Math 320 Assignment 1: Due Friday, September 18 at start of class

1. Rudin Chapter 1, #2.

2. Let \(E = \{ r \in \mathbb{Q} : r^3 < 27 \} \). Find \(\inf E \) and \(\sup E \) if they exist, and determine whether they are elements of \(E \). (Prove all your claims.)

3. Let \((S, <)\) be an ordered set and \(A \subset S \). Suppose that \(A \) contains a largest element, which we denote by \(\max A \).
 (a) Prove that \(A \) has exactly one largest element, i.e., that \(\max A \) is unique.
 (b) Prove that \(\sup A \) exists in \(S \) and equals \(\max A \).

4. Read the section on Fields, pp.5–8.
 Rudin Chapter 1, #3.

5. The real numbers \(\mathbb{R} \) are constructed in Theorem 1.19 as an ordered field which has the least-upper-bound property.
 Rudin Chapter 1, #5.

6. Let \(S_1 \) and \(S_2 \) be nonempty subsets of \(\mathbb{R} \) that are bounded above. Let \(S_1 + S_2 = \{ x+y : x \in S_1, y \in S_2 \} \) and \(S_1 - S_2 = \{ x - y : x \in S_1, y \in S_2 \} \). For each of the following statements, give a proof if it is true or a counterexample if it is false.
 (a) \(\sup(S_1 + S_2) = \sup S_1 + \sup S_2 \).
 (b) If \(S_2 \) is also bounded below then \(\sup(S_1 - S_2) = \sup S_1 - \sup S_2 \).