This assignment is due at the beginning of class on Wednesday, January 17.

1. Suppose that A_1, A_2, \ldots is a partition of Ω, i.e., $\bigcup_{i=1}^\infty A_i = \Omega$ and $A_i \cap A_j = \emptyset \forall i \neq j$. Suppose that $P(A_i) > 0$ for all i. Let \mathcal{G} be the σ-algebra generated by the sets A_i. It was shown in class that the conditional expectation $E(X \mid \mathcal{G})$ is given by

$$E(X \mid \mathcal{G})(\omega) = \frac{E(X 1_{A_i})}{P(A_i)} \quad \text{for } \omega \in A_i.$$

Suppose now that X, Y are discrete random variables, and define $E(X \mid Y)$ to be equal to $E(X \mid \mathcal{G})$, where $\mathcal{G} = \sigma(Y)$ is the σ-algebra determined by Y (i.e., the smallest σ-algebra containing $\{Y \leq y\}$ for all real y). Let $p(x, y)$ be the joint probability mass function of (X, Y). Show that

$$Z = \frac{\sum_x x p(x, Y)}{\sum_x p(x, Y)}$$

is a version of $E(X \mid Y)$ and that this recovers the elementary definition of conditional expectation, namely $E(X \mid Y = y) = \sum_x x p(x, y)/p(Y = y)$. (If the denominator is zero then set $Z = 0$; this happens with probability zero.)

2. Conditional probability is defined by $P(A \mid \mathcal{G}) = E(1_A \mid \mathcal{G})$ and $P(A \mid B) = P(A \cap B)/P(B)$ for events A, B with $P(B) \neq 0$.

(a) For $\mathcal{G} = \sigma(A_1, A_2, \ldots)$ as in #1, show that $P(A \mid \mathcal{G})$ is the random variable that takes the value $P(A \mid A_i)$ when A_i occurs. In particular, if $\mathcal{G} = \{\emptyset, B, B^c, \Omega\}$ then $P(A \mid \mathcal{G})$ is $P(A \mid B)$ when B occurs and is $P(A \mid B^c)$ when B does not occur.

(b) For $A \in \mathcal{G}$ (arbitrary \mathcal{G}), prove Bayes’ Formula:

$$P(A \mid B) = \frac{E(1_A P(B \mid \mathcal{G}))}{E(P(B \mid \mathcal{G}))}.$$

(c) For $\mathcal{G} = \sigma(A_1, A_2, \ldots)$ as in #1, show that Bayes’ Formula becomes

$$P(A_i \mid B) = \frac{P(B \mid A_i)P(A_i)}{\sum_j P(B \mid A_j)P(A_j)}.$$

3. For random variables W, Z with $E|Z| < \infty$, we define $E(Z \mid W) = E(Z \mid \sigma(W))$. Suppose X, Y are random variables with $EX^2 < \infty$ and $EY^2 < \infty$. Suppose that $E(X \mid Y) = Y$ and $E(Y \mid X) = X$. Prove that $X = Y$ a.s.

Hint: Consider $E(X - Y)^2$.

4. Let ξ_1, ξ_2, \ldots be independent with $E\xi_i = 0$ and $\text{Var} \xi_i = \sigma_i^2 < \infty$. Let $S_n = \sum_{i=1}^n \xi_i$ and $s_n^2 = \sum_{i=1}^n \sigma_i^2$. Let $\mathcal{F}_n = \sigma(\xi_1, \ldots, \xi_n)$. Show that $S_n^2 - s_n^2$ is a martingale.

5. One gambling strategy is to play one game X until some stopping time N and then to switch to a different game Y. At the time of switching, the gambler’s capital is X_N and he or she may choose to carry forward all or part of it in the next game. So suppose that X_n and Y_n are supermartingales with respect to a filtration \mathcal{F}_n, and let N be a stopping time such that $X_N \geq Y_N$ (when $N < \infty$). Show that

$$Z_n = X_n 1_{n < N} + Y_n 1_{n \geq N}$$

is a supermartingale. Since $N + 1$ is a stopping time,

$$Z'_n = X_n 1_{n \leq N} + Y_n 1_{n > N}$$

is also a supermartingale. In the latter case, the first game is played up to and including time N, and then the gambler switches to the second game.

The following problems from Durrett are recommended for extra practice but are not to be handed in: 5.1.3, 5.1.4, 5.1.8, 5.1.9, 5.1.10, 5.2.1, 5.2.2.