Question 1.
Question 2. the first one: \(v = 8, e = 12, f = 6 \); the second one: \(v = 5, e = 9, f = 6 \)

Question 3. Let \(G \) be a planar graph and let \(v_\infty \) be the vertex in the dual graph \(D(G) \) representing the infinite face of \(G \). Let \(v \) be a vertex in the dual graph \(D(G) \) representing an interior face \(F \) of \(G \). Pick a point \(P_1 \) inside the face \(F \) and pick another point \(P_2 \) in the infinite face. Draw a curve on the plane connecting \(P_1 \) and \(P_2 \), without intersecting any vertex of \(G \). This curve gives a walk from \(v \) to \(v_\infty \) in \(D(G) \). Since \(v \) is arbitrary, we may conclude that every vertex of \(D(G) \) is connected to \(v_\infty \), and so the graph \(D(G) \) is connected.
Question 4.

It is clear that in K_4, no two vertices can share a colour.

Question 5. Notice that each crossing comes from 4 vertices. If we remove any one of these 4 vertices (and the edges adjacent to it), the crossing should be removed as well.

Suppose there is a drawing of K_6 with only one crossing. Then by removing any vertex corresponding to this crossing, we get a drawing of K_5 without any crossing. Contradiction.

Suppose there are exactly two crossings in a drawing of K_6. Since there are only 6 vertices in total, there are at least 2 vertices such that each correspond to both crossings. Again, by removing any of these vertices, we get a drawing of K_5 without any crossing. Contradiction.