Question 1. Answer the following question using the Lovász Local Lemma. Given a positive integer \(k \in \mathbb{Z} \). How many colours do we need to colour the integer grid, \(\mathbb{Z} \times \mathbb{Z} \), such that every square of side length \(r = \sqrt{k} \) has four different different colours in its vertices. The squares might not be axis parallel. (The squares are spanned by \(\mathbb{Z} \times \mathbb{Z} \).)

Question 2. What is the probability that a random sequence of length \(n - 2 \) is the Prüfer code of a path? Every entry of the sequence is chosen independently at random with equal \((1/n)\) probability from the set \(\{1, \ldots, n-1, n\} \).

Question 3. In class we sketched the following bound on the diagonal Ramsey number \(R(k,k) \): ... If we set \(n \) such that with the random colouring of \(K_n \) (colour the edges with red or blue independently at random with probability \(1/2 \)) the expected number of monochromatic \(k \)-cliques is at most \(n/k \) then we have \(R(k,k) \geq n - n/k \). What is the bound we get from this? Use Stirling’s formula to perform the exact calculations.

Question 4. A planar curve \(\gamma \) is \(x \)-monotone if any vertical line either does not intersect \(\gamma \), or it intersects \(\gamma \) in a single point. It is \(y \)-monotone if any horizontal line either does not intersect \(\gamma \), or it intersects \(\gamma \) in a single point. If both conditions hold then \(\gamma \) is \(xy \)-monotone. Give a lower bound on the function \(g(n) \) which is defined as follows; it doesn’t matter how we select \(n \) points with distinct \(x \) and \(y \) coordinates, at least \(g(n) \) of them lie on an \(xy \)-monotone continuous planar curve \(\gamma \).

Due date: Oct. 8, in class.