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This paper is a continuation of the companion paper [14], in which it was proved that the
standard model of self-avoiding walk in five or more dimensions has the same critical behaviour
as the simple random walk, assuming convergence of the lace expansion. In this paper we prove
the convergence of the lace expansion, an upper and lower infrared bound, and a number of other
estimates that were used in the companion paper. The proof requires a good upper bound on the
critical point (or equivalently a lower bound on the connective constant). In an appendix, new
upper bounds on the critical point in dimensions higher than two are obtained, using elementary
methods which are independent of the lace expansion. The proof of convergence of the lace
expansion is computer assisted. Numerical aspects of the proof, including methods for the
numerical evaluation of simple random walk quantities such as the two-point function (or lattice
Green function), are treated in an appendix.
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1. Introduction and Main Results
1.1. The self-avoiding walk

An n-step self-avoiding walk @ in the hypercubic lattice Z¢ is an ordered set
w = (@(0), w(1),...,w(n))in which w(i) € Z%, |w(i + 1) — w(i)| = 1 (Euclidean distance)
and (i) # w(j) for i # j. Unless stated otherwise we take w(0) = 0. Thus a self-
avoiding walk can be thought of as the path of a simple random walk starting at the
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origin, without any self-intersections. Let ¢, denote the number of n-step self-avoiding
walks, and let

Jot)D, == T lo@)P iy

n w:loj=n

denote the mean-square displacement. Here the sum over w is the sum over all n-step
self-avoiding walks. The mean-square displacement measures the average squared
distance from the origin after n steps, with respect to the uniform probability measure
on the set of all n-step self-avoiding walks.

It is a natural question, and one of significance in polymer chemistry and statistical
physics, to ask for the asymptotic behaviour of ¢, and the mean-square displacement
as n — 00. The conjectured asymptotic behaviour is

Cy ~ Au'n?™! (1.2)
and
(om)|*>, ~ Dn*, (1.3)

where a, ~ b, means lim, ., a,/b, = 1. The constants A, D are dimension dependent,
and p is a dimension dependent constant known as the connective constant. The critical
exponent y is believed to take the values 43/32 ford = 2, 1.162 ... ford = 3, and 1 for
d > 4, with a logarithmic correction when d = 4. The conjectured values for v are 3/4
ford =2,059 ... ford = 3, and 1/2 for d > 4, again with a logarithmic correction in
four dimensions. These conjectures are based on nonrigorous renormalization group
arguments [20, 21] and numerical work (see e.g. [9, 19] and references therein).

It is known that u = lim,_. , c}" exists and that ¢, > p" [10]. The best general upper
bounds on ¢, are of the form c, < u"exp[O(n?“*?logn)], with the log n not present
for d = 2 [12, 15]. There is no general proof that v > 1/2 or that v < 1 — ¢ for some
¢ > 0. In high dimensions, it has been proved that for d > d,, for some undetermined
dimension dy, that (1.2) holds with y =1 [23] and (1.3) holds with v = 1/2 [22].
Progress is being made in the rigorous study of the weakly self-avoiding walk in four
dimensions, using renormalization group methods [4, 1].

In the companion paper [14], which we will refer to as Part I, a number of results
were established for the self-avoiding walk for d > 5, assuming convergence of an
expansion known as the lace expansion and several related estimates. These results
include (1.2) with y = 1, (1.3) with v = 1/2, and related results including mean-field
behaviour of the correlation length and the Gaussian nature of the scaling limit. In this
paper we establish convergence of the lace expansion and prove the required estimates,
thereby completing the proof of the results of Part 1.

As one ingredient of the proof of convergence of the lace expansion, good lower
bounds on the connective constant are required. In Corollary A.2 new lower bounds
are obtained on the connective constant for d > 2. Equivalently these are upper bounds
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on the critical point z, = u~'. Writing p(d) to make the dimension dependence of the
connective constant explicit, the new bounds for d = 3, 4, 5 are

4(3) > 443733
p(4) > 6.71800
u(5) > 8.82128.

These bounds are obtained using an elementary argument which is independent of the
lace expansion. The above bound for d = 3 slightly improves the best previous rigorous
bound 4.352 of [8].

The proof of convergence of the lace expansion is computer assisted. The computer
calculations use precise numerical values for a number of simple random walk
(Gaussian) quantities such as the lattice Green function. In Appendix B an effective
method for the computation of Gaussian quantities is presented.

1.2. The lace expansion

In this section we give a brief description of the lace expansion, and state the
principal resuits of this paper.

The lace expansion is a kind of cluster expansion [3], which can also be viewed as
resulting from repeated application of the inclusion-exclusion relation [24]. It was first
introduced by Brydges and Spencer [S] to analyze the weakly self-avoiding walk
above four dimensions. In the weakly self-avoiding walk (or Domb-Joyce model),
self-intersections are discouraged but not prohibited. Brydges and Spencer proved
convergence of the lace expansion for d > 4, provided this discouragement of self-
intersections is sufficiently weak.

In [22], convergence of the lace expansion was proved for the usual self-avoiding
walk if the dimension d is sufficiently large. The small parameter responsible for
convergence of the expansion was the critical bubble diagram. To define the bubble
diagram, for x € Z¢ we denote by c,(x) the number of n-step self-avoiding walks for
which w(n) = x, and set co(x) = 6 ... If n and ||x||; do not have the same parity then
¢,(x) = 0. The two-point function is defined to be the generating function for the
sequence ¢,(x), i.e.

G.(x) = 20 ¢ (x)z". (1.4)

It is known [11] that for any nonzero x, lim, _, , ¢,(x)"/" = u(provided the limit is taken
through the sequence of n values having the same parity as |{|x|/;) and hence the above
power series has radius of convergence z,. The bubble diagram is then defined by

B,(0)= Y G,(»? (L5)

x#0
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and the critical bubble diagram is B, (0). The analogue of the critical two-point function
for simple random walk is the Green function

€00 = 3. pal2day (1.6

evaluated at z = (2d)™1, where p,(x) is the probability that a simple random walk
starting at the origin ends at x after n steps. It can be shown (see e.g. [13]) that the
simple random walk critical bubble diagram, defined by replacing G, (x) by Cy54(x) in
(1.5), is asymptotic to (2d) ! as d — 0. The proof of convergence of the lace expansion
given in [22] was to a large degree based on the belief that the self-avoiding walk
critical bubble diagram behaves similarly.

