Question 1. What is the probability that a random permutation of \(n \) objects have a fixpoint? (Every permutation is selected with the same, \(\frac{1}{n!} \), probability.) What is the expected number of fixpoints?

Question 2. Prove that \(\binom{n}{k} \) and \(\binom{2n}{2k} \) have the same parity.

Question 3. Use Szemerédi’s regularity lemma to prove that for every \(\varepsilon > 0 \) there exists a \(\delta > 0 \) such that, for any graph \(G_n \) on \(n \) vertices with at most \(\delta n^3 \) triangles, it may be made triangle-free by removing at most \(\varepsilon n^2 \) edges.

Question 4. Use the eigenvalues of the adjacency matrix to give an exact formula for the number of pentagons \((C_5 \text{-s}) \) in a graph.

Question 5. Let us suppose that the second largest eigenvalue of a \(d \)-regular bipartite graph is \(2\sqrt{d} \). The two vertex sets have size \(n - n \). Give upper and lower bounds on the number of quadrilaterals \((C_4 \text{-s}) \) in the graph.

Question 6.* Show that there is a constant, \(c > 0 \), such that the following holds; let \(P \) and \(Q \) be a set of points and a set of axis parallel rectangles in the plane, respectively. Let us suppose that every rectangle contains at least one point. Then for any natural number \(n \), either

- there are \(n \) rectangles in \(Q \) such that no point of \(P \) belongs to more than one of them, or
- one can choose at most \(n^c \) points of \(P \) so that every element of \(Q \) contains at least one of them.

Due date: Dec. 11, 11:00 pm. Please send your solutions by email.