The graph, G(A, B),
is a (q − k)-regular bipartite graph. The spectra of G(A, B) is symmetric. For this
graph the second largest eigenvalue is defined as λ = μ1. As the graph is (q − k)-
regular, the largest and the smallest eigenvalues are q − k and k − q. Similarly as
we did in the sum-product example, we can bound λ by examining the q2 × q2

adjacency matrix of G(A, B), denoted by M. The function f is a Sidon function,
therefore the neighborhoods of two vertices in A or in B intersect in at most one
vertex. A translate, Tu(f), covers

(
q−k
2

)
vertex pairs. All translates (the neigh-

borhoods of vertices) cover 2
(
q−k
2

)
q2 pairs out of the 2

(
q2

2

)
vertex pairs in A and

in B. Let us define an error graph, H, which has two components, one in A and
one in B, and two vertices, u and v are connected by an edge iff there is no vertex
connected to both in G(A, B). The error graph, H, has 2(

(
q2

2

)− q2
(
q−k
2

)
) edges and

it is regular of degree q2 − 1 − (q − k)(q − k − 1). Its adjacency matrix is denoted
by E.

M2 =
[

J 0
0 J

]
+ (q − k − 1)I − E.

As in the first example, we can multiply the equation by an eigenvector of M, which
belongs to the second largest eigenvalue.

E−→vλ = (q − k − 1 − λ2)−→vλ .

We know that H is (2kq + q − k2 − k − 1)-regular, therefore any eigenvalue of E is
less or equal to 2kq + q − k2 − k − 1.

|q − k − 1 − λ2| ≤ 2kq + q − k2 − k − 1,

so
λ <

√
2(k + 1)q.

4.8. The spectral bound. For bipartite graphs, like G(A, B), inequality (3) is
slightly different. If G(A, B) is a r-regular bipartite graph on n vertices, then for
any subsets A′ ⊂ A and B′ ⊂ B,

∣∣∣∣e(A′, B′) − 2r|A′||B′|
n

∣∣∣∣ ≤ λ
√

|A′||B′|.

Now we are ready to complete the proof of Lemma 4.7, to state a bound on inci-
dences between a set of points, P, and s translates, {Tui(f)}s

i=1, ui = (u′
i, u

′′
i ). An

edge in the graph G(A, B) represents an incidence between a point and a translate.
s∑

i=1

|{x ∈ S : (x + u′
i, f(x) + u′′

i ) ∈ P}| ≤ |P |s
q

+
√

2(k + 1)q|P |s.

�
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Proof of Theorem 4.3: Let us consider the Cartesian product (A+B)×(f(A)+C). It
has |B||C| translates of the smaller product A×f(A), which contains an |A|-element
subset of the graph of f. The |B||C| translates determine |A||B||C| incidences in
(A + B) × (f(A) + C). Now we apply Lemma 4.7 with substitutions s = |B||C|,
|P | = |A + B||f(A) + C|, and with |A||B||C| incidences. �

Note that Theorem 4.3 generalizes Garaev’s point-line incidence bound, since the
mapping (x, y) 
→ (x, y + x2) maps any line, ax + by = c, a �= 0, to a translate of
the parabola, y = x2, which is a Sidon function.

For any set P ⊂ Fq×Fq, the number of incidences between P and s lines is bounded
by

O

( |P |s
q

+
√

q|P |s
)

. (6)

5. Incidence Bounds on Pseudolines

Incidence bounds in geometries have various applications. The celebrated theo-
rem of Szemerédi and Trotter [24] gives sharp incidence bound for the number of
point-line incidences in the Euclidean plane. The Szemerédi-Trotter Theorem was
extended to pseudolines. For the details about variants of the planar Szemerédi-
Trotter theorem we refer to [21].

Our goal here is finding non-trivial incidence bounds for pseudolines in F
2
q. First we

give a definition of pseudolines which form a partial geometry in F
2
q. The incidence

graph will be a strongly regular graph, therefore we can use standard spectral
bounds to estimate incidences.

5.1. The incidence bound. The following is a standard, (however not the only)
definition of pseudolines in the Eucledean plane, see in e.g. [2].

A collection L of x-monotone unbounded Jordan curves in the plane is called a
family of pseudolines if every pair of curves intersects in at most one point.