It follows from the fact that for d > 2 the Green function C, ,,(x) decays like |x|?>~¢
for large x (see e.g. [17]), that the simple random walk critical bubble diagram is finite
for d > 4 but diverges as d - 4*. For d > 4 it can be expected that the self-avoiding
walk critical two-point function will have the same decay, and hence that the critical
bubble diagram will be finite for d > 4 and diverge as d — 4™, This suggests that for d
marginally larger than four the bubble diagram may not be effective as a small
parameter. However, for d = 5 a numerical evaluation of the simple random walk
critical bubble diagram gives the value 0.5979. In this paper we prove that for the
self-avoiding walk the situation is somewhat better: B, (0) < 0.493. This value is not
very small (in fact for a typical cluster expansion it would be extremely large for a small
parameter), but it turns out to be small enough to prove convergence of the lace
expansion. The convergence proof follows the general outline used in [22] to prove
convergence of the lace expansion for very high dimensions. The proof here is however
considerably more elaborate and technical, and the estimation of error terms must be
handled with much more delicacy than was the case when the small parameter could
be taken as small as desired.

Our proof is unnatural in its reliance on the fortuitous circumstance that in five
dimensions the bubble is not too large. A more natural proof would have as its driving
force the fact that the bubble is finite rather than small, and would reflect more directly
the critical nature of four dimensions. Unfortunately such a proof has not materialized.

Before stating our results, we first repeat from Part I the definitions needed to state
the lace expansion. For more details on the expansion the reader is referred to [ 5, 18].

Given an n-step simple random walk @ = (@(0), w(1),...,w(n)) and two integers s,
t € [0, n], we define

—~1 if w(s) = w(t)
/4 = . .
sle2) { 0 ifws) # olt) .7
The self-avoiding walk two-point function can then be written
G= ) ¢ [ 1+ %), (1.8)

@:0-x 0<s<t<|w|
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where the sum over w is the sum over all simple random walks ending at x. The Fourier
transform of (1.8) is given by

G, (k) =Y G,(x)e™** =Y Z@leit-aled  TT (1 4 4y w)). (1.9)

O0<s<t<|w|

Given an interval I = [a, b] of positive integers, we refer to a pair st of elements of
I, with s < t,as an edge. A set of edges is called a graph. A graph I' is said to be connected
if both a and b are endpoints of edges in I', and if in addition for any c € (a, b) there
are s, t € [a,b] such that s < ¢ < t and st € I'. The set of all graphs on [, b] is denoted
%[ a,b], and the subset consisting of all connected graphs is denoted ¥[a, b]. A lace is
a minimally connected graph, i.e. a connected graph for which the removal of any
edge would result in a disconnected graph. The set of laces on [a, b] is denoted by
Zla,b], and the set of laces on [a,b] which consist of exactly N edges is denoted
Pyla,b].

The following prescription associates to each connected graph I' a unique lace .%.
The lace % consists of edges s,t,, 5,t,, ... where

sy=a, t;=max{t:atel}
;. =max{t:stel,s <t}
s;=min{s:st;eT'}.

Given a lace L, the set of ali edges st ¢ L such that %, = L is denoted %(L).
For a < b we define

Jwlabl= Y Jl@ 1 Q+%.) (1.10)

Le ZLyfa,b) steL s't'e €(L)

and
Jabl= 3 Jylabl. (L11)
N=1

The sum in (1.11) is a finite sum, since the sum in (1.10) is empty for N > b — a. We
set J[a,a] = 1. We define

M) =D Y U0, |wl] (1.12)
Tol>2
and
IL(x) = i (-)'OMx) = Y [0, |w|] (1.13)
N=1

0:0—x
loj>2
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for any z for which the right sides converge. This is the lace expansion. By definition,
MM (x) > 0 for all nonnegative z.
Let

~ 4
D(ky=d™ Y cosk,. (1.14)
n=1

Brydges and Spencer proved [5] that for any value of z for which Y, 2V [0, |w]]
and ), Gi,(x) converge absolutely,

G()=d+z ) Glx—y+ Y ILEG(x—0v) (1.15)
y:lyl=1 ve Z4
and
G.(k) = ! (1.16)

1 — 2dzD(k) — N,(k)

In particular (1.16) gives a formula for the susceptibility x(z) = G,(0).
Equation (1.16) gives an expression for the inverse of the propagator G,(k). By
definition,

18

,(k) = ¥ I, (x)e™* > = Y eiatonziely 0, |w|]. (1.17)
x o:|w]=2

N

1

There is a useful diagrammatic interpretation for the terms in the above sum over N,
arising from the fact that J, [0, |w|] # O only for walks w with a specific topology. This
has been described in detail in [S], so we state this interpretation without detailed
explanations here. The factor | [,,., %,, in (1.10) is nonzero only if the walk intersects
itself at times s and t, for each st € L, while the factor [ [, ¢, (1 + %) rules out many
but in general not all other self-intersections. The walk decomposes in a natural way
into 2N — 1 strictly self-avoiding subwalks, corresponding to the time intervals inter-
vening between the intersections required for [, %, # 0. We represent the Nth
term TI™(k) of (1.17) by an N-loop diagram, as follows:

Lw=-0+ @ - N + N — .. (1.18)

The subwalks which are not slashed in (1.18) must consist of at least one step, whereas
the slashed subwalks can be of zero or more steps. The subwalks forming each loop
of a diagram are mutually avoiding. Further mutual avoidance is also present.

To complete the proofs of the theorems stated in Part I, it remains to obtain a
number of bounds on the two-point function and on I1,(k). Specifically, the missing
proofs from Part I are those of the bounds on the two-point function and fI,(k) of
Theorems 1.2.5, 1.2.6, 1.2.7, 1.2.8, and of the values of 4 and D of Theorem 1.1.1, where
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the prefix 1 in theorem and equation numbers refers to part 1. These are restated in
the following theorem and corollary. The proof of the theorem constitutes the bulk of
this paper.

It convenient to distinguish notationally between real and complex activity, and we
use p to denote a nonnegative activity and z for a complex activity. An exception is
the use of z, = u~! € R to denote the critical point. For x = (x,,...,x,) € Z*, we write
|x| = [x] + - + x7]"2 We write 8 = (9/0k,)", and VZ = 34_, o2.

The following is a restatement of Theorems 1.2.5-1.2.7 and an extension of Theorem
1.2.8.

