1. (a) Determine all complex values of \(z \) for which \(\sum_{n=0}^{\infty} \frac{(-1)^n}{(n+1)!} z^n \) converges.

(b) Find a power series \(\sum_{n=0}^{\infty} a_n z^n \) that converges for all complex \(z \) with \(|z| < 1 \) and diverges for all \(|z| \geq 1 \).

(c) Find a power series \(\sum_{n=0}^{\infty} b_n z^n \) that converges for at least one complex number \(z \) with \(|z| = 1 \) and diverges for at least one \(z \) with \(|z| = 1 \).

2. Determine the radius of convergence of the power series \(\sum_{n=1}^{\infty} a_n z^n \) for each of the following.

(a) \(a_n = (1 + 1/n)^{-n^2} \),

(b) \(a_{2m} = m^2, a_{2m+1} = 4^{-m} \),

(c) \(a_{2m} = (\log m)^m, a_{2m+1} \) arbitrary.

3. For \(z \in \mathbb{C} \), let \(e^z = \sum_{n=0}^{\infty} \frac{z^n}{n!} \). Prove that \(e^\alpha e^\beta = e^{\alpha + \beta} \) for all \(\alpha, \beta \in \mathbb{C} \).

Hint: Theorem 3.50.

4. Suppose that \(\sum_{n=0} a_n z^n \) and \(\sum_{n=0} b_n z^n \) have radii of convergence \(R_1 \) and \(R_2 \), respectively. Prove that the radius of convergence of \(\sum_{n=0} a_n b_n z^n \) is at least \(R_1 R_2 \).

5. If \(\sum_{n} a_n z^n \) has radius of convergence \(R \), what are the radii of convergence of \(\sum_{n} a_n z^{2n} \) and \(\sum_{n} a_n^2 z^n \)?

6. For each of the following series, determine which values of \(z \) give convergence and which give divergence.

(a) \(\sum_{n=0} (\frac{z}{1+z})^n \),

(b) \(\sum_{n=0}^{\infty} \frac{z^n}{1+z^n} \).

(The case \(|z| = 1 \) is a bonus question for those familiar with the fact that in this case \(z = e^{i\theta} = \cos \theta + i \sin \theta \) with \(\theta \in \mathbb{R} \).)

Practice problems from Rudin (not to be handed in):

Chapter 3: #9, 10, 13.