Math 320 Assignment 3: Due Friday, September 29 at start of class

1. Recall the definition of a cut, from the Appendix to Chapter 1. For \(n \in \mathbb{N} \), we define cuts \(\alpha_n \) by \(\alpha_n = \{ p \in \mathbb{Q} : p < 1 - \frac{1}{n} \} \). Let \(A = \{ \alpha_n : n \in \mathbb{N} \} \). Determine (with proof) the least upper bound and greatest lower bound of \(A \).

2. Read Definitions 1.3, 2.1, 2.2, 2.9. Suppose \(A, B \) are sets and \(f \) is a function from \(A \) to \(B \) as in Definition 2.1.
 (a) Prove that, for all subsets \(B_1, B_2 \) of \(B \):
 i. \(f^{-1}(B_1 \cup B_2) = f^{-1}(B_1) \cup f^{-1}(B_2) \).
 ii. \(f^{-1}(B_1 \cap B_2) = f^{-1}(B_1) \cap f^{-1}(B_2) \).
 (b) Let \(A_1, A_2 \) be subsets of \(A \). Prove or give a counterexample for the following statements.
 i. \(f(A_1 \cup A_2) = f(A_1) \cup f(A_2) \).
 ii. \(f(A_1 \cap A_2) = f(A_1) \cap f(A_2) \).

3. Let \(z, w \in \mathbb{C} \) with \(\bar{z}w \neq 1 \). Prove that:
 (a) \[\left| \frac{z - w}{1 - \bar{z}w} \right| < 1 \] if \(|z| < 1 \) and \(|w| < 1 \),
 (b) \[\left| \frac{z - w}{1 - \bar{z}w} \right| = 1 \] if \(|z| = 1 \) or \(|w| = 1 \).

 (You may find it useful to first prove that there is an \(r \geq 0 \) and \(v \in \mathbb{C} \) with \(|v| = 1 \) such that \(z = rv \), and use this to reduce to the case of \(z \) real and positive. For the first case, elementary calculus can be used to show that \((r - w)(r - \bar{w}) < (1 - rw)(1 - r\bar{w}) \).)

4. Read Definition 2.15. Suppose that \(X \) is a metric space with metric \(d \). For each of the following, prove that the proposal defines a metric on \(X \) or give a counterexample to prove that it does not.
 (a) \(\rho(p, q) = (d(p, q))^2 \).
 (b) \(m(p, q) = \min\{d(p, q), 1\} \).

Practice problems (not to be handed in):

Rudin, Chapter 1: \#1, 2, 3, 5, 8, 9, 10, 13, 15, 16, 17, 18. Chapter 2: \#11.

1. (a) Given \(q \in \mathbb{Q} \), prove that \(\{ p \in \mathbb{Q} : p < q \} \) is a cut.
 (b) Prove that \(\{ p \in \mathbb{Q} : p^2 < 2 \} \) is not a cut.
 (c) Prove that \(\{ p \in \mathbb{Q} : p^2 < 2 \} \cup \{ p \in \mathbb{Q} : p \leq 0 \} \) is a cut.

2. Let \(X \) be a metric space with metric \(d \), and let \(X' \) be another metric space with metric \(d' \). Show that the following define metrics on the Cartesian product \(X \times X' \):
 (a) \(d_1((p, p'), (q, q')) = d(p, q) + d'(p', q') \),
 (b) \(d_2((p, p'), (q, q')) = \max\{d(p, q), d'(p', q')\} \),
 (c) \(d_3((p, p'), (q, q')) = ([d(p, q)]^2 + [d'(p', q')]^2)^{1/2} \).