Theorem 1.1. For d > S the lace expansion (1.13) converges absolutely for all |z] <
z,, and

~ 1
G, (k) = — —. (1.19)
1 — 2dzD(k) — I, (k)
The following numerical bounds are satisfied.
For|z| <z,
1x12G,(x)]l, < 0.1425, | G.(x) — J., 115 = B,(0) < 0.493. (1.20)
For\zl <z, ke[~mn)% ue{0,1,2},
|04T1, (k)| < (0.09761)/d,  |24,11,(k)| < 1.517, (1.21)
and thus fc : <zl <
or EJ S|z s Z,
|8zflz(k)| < (1.517) x (2d). (1.22)

Moreover in (1.20)—(1.22) the series on the left sides are bounded absolutely by the right
sides. For z = z,e" 0 # 0,

1 —2dz — 11,(0) #£0. (1.23)
There is a positive dimension-dependent &, such that for pe [z, — &,,2.],

2d + 8,11,(0) = (0.59) x (2d). (1.24)

1
Forpe I:ﬁ—_—l’zc]’

1.087 (d=15)

097 (@=6) (1.25)

2dp — VZ11,(0) > {
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and for p e [0,z2.],
—(0.02407) {1 — D(k)} < T1,(0) — I1,(k) < (0.07355){1 — D(k)}. (1.26)

Remark. Since ), G, (x) = x(lz|) converges for |z| < z,, it can be concluded from
the convergence of the lace expansion stated in the above theorem that (1.19) holds
for |z| < z,. Since I1,(k) is absolutely convergent for |z| < z, and hence continuous
on |z| = z,, and since G,(0) diverges to infinity as z / z,, it follows that 1 — 2dz, —
ﬁzc(O) = 0. By (1.23), for k = 0 (1.19) also holds on the circle of convergence |z| = z,,
except at the critical point where both sides of (1.19) are undefined.

As a corollary of Theorem 1.1 we can prove the following two-sided infrared bound,
which with (1.20) comes close to proving Theorem 1.1.5.

1
Corollary 1.2. Ford>Sandpe I:Zd—l’zc]’

't

0<G k)< ————, 1.27
(k) T (127
andatp = z,,
€ e (128)
1 — D(k) 1 — D(k)

In five dimensions we can take C = 0.8283, C' = 0.9200, and for d > 6 we have C' <
1.025.

Proof of Corollary 1.2, given Theorem 1.1. Both (1.27) and (1.28) follows from
(1.19) and (1.26), since

G,(k)™* =1 — 2dp — 11,(0) + 2dp{1 — D(k)} + I1,(0) — T1,(k) (1.29)
and
1 —2dp — 11,(0) = G,(0)* >0, (1.30)

with equality at p = z,. For the numerical value of C we use the upper bound on z, of
Corollary A2. [

1.3. Reduction of Theorem 1.1 to basic numerical bounds

In this section we essentially reduce the proof of Theorem 1.1 to establishing a
number of numerical bounds on the two-point function, several “bubble” quantities,
and II, (k). These bounds are given in Theorem 1.4. We restrict attention to the case
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of d = 5. Higher dimensions are less difficult, and are discussed briefly in Appendix C.
At the end of the section the bounds stated in Part I for the amplitudes 4 and D of
(1.2) and (1.3) are given.

We begin with several definitions. For x € Z¢, and z € C we define the “bubble”
quantities

B,(x) = ; G.(»G,(x—y), Blx)= ; G.(»G.(x —y), (1.31)
B/(x) =) G.()G.(x -y, B(0)= -|Z|:>1 {G.n}*. (1.32)

We denote the standard unit basis vectors of Z° by e,, ..., e5. We also write

v= ) e, n=1,...,5. (1.33)

pn=1
We define two sets of sites:

A, = all Z° rotations and reflections of {v,v,,03,0,,05,2¢,,2¢; + e,} (1.34)

and
Ag = A, U {0}. (1.35)
We define
M°49(x) = kzo I+ (x) (1.36)
and
TIeven(x) = ki (). (1.37)

These are both nonnegative for all x when 0 < z < z_, and by (1.13)
I, (x) = — I (x) + IME*V(x). (1.38)

We next define two sets of inequalities, which a priori may or may not be satisfied.

Definition 1.3. For o > 0 and z € C, we define P,() to be the following set of
inequalities:

|B,(0)] < a-(0493),  |B,(0)| < «-(0.314),  |G,(e,)| < «-(0.1425) (1.39)
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sup (x[*|G,(x)| < a-(0.075)

x¢Ao
|B.(ey)| < a-(0.488), | B(vy)| < «-(0.356)
|B;(2e,)| < a*(0.286), |B;(2e; + ;)| < - (0.24)
[By(v3)| < «-(0.289), | B(vg)l < o+ (0.251)
|B.(vs)] < a-(0.227), sup {B;(x)| < «-(0.215).
x ¢Ao
For z € C, we define Q, to be the following set of inequalities:
sup |x]?|G,(x)| < 0.1425
xe Z4
Y P9 (x)| < 0.173025
Y TIE™™(x)| < 0.0386478
3 [x ]2 TIL(x)| < 0.0240623

Y x| (x)| < 00735417

[TICI9(0) — TTD(K)] < (0.0240623) {1 — D(k)}

IF1vem(0) — A (k)| < (0.0735417) {1 — D(k))}

< 0.914078

20, Y, TIe49(x)

< 0.602171.

Zaz Z H(zeven)(x)
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(1.40)

(1.41)
(1.42)
(1.43)

(1.44)

(1.45)

(1.46)

(1.47)

(1.48)

(1.49)

(1.50)

(1.51)

(1.52)

(1.53)

Remark. For z = p > 0, all absolute values in P,(«x) and Q, can be removed since
the corresponding quantities will be nonnegative by definition. Also, given any of the
inequalities of (1.46)—(1.49) and (1.52), (1.53), we can easily obtain a corresponding
inequality for the Fourier transform. For example, if (1.48) holds for z = p > 0, then

we have

4|2 1149 (k)| < 0.0240623.

(1.54)
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In the remainder of this section we reduce the proof of Theorem 1.1 to the following
three results.

Theorem 1.4. Ford = 5 and p € [0, z,), the inequalities P,(0.999) and Q, hold.
We show below that the following corollary follows readily from Theorem 1.4.
Corollary 1.5. Ford = 5 and |z| < z,, the inequalities P,(0.999) and Q, hold.
Given Corollary 1.5, we prove the following result in Sec. 5.2.

