Question 1. Let \(S \subset 2^H \) a collection of subset of \(H \) so that if \(A, B, C, D \in S \) are distinct sets then \(A \cup B \not\subset C \cup D \). Give upper and lower bounds on the size of \(S \) in terms of \(|H|\) if we know that \(|S|\) is as large as possible under the given condition.

Question 2. Given a simple graph, \(G_n \), with \(e \) edges.
 (1) Give a lower bound on the number of \(K_{2,3} \) subgraphs in terms of \(n \) and \(e \).
 (2) What is the expected number of \(K_{2,3} \) subgraphs if \(G_n \) is a random graph? Every edge was selected independently at random with probability
 \[
 p = \frac{e}{\binom{n}{2}}.
 \]

Question 3. Draw your student tree! i.e. write down your student number and consider it as a Pruefer code of a labelled tree. If you don’t have a proper student number then you can work with the code 02309111.

Question 4. Prove the identity that if \(k = n \) then
\[
\sum_{i=0}^{n} (-1)^i \binom{n}{i} i^k = (-1)^n n!
\]
What happens if \(k \neq n \)?

Due date: Oct 5, in class.