Problems to hand in:

1. Let X, X_1, X_2, \ldots be random variables on the same probability space. Let $p \geq 1$. We say that $X_n \to X$ in L^p (or in pth mean) if $\lim_{n \to \infty} \|X_n - X\|_p = 0$.

 (a) Show that if $X_n \to X$ in L^p then $X_n \to X$ in probability.

 (b) Give a counterexample to the converse of (a).

 (c) Let $q \geq p \geq 1$. Show that if $X_n \to X$ in L^q then $X_n \to X$ in L^p.

2. (a) Suppose that the sequence of measures $\{\mu_n\}$ is tight. Show that their characteristic functions are equicontinuous (i.e., for all $\epsilon > 0$ there exists $\delta > 0$ such that if $|h| < \delta$ then $|\phi_n(t + h) - \phi_n(t)| < \epsilon$ for all n).

 (b) Suppose that $\mu_n \Rightarrow \mu$. Use (a) to conclude that $\phi_n(t) \to \phi(t)$ uniformly on compact sets.

 (c) Give an example to show that the convergence in (b) need not be uniform on the entire real line.

3. Using characteristic functions, prove the following:

 (a) Suppose X_i are independent with $N(0, \sigma_i^2)$ distributions. Let $S_n = X_1 + \cdots + X_n$. Then S_n has distribution $N(0, \sum_{i=1}^n \sigma_i^2)$. In particular, if Z_i has a standard normal $N(0, 1)$ distribution then $\frac{1}{\sqrt{n}}(Z_1 + \cdots + Z_n)$ also has a standard normal distribution.

 (b) Suppose X_i are independent Cauchy random variables (density $f(x) = \frac{1}{\pi (1+x^2)}$, $x \in \mathbb{R}$). Let $S_n = X_1 + \cdots + X_n$. Then $\frac{1}{n}S_n$ has a Cauchy distribution.

 (c) Recall that a Geometric(p) random variable has p.m.f. $g(k) = (1-p)^{k-1}p$ for $k \in \mathbb{N}$. Consider the following variations: X_n has p.m.f. $P(X_n = k/n) = (1-\lambda/n)^{k-1}(\lambda/n)$ (typo corrected from earlier version) for $k \in \mathbb{N}$, with $\lambda > 0$. Then X_n converges weakly to an Exp(λ) random variable.

4. This problem concerns the method of Monte Carlo integration, which is a method for the approximate evaluation of an integral $I = \int_0^1 f(x)dx$.

 (a) Let U_1, \ldots, U_N be i.i.d. uniform random variables on the interval $(0, 1)$, and let

 $$ I_N = \frac{1}{N}[f(U_1) + \cdots + f(U_N)]. $$

 Suppose that $\int_0^1 f(x)^2 dx < \infty$, and let $\sigma^2 = \text{Var}(U_1) = \int_0^1 f(x)^2 dx - I^2$. Apply the central limit theorem to show that I_N converges to I as $N \to \infty$, in the sense that

 $$ P \left(\left| I_N - I \right| \leq \frac{\sigma x}{\sqrt{N}} \right) \to P(|Z| \leq x), $$

 where Z is a standard normal random variable.

 (b) Assuming that $\sigma \leq 1$, how large should N be taken to be 95% confident that I_N is within 0.01 of I? For this you will need a table of the c.d.f. Φ of a standard normal random variable, e.g., https://en.wikipedia.org/wiki/Standard_normal_table.

Problems not to be handed in:

11.5.2, 11.5.4, 11.5.6, 11.5.12.

For solutions, see: http://www.probability.ca/jeff/grprobbook.html.