Proposition 1.6. Ford = 5 and z = z,e%, 6 # 0, we have
1 — 2dz — I1,(0) # 0. (1.55)

As we now show, Theorem 1.1 follows in a straightforward way from Theorem 1.4,
Corollary 1.5 and Proposition 1.6.

Proof of Theorem 1.1, given Theorem 1.4, Corollary 1.5 and Proposition 1.6. By
Theorem 1.4 and Corollary 1.5, all inequalities of P,(1) and Q, hold for |z] < z,.. In
particular, the critical bubble diagram satisfies the inequality B, (0) < 0.493, and hence
by Lemma [.2.4 the lace expansion for ﬁz(k) converges absolutely. The inequalities of
(1.20) are given by (1.45) and (1.39). The inequalities of (1.21) follow from (1.48), (1.49),
(1.52), (1.53), and the fact that

Ial:‘ﬁz(k)l <d! Z lez[nfffid)(x) + H(even)(x)]

(1.56)
128,11, (k)] < |2/8, ¥, [TIC9(x) + I (x)]

z=|2{

Proposition 1.6 gives (1.23). A lower bound weaker than (1.24) follows from (1.52), since
1 N L
fope [ﬁj’ zc], we have 8,115 > 0, 3,11$99 > 0, and hence

" " 10
p(2d + 3,11,(0)) > 2dp — pd, TIH*(0) > - — 0914078. (1.57)

We imprdve this bound below. Similarly, (1.25) follows from (1.48). Finally, (1.26)
follows from (1.50) and (1.51), because — {I1%(0) — II9(k)} < I1,(0) — I1,(k) <
I+ (0) — TIS*")(k) for nonnegative p.

We can improve (1.57) to (1.24) by using the bound

1 1 1 B 1.58
75,0 zp~ ol i<l (p) (1-58)

of [2]. (In fact the form of the bound stated in [2] is slightly different; the above bound



THE LACE EXPANSION FOR SELF-AVOIDING WALK IN FIVE OR MORE DIMENSIONS 247

agrees with our conventions.) At p = z, this gives

1
e < -9 N,-, < 271 .
O R L (1:59)
Recall that y(p) ! =1 — 2dp — f[,,(O). We bound z, from above by the value 0.113363
of Corollary A.2, and use the upper bound B, (0) < 0.493 of P,(1) to obtain

2d + 8,11,(0)] -, > 5.9083. (1.60)

pP=zc =
Then (1.24) for d = 5 follows by continuity. For d > 6, we proceed similarly, now using
z. < (1.08)/(2d — 1) and B, (0) < 0.26. (See Appendix C for these bounds.) [

Proof of Corollary 1.5, given Theorem 1.4. The monotone convergence theorem
can be used in a straightforward manner to extend the bounds of P,(0.999) and Q,
from p € [0,z,) to p = z.. These bounds then extend to |z| < z,, since we are dealing
with power series with nonnegative coefficients, which therefore give maximum
absolute value for z = z,. To see that (1.50) and (1.51) involve series with non-
negative coefficients, we use symmetry to write for example [1°4(0) — 1€ (k) =
Y {1 —costk-x)}IIPx). O

Proof of bounds on 4 and D.  Since A = (—z.8,[x(p) " 1l,=..) " by (1.3.3), it follows
immediately from (1.58) that 4 € [1, 1.493]. For the diffusion constant, we have from
(I3.5)that D = A[2dz, + ), |x|2Hzc(x)]. We use the above bound on A4 together with
(1.48) and (1.49). We also use the upper bound on z_ of Corollary A.2, and the fact that
z, is bounded below by the critical point of simple random walk with no loops of size
four or less. This is shown in [7] to be the inverse of the largest root of A3 —
2(d — 1)A%2 — 2(d — 1)4 — 1 = 0, which gives z, > (1.01)/9. This leads to

D e[1,1.493]-[2d(1.01)/9 — 0.0240623, 2d(0.113363) + 0.0735417] < [1.098, 1.803].
O

Our remaining task is to prove Theorem 1.4 and Proposition 1.6. The former is
proven throughout Secs. 1.4-5.1, and the latter is proven in Sec. 5.2 relatively easily.
Since Theorem 1.4 deals only with p € (0, z,), we can restrict ourselves to this range of
p until Sec. 5.2. In the next subsection we reduce the proof of Theorem 1.4 to several
steps.

1.4. Structure of the proof of Theorem 1.4

The proof of Theorem 1.4 depends on the following three propositions and one
lemma. To state the first of these results, we introduce

ddk eik~x
I, o(x) = JW «U——W . (1.61)
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In particular, I, o(x) is the critical two-point function for simple random walk, or in

d
other words the lattice Green function. Here, and throughout the paper, JW
denotes integration over [ —m, n]%

6611
Proposition 1.7. Forp < p, = we have

95

713988
Gp(x) < mll,o(x), (1.62)

and thus P,(0.999) holds.

Proof. The proof of (1.62) is given in Proposition A.3. Then it can be seen that
P,(0.999) holds, using the bounds on I, o(x) and I, ,(x) in Sec. B.2.3 and on |x|%I; ((x)
in Sec. B.2.5. For example, to obtain the desired bound on B,(0), we use the definition
of B,(x) in (1.31) and the Parseval relation to obtain

dk [ 0.8784 1]2
@n)*L1 — D(k) '

B,(0) =3 [G,(y) — &,1* < J (1.63)

and then write the right side in terms of I, ,(0) and I, ((0).
For (1.40), we multiply (1.62) by |x|? for small x and use Lemma B.12 for large x.
O

Proposition 1.8. All quantities appearing in the left side of the inequalities of P,(a)
are continuous in p € (0, z,).

Proof. The quantities on the left sides of P,(x), except for sup|x|*G,(x) and
sup Bj(x), are power series in p with radius of convergence z, and hence are continuous
for p € (0, z,). For the same reason, the two exceptions are suprema of infinitely many
continuous functions. To see that these suprema are continuous, we use the fact that
the sub-critical two-point function decays exponentially. This can be seen by first
observing that

G,(x)< Y c,(x)p". (1.64)

n2xfo

Then by definition of y, for p < z,, ¢,(x)p" < ¢,p” can be bounded by a (p-dependent)
multiple of 6", for some 8 = 8(p) < 1, and hence G, decays exponentially. Thus only
finitely many values of x are relevant in the suprema over x, and the desired continuity
follows from the fact that the supremum of finitely many continuous functions is
continuous. [J

Proposition 1.9.  For any fixed p € [po, z,), if the set of inequalities P,(1) holds then
in fact the stronger set of inequalities P,(0.999) must hold.

