MATH 503 HW 2

Question 1. Let us colour all subsets of an n-element set by $n-1$ colours.
(1) Show that there are two sets, A and B having the same colour so that one is a subset of the other, $A \subset B$.
(2) What is the expected number of such monochromatic $A \subset B$ pairs if we colour the sets independently at random using the $n-1$ colours with equal $(1 /(n-1))$ probability for each set?
(3) Answer the previous two questions if we use $k \leq n$ colours instead of $n-1$.

Question 2. What is the probability that a random sequence of length $n-2$ is the Prüfer code of a star? Every entry of the sequence is chosen independently at random with equal $(1 / n)$ probability from the set $\{1, \ldots, n-1, n\}$.

Question 3.* Warning: This is probably a hard question. Don't worry if you can't solve it.

Let z_{1}, \ldots, z_{n} be complex numbers with $\left|z_{i}\right| \geq 1$ for each i. Give a bound on the number of sums

$$
\sum_{i=1}^{n} e^{2 \pi i \frac{k_{i}}{3}} z_{i}
$$

lying inside a circle centered at the origin of unit radius. ($0 \leq k_{i}<3$, the k_{i}-s are integers) With different words, how many possible sequences of third roots of unity are there where the

$$
\left|\sum_{i=1}^{n} e^{2 \pi \mathrm{i} \frac{k_{i}}{3}} z_{i}\right| \leq 1
$$

inequality holds.
Due date: Oct. 1, in class.

