MATH 503 HW 2 SOLUTIONS

Question 1. Let us colour all subsets of an *n*-element set by n-1 colours.

(1) Show that there are two sets, A and B having the same colour so that one is a subset of the other, $A \subset B$.

A: There is a chain of length n where two elements are having the same colour since the number of colours is n - 1.

(2) What is the expected number of such monochromatic $A \subset B$ pairs if we colour the sets independently at random using the n-1 colours with equal (1/(n-1))probability for each set?

A: Let us denote the number of $A \subset B$ pairs by M. (Not counting A = B) For every pair the probability that the pairs have the same colour is 1/(n-1). By the linearity of expectation the answer to the question is M/(n-1). To find the value of M let us colour the elements using colours red, blue, and white. For every $A \subset B$ there is a unique colouring where A is red and B is the union of the red and blue elements. Therefore $M = 3^n - 2^n$, and the expected number of monochromatic pairs is $(3^n - 2^n)/(n-1)$.

(3) Answer the previous two questions if we use $k \leq n$ colours instead of n-1.

A: If k = n then there is a colouring without any $A \subset B$ monochromatic pair; colour different cardinality sets with different colours. If 0 < k < n then the same calculations work writing k instead of n - 1 for the number of colours.

Question 2. What is the probability that a random sequence of length n-2 is the Prüfer code of a star? Every entry of the sequence is chosen independently at random with equal (1/n) probability from the set $\{1, \ldots, n-1, n\}$.

A: The Prüfer code of a star is a sequence of the form a, a, \ldots, a where $a \in [n]$. Prob $=n^{-n+3}$ $(n \geq 3)$ and Prob=1 if n = 2.