This last proposition is the core of the proof, and is proved in Secs. 2—-4. An overview
of the proof is given in Sec. 1.5. In the course of the proof we obtain Lemmas 3.1 and
5.1, which together can be summarized as follows.
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Lemma 1.10. Given P,(1), the numerical bounds in Q, hold.

As we show below, these results are sufficient to prove Theorem 1.4, when combined
with the following lemma.

Lemma 1.11.  Suppose that f,(p), f>(p), ..., f,(p) are nonnegative functions, and that
there are py < p, such that

1. fu(po) 0999 for1 <m<n,

2. fu{p) is continuous in p € [pg,p,) for each 1 <m < n,

3. for each fixed p € [ po, P1), the set of inequalities f,,(p) < 1 (1 < m < n) implies the
stronger set of inequalities f,(p) < 0.999 (1 <m < n).

Then f,(p) <0999 for all p e [po,p,), (1 < m < n).

Proof. Define f,,,(p) = max, ., <, /,»(P)- By Assumption 3, f,_..(p) ¢ (0.999, 1] for
all p € [po, P1). On the other hand, by the second assumption f,,,,(p) is continuous in
P € [Po, P1)- Since f.,(po) < 0.999 by Assumption 1, the above two facts imply that
the graph of f,,,, for p € [py, p,) must remain below the forbidden interval (0.999, 1]
and hence f,,.(p) < 0.999 for all pe [p,,p,) O

Proof of Theorem 1.4, given Proposition 1.9 and Lemma 1.10. We first normalize
the inequalities of P,(1) to give right sides equal to 1. The fact that P,(0.999) holds then
follows immediately from Propositions 1.7-1.9, applying Lemma 1.11 with p, = z,.
Then Q, follows immediately from Lemma 1.10. (O

1.5. Overview of the method and organization of the paper

The basic strategy used to prove Proposition 1.9 is essentially the same as that used
in [22]. In this section the driving force of the argument is described. We also comment
briefly on the role of computer calculations in the analysis, and describe the organiza-
tion of the remainder of the paper.

To prove Proposition 1.9, it must be shown that the set of inequalities P,(1) implies
the stronger set of inequalities P,(0.999). To begin, we assume that P,(1) holds. It
follows from (1.16) that

1

G,(k) = - .
1 — 2dzD(k) — I1,(k)

1

= - - — . (1.65
1 — 2dz — I1,(0) + 2dz{1 — D(k)} + I1,(0) — I (k) )
The right side can be interpreted as the subcritical Gaussian quantity
1
(1.66)

x(2)' + 2dz[1 - D(k)]’

perturbed by an amount I1,(0) — I1,(k). This perturbation can be shown to be a small
multiple of 1 — D(k) by estimating 21, (k) in terms of the quantities occurring in P,(1).
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As a result, using the fact that y ™! > 0 it can be concluded that Gp(k) is bounded above
by a multiple of [1 — D(k)]7%, as in Corollary 1.2.

On therther hand, all the quantities appearing in P,(0.999) can be calculated in
terms of G,(k), and hence estimated in terms of [1 — 5(k)]"1. The upper bounds can
be evaluated numerically, with the result that P,(0.999) holds.

This procedure was carried out in [22] for the self-avoiding walk in very high
dimensions, where the above perturbation could be made as small as desired by taking
d sufficiently large. For d = S the perturbation, although not terribly large, cannot be
taken to be arbitrarily small. This has the effect that very little can be sacrificed in
estimates. It is remarkable that the original bounds P,(1) can in fact be improved to
P,(0.999) by this mechanism, but the values in P,(1) have been very carefully chosen
so that this improvement is possible. Computer experimentation for finding good
values for P,(1) proved to be very useful. Detailed numerical estimates were used for
a number of quantities. The number of calculations involving precise numerical values
is large, and to make it practical the entire calculation described in this paper was done
by computer, using a FORTRAN program. Apart from making the calculation practi-
cal, the computer played a valuabile role in the development of the proof, by allowing
for convenient experimentation in comparing the effect of alternate or improved
estimates. Qur basic strategy was to push the estimates until they were sufficiently good
to make the proof work, decreasing the dimension from d = 10 one by one. As the
dimension decreased it became necessary to include additional quantities in P,(a).
Computer calculations were also used to evaluate precisely the simple random walk
(Gaussian) Green function, at several thousand lattice sites. Rigorous error bounds
were obtained for the computer calculations. A discussion of the error estimates and
of the method of calculating Gaussian Green functions can be found in Appendix B.

The final numerical computations were performed witha VAX FORTRAN program
on a VAX6440 at the Meson Science Laboratory of the Faculty of Science of the
University of Tokyo, running the VAX/VMS operating system. The total computation
time was approximately two hours. Of this, all but approximately one second was used
to calculate the values of Gaussian quantities. The remaining second was used to
perform the calculations in which P,(0.999) is concluded from P,(1). To make sure that
there is no software (compiler) or hardware problems, we have run the same programs
on a different machine (DECstation5400, running Ultrix 4.1), and have checked that
they produce exactly the same results up to round-off errors. The FORTRAN source
code is available from the authors upon request.

Many refinements need to be incorporated into the method used in [22] to treat
d = 5. These refinements, and the organization of the paper, are summarized in the
following.

It was stated above that given the estimates P,(1) on the bubble quantities and the
two-point function, IT is then estimated in terms of these quantities. In fact we find it
more efficient to estimate IT in terms of smaller repulsive bubble quantities, in which
the two lines of the bubble diagram feel some mutual repulsion. A comparison of the
repulsive and nonrepulsive bubbles is given in Sec. 2.1. We also find it useful to extract
from IT some terms which can be evaluated explicitly. This is done in Sec. 3.1. Based
on these preparations, Sec. 3 is concerned with refined diagrammatic estimates of Il



THE LACE EXPANSION FOR SELF-AVOIDING WALK IN FIVE OR MORE DIMENSIONS 251

Detailed diagrammatic estimates are performed up to and including the eight loop
diagram.

