Math 320 Assignment 7: Due Friday, November 3 at start of class

1. Let \(\{s_n\} \) be a sequence of real numbers. In class, we defined
\[
\limsup_{n \to \infty} s_n = \inf \{ \sup_{m \geq n} s_m \} = \lim_{n \to \infty} \{ \sup_{m \geq n} s_m \}.
\]
We denote this as \(L = \lim_{n \to \infty} (\sup_{m \geq n} s_m) \). In Definition 3.16, \(s^* = \limsup_{n \to \infty} s_n \) is defined as
the supremum of the set of all subsequential limits of the sequence \(\{s_n\} \).
Prove that \(s^* = L \), assuming that \(L \) is finite.
(You may also like to convince yourself that \(s^* = L \) when \(L = \infty \) or \(L = -\infty \), but do not hand in this part.)

2. Let \(p \geq 0 \). Determine whether \(\sum_n a_n \) converges or diverges for each of the following choices of \(a_n \)
(the answer can depend on the value of \(p \)):
 a. \(a_n = \frac{\sqrt{n+1} - \sqrt{n}}{np} \),
 b. \(a_n = \frac{1}{(\log n)^p} \),
 c. \(a_n = (\frac{n}{n+1})^n \).

3. Suppose that \(a_1 \geq a_2 \geq a_3 \geq \cdots \geq 0 \) and that \(\lim_{n \to \infty} a_n = 0 \). Let \(s_n = \sum_{k=1}^n (-1)^k a_k \).
 a. Prove that if \(n > m \geq 0 \) then \(|s_n - s_m| \leq a_{m+1} \).
 b. Prove that \(\sum_{k=1}^\infty (-1)^k a_k \) converges and that, for all \(n \geq 0 \),
 \[|\sum_{k=1}^n (-1)^k a_k - s_n| \leq a_{n+1}. \]
 (This shows that for this special sort of alternating series, the error in approximating the infinite
 sum by a partial sum is at most the first omitted term.)

4. Let \(I \) be an uncountable set. For each \(\alpha \in I \), let \(r_\alpha \) be a positive real number. Define
\[S = \left\{ \sum_{\alpha \in E} r_\alpha : E \subseteq I, \ E \text{ has finite cardinality} \right\}. \]
Prove that \(S \) is not bounded from above.
(This problem shows why we only consider sums of sequences and not sums over uncountable infinite sets.)

Practice problems (not to be handed in):
Chapter 3: #6, 7, 8, 14(d,e), 16, 17, 18, 19, 20.

A. Given a sequence \(\{x_n\} \) of real numbers with \(x_n \geq 1 \) for all \(n \), let \(p_n = \prod_{k=1}^n x_k \). We say that the
infinite product \(\prod_{k=1}^\infty x_k \) converges and equals \(p \) if the sequence \(p_n \) converges to \(p \). Let \(y_n = x_n - 1 \). Prove
that \(\prod_{k=1}^\infty x_k \) converges if and only if \(\sum_{k=1}^\infty y_k \) converges.
(You may use exponential and/or logarithm functions and their basic properties.)

B. In this question, you may use the fact that \(\log(b/a) = \int_a^b \frac{1}{t} \, dt \) and elementary properties of the integral.
 i. Prove that \(\frac{1}{n+1} \leq \log(n+1) - \log n \leq \frac{1}{n} \).
 ii. Let \(a_n = \sum_{k=1}^n \frac{1}{k} - \log n \). Prove that the limit \(\gamma = \lim_{n \to \infty} a_n \) exists.
 (The constant \(\gamma \) is called the Euler-Mascheroni constant. It gives a precise rate of divergence of the
 harmonic series.)

C. This is a problem for those who have done Chapter 3 #24.
 Let \((X, d) \) be a metric space. Let \((X^*, \Delta) \) be the completion of \((X, d) \), as defined in #24(b), and
let \(\varphi : X \to X^* \) be the distance-preserving map defined in #24(d). Prove that if \((Z, \rho) \) is a complete
metric space and if \(g : X \to Z \) is a distance-preserving map, then there exists a distance-preserving map
\(f : X^* \to Z \) so that \(g = f \circ \varphi \).
In words: \((X^*, \Delta) \) is the “smallest” complete metric space containing \(X \), in the sense that every
complete metric space \((Z, \rho) \) containing \(X \) factors through \((X^*, \Delta) \).