Question 1. Let G_n be a planar graph with at most one triangle. First show that there is a vertex of G_n having degree at most 3:

Suppose not. Then $2e \geq 4n$, where e is the number of edges of G_n. Since G_n has only one triangle, we have $2e \geq 3 + 4(f - 1)$, where f is the number of faces (including the infinity face). Now, by Euler’s formula we have

$$2 = n - e + f \leq n - e + \frac{2e + 1}{4} = n - e + \frac{1}{4},$$

and hence $7 + 2e \leq 4n$, contradiction.

Next, we show by induction on n that a planar graph G_n with at most one triangle is 4-colourable:

The base case is trivial. Now, assume that every planar graph with k vertices and at most one triangle is 4-colourable, for some k. Suppose we have a planar graph G_{k+1} with $k+1$ vertices and at most one triangle. By the above, there is one vertex v_0 having degree at most 3. Remove this vertex (and the edges adjacent to it) from G_{k+1} and obtain a planar graph G'_k, which has k vertices and at most one triangle. By induction hypothesis, we can colour G'_k using 4-colours. We can now colour the vertex v_0 in G_{k+1} without using the fifth colour because the degree of v_0 in G_{k+1} is at most 3. By induction, we are done.

Question 2.

This drawing has one crossing. This graph is non-planar because it contains a minor isomorphic to K_5 (by contracting, say, $(2,3)$ and $(3,4)$).
Question 3.

Question 4.
- K_5