Next the quantities appearing in P,(0.999) are carefully estimated using the derived
estimates on IT and (1.65). This step is carried out in Sec. 4.

The rest of the paper is somewhat anticlimactic. In Sec. 5, the proof of Proposition
1.6 is given. Upper bounds on the critical point, which prove the lower bounds on the
connective constant stated at the end of Sec. 1.1 and also are needed to carry out the
proof of Proposition 1.9, are obtained in Appendix A. Appendix A also contains proofs
of upper and lower bounds on the two-point function in terms of the two-point function
for simple random walk without immediate reversals. Numerical aspects of the proof
are treated in Appendix B, in which values of various Gaussian quantities are also
given. Finally Appendix C contains a brief discussion of dimensions above five; the
paper otherwise deals primarily with d = 5, which is the most difficult case.

1.6. Definitions and notation

Throughout this paper, we denote upper and lower bounds on 4 by A and 4
respectively. Unless otherwise indicated, w, w,, w,, @}, @} are used to denote self-
avoiding walks. We usually use e or f to denote a unit vector in Z5, and denote the

usual basis of Z° by ey, ..., es. We write p, = as in Proposition 1.7.

9%

In addition to A, and A, introduced in (1.34), we define several subsets of Z°:
A,={xeZ*:0<|x|, <4},
A, = A, U {Z° rotations and reflections of (1,1,1,1,1)}, (1.67)
A; = A, U {Z° rotations and reflections of (2,1,1,1,0)}.

We also define the following “repulsive bubble” quantities:

Rx= Y Y Y potrlfow,no,={y}] x#0 (168

y#£0,x ©,:0->y wy:y—x

RO=Y Y Y petelon ne,={0,y}] (1.69)

y#0 0: 0=y 05:y—0

Ro= Y Y Y porellono,={0,y}] (1.70)

y:y>1 0: 0=y wy:y—0

Rx)y=> Y 3 pettedlo, nw,={y}] (x#0) (1.71)

¥y#0 01:0—y @wy:y—x

R=Y ¥ T potellfene, = kA0, (L7

y 01:02y w:y—x

We do not use R),(x) or Ry(x) for x = 0.
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We also introduce a number of Gaussian quantities. These are defined on Z¢ for
general d (provided the integrals converge), but we concentrate ond = 5. For ¢ > 0 we

define
™ dk ﬁ m .
T e (1.73)
J @1 (s + 1 By
r gd AL
o = d ku lD(k)|A (1.74)
)@ (e + 1 — D(k))”
 d% D)™ d <sink )2
W = _ L 1.75
, J (27'[)d {8 +1— D(k)}" “;1 d ( )
A% 1 [ d (sink )2]2
Vn(e) =l " L . 1.76
J @' (e + 1 - Dk} u; d o
We also introduce
D"(x)(k) =ll ex [i i ok, x ] (L.77)
“‘2" d! {Viv200e00 vale Py 8,,85,..., S4=+1 P u=1 HRTH .

where 2, is the set of all permutations of {1,2,3,...,d}. Performing the sum over J,

gives cosines, so D™(k) is real.

Then we define

[ d% | D(k)™ .
(e) = (x) 78
Km(x) Je et _ﬁ(k)}nlD ] (1.78)
[ d'% D™ (k)
@)(x) = 1.79
10 J@n (e + 1 - Dk} (1.7
[ d% | D® (k)| d (sink )2
©(x) = “y . 1.80
e J @ (e + 1~ Dk} u; d (1.80)

When ¢ = 0 we drop the superscript (¢).

Finally, regarding the display of numerical values, we use “...” to denote a result
of round-off. For example, we write x = 0.1234 ... to denote x € [0.12335,0.12345].
Numbers without “...” represent exact values. We follow this convention unless
stated otherwise. Also, care is required in interpreting intermediate values in a calcu-
lation. For example, Table I gives values of R’(x), etc. The values in the table are
truncated, but subsequent calculations are performed using the pre-truncation 16 digit
precision. Furthermore, for ease of presentation we occasionally write for example
x <0.1234 ... as x < 0.125, which is true but may be less accurate than a more precise
value used in subsequent calculations. Any possible discrepancy between our final
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Table I. Upper bounds on Bj(x), R,(x}, R,(x), G,(x), |x}*G,(x) which follow from our starting assumption
P,(1). “Others” means all nonzero x not explicitly given in the table.

z BJ) [ By@) | B@) [ Gple) [ E[Gye)
(1,0,0,0,0) 0.488 | 0.388213 | 0.257050 | 0.142500 0.142500

(1,1,0,0,0) 0.356 | 0.324548 | 0.286298 | 0.0456252 | 0.0912503
(2,0,0,0,0) 0.286 | 0.260733 | 0.238946 | 0.0273115 | 0.109246

(1,1,1,0,0) 0.289 | 0.263468 | 0.246297 | 0.0227560 0.0682681
(2,1,0,0,0) 0.240 | 0.218797 | 0.208297 | 0.0149322 | 0.0746609
(3,0,0,0,0) 0.215 | 0.196005 | 0.191112 | 0.00826689 | 0.0744020
(1,1,1,1,0) 0.251 | 0.228825 [ 0.218961 | 0.0145000 | 0.0579999
(2,1,1,0,0) 0.215 | 0.196005 | 0.189597 | 0.0102381 0.0614286
(2,2,0,0,0) |} 0.215 | 0.196005 } 0.191710 | 0.00770495 | 0.0616396
(3,1,0,0,0) 0.215 | 0.196005 | 0.192737 | 0.00641781 | 0.0641781
(4,0,0,0,0) 0.215 { 0.196005 | 0.194516 | 0.00411651 | 0.0658642
(1,1,1,1,1) 0.227 | 0.206945 { 0.200398 | 0.0105934 | 0.0529672
others 0.215 | 0.196005 | 0.196005 | 0.00799278 { 0.0750000

results and results calculated from intermediate values in the text will be due to these
two facts.

2. Some Preliminary Estimates

In this section, we derive several estimates which will be necessary in later sections.
In particular, we derive the following lemma, which provides upper bounds on B,(x),
R,(x), R,(x), G,(x), and |xIZGP(x), based on our starting assumption P,(1) of Definition
1.3. This lemma will be used in Sec. 3 to derive bounds on I, (k).

Lemma 2.1. Let p € [po, z.). Assuming P,(1) of Definition 1.3, we have
R,(0) < 0.434636, ﬁp(O) < 0.300905, 2.1

and the bounds tabulated in Table I.

