MATH 503 HW 1

Where to find the solutions? Most of them are in Lovász' book. Check the solutions in the book.

Question 1. Find a formula for the number of subsets of an n element set with cardinality divisible by 3 .

A similar question (with 7 instead of 3) is solved in 1.42.(f).
Question 2.* Find a formula for the number of connected graphs with exactly one cycle on vertices labeled 1 to n.

There is a nice book where among many other interesting results you can find the answer; ASYMPTOPIA by Spencer and Florescu. If you are not that motivated then follow the link below.
http://math.umn.edu/ jblewis/4707docs/UnicyclicGraphs.pdf
Question 3. Prove that $\left\{\begin{array}{c}n \\ n-k\end{array}\right\}$ is a polynomial in n for each fixed k.
1.6.(b).

Question 4. Prove the following identities. Use combinatorial considerations if you can.

$$
\begin{equation*}
\sum_{k=0}^{m}\binom{m}{k}\binom{n+k}{m}=\sum_{k=0}^{m}\binom{m}{k}\binom{n}{k} 2^{k} . \tag{1}
\end{equation*}
$$

1.43.(a).
(2)

$$
\sum_{k=1}^{n-1}\binom{n}{k} k^{k-1}(n-k)^{n-k-1}=2(n-1) n^{n-2}
$$

1.44.(c).

