Math 320 Assignment 1: Due Friday, September 13 at start of class

Please read instructions for assignment submission at:

1. Let \(p \) be a prime number. Prove that there is no rational number whose square is \(p \). (You may appeal to the Fundamental Theorem of Arithmetic.)

2. Let \(E = \{ r \in \mathbb{Q} : r^3 > 8 \} \). Find inf \(E \) and sup \(E \) if they exist, and determine whether they are elements of \(E \). (Prove all your claims.)

3. Let \((S, <)\) be an ordered set and \(A \subset S \). Suppose that \(A \) contains a largest element, which we denote by max \(A \).
 (a) Prove that \(A \) has exactly one largest element, i.e., that max \(A \) is unique.
 (b) Prove that sup \(A \) exists in \(S \) and equals max \(A \).

4. Read the section on Fields, pp.5–8. In this problem we study a set that satisfies the field axioms but does not satisfy the order axioms. Consider the field \(\mathbb{F}_3 \). This field has three elements, which we will call 0, 1, 2. (Do not confuse these elements with real numbers: 0, 1 are the elements prescribed to exist by axioms (A4) and (M4), and 2 is an arbitrary name for a third element.) Addition and multiplication are defined by the following addition and multiplication tables:

\[
\begin{array}{c|ccc}
+ & 0 & 1 & 2 \\
\hline
0 & 0 & 1 & 2 \\
1 & 1 & 2 & 0 \\
2 & 2 & 0 & 1 \\
\end{array}
\quad
\begin{array}{c|ccc}
\times & 0 & 1 & 2 \\
\hline
0 & 0 & 0 & 0 \\
1 & 0 & 1 & 2 \\
2 & 0 & 2 & 1 \\
\end{array}
\]

Using a proof by contradiction, show that it is impossible to define an operation “\(<\)” that satisfies the order axioms. Hint: Proposition 1.18(d).

Remark. \(\mathbb{F}_3 \) is an example of a finite field. Finite fields play an important role in algebra, number theory, and computer science.

5. The real numbers \(\mathbb{R} \) are constructed in Theorem 1.19 as an ordered field which has the least-upper-bound property.

Find the sup and inf of each of the following sets of real numbers:
 (a) All numbers of the form \(2^{-p} + 3^{-q} + 5^{-r} \), where \(p, q, r \) each take on all positive integer values.
 (b) \(E = \{ x : 3x^2 - 10x + 3 < 0 \} \).
 (c) \(E = \{ x : (x-a)(x-b)(x-c)(x-d) < 0 \} \), where \(a < b < c < d \).

6. Let \(S_1 \) and \(S_2 \) be nonempty subsets of \(\mathbb{R} \) that are bounded above. Let \(S_1 + S_2 = \{ x+y : x \in S_1, y \in S_2 \} \) and \(S_1 - S_2 = \{ x-y : x \in s_1, y \in S_2 \} \). For each of the following statements, give a proof if it is true or a counterexample if it is false.
 (a) sup(\(S_1 + S_2 \)) = sup \(S_1 \) + sup \(S_2 \).
 (b) If \(S_2 \) is also bounded below then sup(\(S_1 - S_2 \)) = sup \(S_1 \) - sup \(S_2 \).

Recommended problems: The following problems from Rudin are recommended for practice: Chapter 1, #1,2,3,4,5. Do not hand in your solutions. The solutions manual is here: http://digital.library.wisc.edu/1793/67009.