The proof of Lemma 2.1 will be completed in Sec. 2.3, after we obtain a number of
necessary estimates. We begin by using the inclusion-exclusion relation to derive (in
Lemma 2.2) simple relations between G,(x) and ) ,-; G,(x + €). Then partly using one
of these relations, we derive (in Lemma 2.3) relations between the bubble quantities
given in our starting assumption P,(1) and the repulsive bubble quantities of Sec. 1.6.
The latter play an essential role in the diagrammatic estimates of Sec. 3. Finally, we
describe a method (Lemma 2.4) to derive upper bounds on G,(x) in terms of R,(x).

2.1. Applications of the inclusion-exclusion relation

In the next lemma, we apply the inclusion-exclusion relation to show that the
two-point function at a point is bounded above and below by the average of the
two-point function at its nearest neighbours, multiplied by a constant close to one.
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Lemma 2.2. For any x # 0, we have

2dp 1
G = 1 S Gter) 24 a2 Cr @2
and
G,x) < 2dp-1 + {p + 2(2d — 2)p*}G,(e,) + p*G (e, + €;){1 + 2dpG,(e,)} .

1 + 2dp* + 2d(2d — 2)p* + 2dp*G, (e, + e,)

1
5d 2, X O 23)

Proof. We begin with a simple precursor of (2.3). Let. x # 0. Extracting the first
step of w, and then using inclusion-exclusion, gives

Gx)= Y p Y pPMed01=p Y 3 pN1-1[w>0]}

ec Z9:le|=1 w':ie—x le|=1 w:e—x

=p Y Gx—e—p Y Y po Y po,ne,={0}].24

lel=1 le]=1 ©w;:e—=0 ®3:0-x

Discarding the second term, we immediately obtain

G,(x) < 2@% I Glx—o. @.5)

If we now bound the indicator function of (2.4) using I[w; N w, = {0}] < 1, we get
the lower bound

G0 2p ¥ Glx—e—p T GG, (2.6)

or (2.2).

To improve (2.5) to (2.3), we derive a lower bound on the second term of (2.4)
by restricting the sum over w, to |w,| = 1, 3. For }w,| = 1, the indicator becomes
I[w; nw, = {0}] = I[w, # €]. For |w,| = 3, denoting the two sites on w, in addition
toOand eby fand f + e (|f| = 1), we have l[w, nw, = {0}] ={w, B e, f,e + f].
Using the inclusion-exclusion relation we obtain

Y ope Y pellfw; ne, = {0}]

wy:e—0 wy:0-x

2p Y Plwged+p® Y Y, Pilw,Be fie+ f]

wy:0—+x 1=, f#+e ©0: 02X
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> p{G,(x) — G,(e)Gy(x — e)}

+7° Y {G(0) — GNGx — f) — G(G,(x — )
S:Af1=1,f#te

— Gy(f + &)G,(x — e — f)}
= {p+2d - 2p*}G,(x) — {p + (2d — 2)p*} G,le1) Gy(x — ¢)

-p Y {G,(e1)Gp(x — f) + Gle, + €:)G(x —e — )}, @7
L:f1=1.f#xe

and hence

G,(x) < p[1 + {p + 2(2d — 2)p*}G,(e,)] |Z G,(x —e)

e|=1
— 2dp{p + 2d — 2)p*} G, (%)

+ p*G,le;, + e3) Y G,(x — e — f). (2.8)
lel=If=1,e#+f

Now note that

Glx—e—f)< ”Z=1 {f;l G,({x — e} — f) — 2dG (x)

e, [:lel=IfI=1,e#tf

RS G g - 26,00 29)

e

where in the last step we used (2.2) in the reverse direction. Using (2.9) in (2.8), we get
23). O

We now apply the inclusion-exclusion relation to obtain bounds on the repulsive
bubble quantities in terms of the bubble quantities.

Lemma 2.3. For x # 0, we have
R,(x) < [1 — 2dp* + 2pG,(e,) {1 + 2dpG,(e,)} 1B, (). (2.10)
We also have
R,(0) < {1 — 4dp® + 4d*p*}B,(0) + 8dp>G,(e,)B)(e,)

+ 4dp*{G,(e,)* + dp*}, (2.11)
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R,(0) < {1 — 4dp?} B,(0) + 4d?p*B,(0) + 8dp*G,(e,)B,(e,)
+ 4dp*{G,(e,)* + dp*}, (2.12)
and
R,(e;) = R,(0)/(2dp). (2.13)

Proof. By definition of R,(x) (x # 0),

Rx)=3Y Y pedl[o, nw,={y}]

y#0 w:y—0
W:y—Xx
=B,(x)— 3 Y pelo,ne, #{y}], (2.14)
y#0,x 0 :y—+0

@y x

where in the last sum the y = x term is automatically zero. To obtain a lower bound
on the last sum, we restrict the summation to w, and w, having the same first step
(y,y + e). This gives

Y peted[w, e, £ {y}] > Hz_l PP Y peiteN[w) By, B y].

wy:y—>0 wj:yte—0
@y X a)’2:y+e—'x

2.15)

Now we again use inclusion-exclusion, in the form I[w) ?y,w52y]>
1 - I[o] 3 y] — I[w) 2 ¥], to obtain

R(x)<B(x)—p* ¥ Y G(y+eG,(x—y—e

le|=1 y#0,x

+0%G,e)) Y Y {G,(0G,(x —y—e)+ G,(y + &)G,(x — y)}

lel=1 y#£0,x

= B,(x) — 2dp>B;(x) + 2p*G,(e;) Y. G,(¥) 1|Z‘1 G(x—y—e. (216)

Then (2.10) follows, once we use (2.2) in the reverse direction to bound the sum over
le] = 1.

