Math 321 Assignment 8: Due Friday, March 16 at start of class

Dr. G. Slade

Midterm 2 will be held in class on Wednesday, March 21. It covers the material on Assignments 5–8; this corresponds to the text pp. 150–182 (not including trigonometric functions).

You must staple your pages together when you submit your assignments.

1. Prove that \(\log(1 + x) = \sum_{n=1}^{\infty} (-1)^{n-1} \frac{x^n}{n} \) for \(|x| < 1 \). The simplest way to do this is to integrate the geometric series.
 (You may find this useful in the next problem.)

2. Prove the following:
 (a) If \(a > 0 \) then \(\lim_{x \to 0} \frac{a^x - 1}{x} = \log a \).
 (b) \(\lim_{x \to 0} \frac{1}{x} \log(1 + x) - x = -\frac{1}{2} \).
 (c) If \(x \in \mathbb{R} \) then \(\lim_{n \to \infty} (1 + x/n)^n = e^x \).

3. Suppose that \(f(x) = \sum_{n=0}^{\infty} a_n x^n \) has radius of convergence \(R > 0 \), and that \(f(0) \neq 0 \). Prove that it is possible to expand \(1/f(x) \) in a power series in an interval \((-r, r)\) for some \(r > 0 \).
 Hint: write \(f(x) = f(0) - (f(0) - f(x)) \) and use a geometric series.

4. For \(t \in \mathbb{R} \), we define \(f_t : \mathbb{R} \to \mathbb{R} \) by
 \[
 f_t(x) = \begin{cases}
 \frac{xe^t}{e^t - 1} & (x \neq 0) \\
 1 & (x = 0).
 \end{cases}
 \]
 (a) Show that \(f_t \) is represented by a power series about \(x = 0 \), which converges in some interval \((-r, r)\).
 (b) For \(|x| < r \), we define \(P_n(t) \) \((n = 0, 1, 2, \ldots)\) by
 \[
 f_t(x) = \sum_{n=0}^{\infty} P_n(t) \frac{x^n}{n!}.
 \]
 Explain why \(\sum_{n=0}^{\infty} P_n(t) \frac{x^n}{n!} = e^t \sum_{n=0}^{\infty} P_n(0) \frac{x^n}{n!} \) and use this to conclude that
 \[
 P_n(t) = \sum_{k=0}^{n} \binom{n}{k} P_k(0) t^{n-k}.
 \]
 In particular, each \(P_n \) is a polynomial of degree \(n \). These polynomials are called the Bernoulli polynomials, and \(B_n = P_n(0) \) are called the Bernoulli numbers.
 (c) Prove that:
 i. \(B_0 = 1 \), \(B_1 = -\frac{1}{2} \), and \(\sum_{k=0}^{n-1} \binom{n}{k} B_k = 0 \) for \(n \geq 2 \).
 ii. \(P_n'(t) = nP_{n-1}(t) \) for \(n \in \mathbb{N} \).
 iii. \(P_n(t+1) - P_n(t) = nt^{n-1} \) for \(n \in \mathbb{N} \).

Practice problems (not to be handed in):
Chapter 8: #6, 9, 10, 11, 20.

Prove that: \(\lim_{x \to 0} \log x = -\infty \), \(\lim_{x \to \infty} \log x = \infty \), \(\lim_{x \to 0} \frac{1}{x} \log(1 + x) = 1 \), \(\lim_{x \to 1} \frac{n^{1/n} - 1}{\log n} = 1 \), \(\lim_{n \to \infty} n[1/(1 + 1/n)] = \frac{1}{2} \).

Continuation of #4. Prove that:
\(P_n(1-t) = (-1)^n P_n(t) \) for \(n \geq 0 \),
\(B_{2n+1} = 0 \) for \(n \in \mathbb{N} \),
\(\sum_{m=1}^{k-1} m^n = \frac{P_{n+1}(k) - P_{n+1}(0)}{n+1} \) for \(k, n = 2, 3, \ldots \).