Math 321 Assignment 5: Due Friday, February 28 at start of class

Please read instructions for assignment submission at:

1. Read the definition of a rectifiable curve in Definition 6.26. Prove that the curve \(f : [0,1] \rightarrow \mathbb{R} \) defined by Theorem 7.18 (the continuous nowhere differentiable function) is not rectifiable. In other words, it has infinite length.
 Hint: the proof of Theorem 7.18 holds the key.

2. Prove that the series \(\sum_{n=1}^{\infty} \frac{(-1)^n}{n^2} \sin(1 + \frac{x}{n}) \) converges uniformly on \([-R,R]\) for every \(R > 0 \).
 Hint: One possibility is to employ the alternating series test https://en.wikipedia.org/wiki/Alternating_series_test.

3. Suppose that \(f_n : [a,b] \rightarrow \mathbb{R} \) is differentiable for each \(n \in \mathbb{N} \), and that there exist \(c \in (a,b) \) and constants \(M, M' \) such that \(|f_n(c)| \leq M \) and \(|f'_n(x)| \leq M' \) for all \(n \in \mathbb{N} \) and all \(x \in [a,b] \). Prove that \(\{f_n\} \) has a uniformly convergent subsequence.

4. Let \((f_\alpha)_{\alpha \in A} \) be an equicontinuous family of functions on an interval \([t_1,t_2]\), and suppose that \(\sup_{\alpha \in A} f_\alpha(t) < \infty \) for each \(t \in [t_1,t_2] \). Prove that \(\sup_{\alpha \in A} f_\alpha \) is continuous on \([t_1,t_2]\).

5. Background: It follows from Theorem 2.37 and Problem 2.26 that a subset \(E \) of a metric space \(X \) is compact if and only if it is \(^1\) “countably compact,” where sequential compactness of \(E \) means that every infinite subset of \(E \) has a limit point in \(E \).

Let \(K \) be a compact metric space. Using the above equivalence of compactness and sequential compactness for metric spaces, and using Theorems 7.24–7.25, prove that a subset \(\mathcal{F} \subset C(K) \) (with the metric on \(C(K) \) determined by the supremum norm) is compact if and only if \(\mathcal{F} \) is closed, bounded, and equicontinuous.

Practice problems (not to be handed in):
Chapter 7: #15, 17, 18.

The solutions manual is here: http://digital.library.wisc.edu/1793/67009.

A challenging optional problem: Suppose that \(\{a_n\} \) is a sequence of real numbers with \(a_n \geq a_{n+1} > 0 \) for all \(n \in \mathbb{N} \). Prove that \(\sum_{n=1}^{\infty} a_n \sin(nx) \) converges uniformly on \(\mathbb{R} \) if and only if \(\lim_{n \rightarrow \infty} na_n = 0 \).
(Feel free to post your solution on Piazza. No advice will be given in office hours for this problem; feel free to discuss it with classmates.)

Thanks to Nathan Fugleberg for the following plots:

- the continuous but nowhere differentiable function in Theorem 7.18 (try small \(N \) and zoom in):
 https://www.desmos.com/calculator/ipx1t99lob

- the space-filling curve in Assignment 4 #4 (run the animation):
 https://www.desmos.com/calculator/p2128om85x

\(^1\)In this problem, this was originally termed “sequentially compact,” whose correct definition is that \(E \) is sequentially compact if every sequence in \(E \) has a convergent subsequence with limit in \(E \). In a metric space, compactness, countable compactness, and sequential compactness are equivalent.