Math 321 Assignment 1: Due Friday, January 12 at start of class

Dr. G. Slade

You must staple your pages together when you submit your assignments.

1. Prove directly from the definition of the Riemann–Stieltjes integral that \(\int_a^b f \, d\alpha = \alpha(b) - \alpha(a) \). Here \(\int_a^b f \, d\alpha \) means \(\int_a^b f \, d\alpha \) with \(f(x) = 1 \) for all \(x \in [a, b] \).

2. Let \(s_1, \ldots, s_k \) be distinct points in \([a, b] \) and set \(S = \{ s_1, \ldots, s_k \} \). Define \(f : [a, b] \to \mathbb{R} \) by \(f(x) = 1 \) if \(x \not\in S \) and \(f(x) = 0 \) if \(x \in S \). Prove that \(f \in \mathcal{R} \) and compute \(\int_a^b f \, dx \).

3. For each of the following cases, the function \(f : [0, 1] \to \mathbb{R} \) obeys \(f(x) = 0 \) for \(x < \frac{1}{2} \) and \(f(x) = 2 \) for \(x > \frac{1}{2} \), and the function \(\alpha : [0, 1] \to \mathbb{R} \) obeys \(\alpha(x) = u \) for \(x < \frac{1}{2} \) and \(\alpha(x) = v \) for \(x > \frac{1}{2} \) with fixed \(u < v \).

 (a) Suppose that \(f(\frac{1}{2}) = 0 \) and \(\alpha(\frac{1}{2}) = v \). Prove that \(f \in \mathcal{R}(\alpha) \) and compute \(\int_0^1 f \, d\alpha \).

 (b) Suppose that \(f(\frac{1}{2}) = 2 \) and \(\alpha(\frac{1}{2}) = u \). Prove that \(f \in \mathcal{R}(\alpha) \) and compute \(\int_0^1 f \, d\alpha \).

 (c) Suppose that \(f(\frac{1}{2}) = 0 \) and \(\alpha(\frac{1}{2}) = u \). Prove that \(f \not\in \mathcal{R}(\alpha) \).

4. Let \(f : [0, 1] \to \mathbb{R} \) be continuous with \(f(x) \geq 0 \) for each \(x \in [0, 1] \). Let \(\alpha(x) = x \).

 (a) Suppose that there exists \(x_0 \in [0, 1] \) such that \(f(x_0) > 0 \). Prove that there exists a partition \(P \) and a constant \(c > 0 \) such that \(L(P, f, \alpha) > c \). Conclude that \(\int_0^1 f \, dx > c \).

 (b) Suppose instead that \(\int_0^1 f \, dx = 0 \). Conclude that \(f(x) = 0 \) for all \(x \in [0, 1] \).

5. Give an example of a function \(f : [a, b] \to \mathbb{R} \) and an increasing function \(\alpha \) with \(|f| \in \mathcal{R}(\alpha) \) but \(f \not\in \mathcal{R}(\alpha) \).