To find a proper definition of pseudolines in finite fields isn’t so straightforward. We
are going to use one possible definition which has interesting applications. Instead of
x-monotone unbounded Jordan curves we consider ”lines”, li = {(x, f(x)) : x ∈ Fq},
where f : Fq → Fq.

Definition 5.2. A collection L of subsets of F
2
q, L = {l1, l2, . . . , lk} is called a

family of pseudolines if the following conditions hold

a, For every a ∈ Fq, any set, li, has exactly one point with x-coordinate a.
b, Every pair of sets, li and lj , intersects in at most one point.
c, If li ∈ L, then its y-translates are also in the arrangement, li + (0, a) ∈ L

for any a ∈ Fq.
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The last condition implies that the size of a family of pseudolines is divisible by q.

Theorem 5.3. Let a family of pseudolines, L, and a family of points, P, in F
2
q be

given. Suppose that |L| = kq, and |P | = n. Then the number of incidences between
m pseudolines and n points is bounded by

I(m, n) ≤ n
√

km/q +
√

qnm.

The incidence bound for pseudolines implies a new bound on point line incidences.
It is better than inequality 6 in line arrangements with a few distinct slopes only.

Corollary 5.4. Let a family of pseudolines, L, and a family of points, P, in F
2
q

be given. Suppose that the lines have no more than k different slopes. Then the
number of incidences between the s lines and points of P is bounded by

I(s, |P |) ≤ |P |
√

ks/q +
√

q|P |s.

The bound is better than inequality (6) if k < s/q. To see how Theorem 5.3 implies
Corollary 5.4, observe that the set all lines with slopes from a given set, forms a
family of pseudolines.

The incidence bound in Theorem 5.3 is a corollary of the following statement which
is proved in the next subsection.

Theorem 5.5. Given a family of pseudolines, L, and two sets of points, P1 and
P2 in F

2
q. Suppose that |L| = kq, |P1| = n1, and |P2| = n2. Then the number of

collinear pairs in P1 × P2 is bounded as

|{(pi, pj) : pi ∈ P1, pj ∈ P2, ∃� ∈ L : pi, pj ∈ �}| ≤ kn1n2

q
+ q

√
n1n2.

Proof of Theorem 5.3: Suppose that the m pseudodolines are incident to t1, t2, . . . , tm
points in P. Then, the number of copseudolinear pairs in P is at least

∑m
i=1

(
ti

2

)
.

On the other hand, I(m, n) =
∑m

i=1 ti, so the number of copseudolinear pairs is at
least m

(
I(m,n)/m

2

) ∼ I(m, n)2/m. Using the inequality from Theorem 5.5 we have

I(m, n)2

m
≤ kn2

q
+ qn,

concluding the proof of Theorem 5.3. �

5.6. Strongly regular graphs. In [7] Bose introduced the notation of partial
geometries. A set of points and lines is a finite partial geometry if there are integers
such that:

i For each two different points p and q, there is at most one line incident with
both of them.

ii Each line is incident with r + 1 points.
iii Each point is incident with s + 1 lines.
iv If a point p and a line L are not incident, then there are exactly t points

on L collinear to p.
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Lemma 5.7. Any family of pseudolines is a partial geometry.

The easy proof is left to the reader.

Proof of Theorem 5.5: The incidence graph, G(L), of a family of pseudolines is
defined as follows. G has q2 vertices, the elements of F

2
q. Two vertices v and u are

connected iff the points are collinear, i.e. there is a line, l ∈ L, such that v, u ∈ l .
As we observed earlier, the number of lines is divisible by q. There is an integer, k,
1 ≤ k ≤ q, such that |L| = kq.

G(L) is a strongly regular graph, where each vertex has degree k(q − 1). Two
collinear (adjacent) vertices have q − 2 + (k − 1)(k − 2) = q + k2 − 3k common
neighbors and non-adjacent vertices have k2−k common neighbors. The adjacency
matrix of the graph is denoted by A.

A2 = (q + k2 − 3k)A + (k2 − k)(J − A − I) + k(q − 1)I.

The usual trick - multiplying both sides by an eigenvector - helps us to find the
eigenvalues. The adjacency matrix of this graph has only three distinct eigenvalues.
The largest is k(q − 1) and the other two are q − k and −k. (For more details
about such graphs we refer to [17].) In our applications q � k, so the second
largest eigenvalue is q−k. From this, Theorem 5.5 follows immediately by applying
inequality (3). �
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