We proceed similarly for R,(0) and f{',,(O), but now restrict the summation to w,; and
w, having the same first or last step. For R,(0) we have

RO<B,O~Y Y p* Y pirtI[w,30,0,%0]

x#0 |e|=1l:e#x wije—x
whie—x

-y X P Yy peitei[e) $x0; $x]
x#0 |fl=1: f#x @j:0—x—f
03:0-x~f



THE LACE EXPANSION FOR SELF-AVOIDING WALK IN FIVE OR MORE DIMENSIONS 257

+3 % pt Y peiew) 30,x;0) 30,x]
x#0 le|]=1l:e#x wi:e~x—f
i=1:f#x  ohe—sx—f

<SBO) Y Y pPGx-e-Y Y pGlx—f)

x#0 je|=1,e#x x#£0 |fl=1:f#x

+4 Y Y pPGGXG(x—e+ Y Y p*Gx—f—ef

x#0 |e|]=1,e#x x#0 |e[=1l:e#x
fi=1:f#x

< {1 — 4dp? + 4d*p*} B,(0) + 8dp>G,(e,)B)(e,) + 4dp*{G,(e,)* + dp*}.
2.17)

The bound (2.12) on ﬁp(O) is obtained in the same way, subject to the additional
condition |x| > 1.
Finally, extracting the first step of @ gives

RO=Y ¥ portelonw,={0x}]

x#0 w,:0—>x
wy:0-x

— Z p Z Z p"‘"“”‘"l'l[w’lnwz — {x}]

x#0 |e|=1 wj:e—x
w5:0>x

=p l{; Ri(e), (2.18)

and hence (2.13). [J

2.2. Bound on the two-point function

To prove Lemma 2.1 we must in particular provide bounds on G,(x) for x # 0, e,
starting from our assumption P,(1). This is done using the following lemma.

Lemma 24. For any p € (pg,z,.),

Rpy(x) + Ry() 2= po.

G,(x) £ G, (x) + (2.19)
ol P 2 Po
Proof. Differentiating the definition of G,(x), for any x # 0, gives

d ,

pa—pGp(x) = R(x). (2.20)
Let p, € (py,z.). Integration of (2.19) gives
14} , dp

G, (x) = G, (x) + Rp(x)?. (2.21)

Po



258 T. HARA and G. SLADE

For the second term, we note that all p-derivatives of R,(x) are positive, so in
particular R)(x) is convex. But for any convex function f,

(py — po)dt

J f(P) J {a —t)f(Po)+tf(lh)}—t)porgp“l

= f(po)In(p1/po) + { f(p1) — f(po)} {1 -

1= PO

P i ln(pl/po)}. (2.22)

This can be further simplified, using y — y?/2 < In(1 + y) < y (for y > 0), to

) < (2.23)

J e dp f(Po)+f(P1) Py —
Po

Combining this with (2.21) gives (2.19). [

23. Proof of Lemma 2.1

We now use the results of Secs. 2.1 and 2.2 to prove Lemma 2.1.

For the bounds on B,(x), we simply use the values from P,(1).

For R (x), we employ Lemma 2.3. More precisely, we first use (2.10) and P,(1) to
bound R)(x) for |x| > 1. We then use (2.11), (2.12) and P,(1) to bound R,(0) and ﬁ,,(O),
and finally use (2.13) to bound R)(e;).

Turning now to the bounds on R,(x), for x € A’, we use

R,(x) = R,(x) — G,(x) < R,(x) — G,(x), (2.24)

and bound the last term on the right side using Corollary A .4. Specifically, since p > p,
we can use

G,(x) = (0.8758793)I(x), &= 0.0100504, (2.25)

and the values of I{%(x) calculated from Proposition B.7. For the remaining x, we
simply use

R, (x) < Rj(x). (2.26)
The bounds on G,(x) of Lemma 2.1 are obtained using (2.19) as follows. For the

quantities in (2.19) at p, = (6611)/(9°), we first employ (1.62) to bound G, (x) and thus
B, (x), obtaining

713988 , 7139882
G, (x) < 812911 a7 100X, B, (x) < (m) I 1(x). (2.27)

Values of the Gaussian quantities on the right side are given in Table V and Lemma
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5 - gy, s (N ¢ (NN + (NI, + o
0 x 0 x 0 x

SR/ R AV AVAVARYAVAVAVARRE
0 0 0 0

Fig. 1. Diagrams contributing to I1$99(x) and I1"*"(x). Slashed lines may correspond to zero-step sub-
walks, while other lines correspond to subwalks which take at least one step. There is some mutual avoidance
present between subwalks, as prescribed by the lace expansion. In particular, the subwalks forming each
elementary loop in the diagrams are mutually avoiding.

B.9. We then use (2.27) in conjunction with (2.10) to bound Rj, (x). Then we use the
bounds obtained above for R}(x), and Corollary A.2 for z,.

Finally, |x|?G,(x) is bounded by multiplying our bounds on G,(x) by |x|?, for x € A},
or simply from P,(p)for x ¢ A,. O

3. Diagrammatic Estimates

There are two main steps in the proof of Theorem 1.4. The first is to show that the
bounds given in P,(1) yield bounds on pr(k), and the second is to use these bounds on
I1,(k) to obtain the improved bounds of P,(0.999). In this section we perform the first
of these steps. To obtain adequate bounds on pr(k) for d = S, very detailed estimates
are required. Simple estimates similar to those used in [5] will be used to bound
contributions from diagrams having nine or more loops, while more careful estimates
will be used up to the eight-loop diagram.

Recall that T4 (x) is the sum of diagrams contributing to IT,(x) having an odd
number of loops, and I1**”(x) the sum of diagrams having an even number of loops.
Then IT,(x) = — I (x) + ¢V (x). The diagrams are illustrated in Fig. 1.

We wish to treat the self-avoiding walk as a small perturbation of simple random
walk. In (1.19), roughly speaking 1 — 2dz D(k) is the main term, and II (k) is a
perturbation. In the next section we absorb some contributions from ﬁz(k) into the
main term. This will be useful when we use the bounds of this section to conclude in
Sec. 4 that P,(0.999) holds.

3.1. Extraction of terms in the propagator

The contribution to flp(k) from lattice points with |x| = 1 gives a multiple of D(k).
Also, the contribution from x = 0 has no k-dependence, and merely shifts the critical
value of p. We extract these two contributions from the one, two and three loop
diagrams of 11 o).

For this purpose, we define

o = Hf’(O), ny = HLZ)(‘H) - HLS)(el)- (3.1)

For the one-loop diagram we note that
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IIM0) = 2dpG (e,)-

Then we have

A N,
G,(k) = —
A, — D(k) — ®,(k)
where
N, =[2dp + 2dn,]7", A, =[1+ 2dpG(e,) + m,]N,
and
(0 = 3, (~1rdP(),
with
. N, % P (n=123)
q);,")(k) = N ’
N, (k) (n=>4)

Adding and subtracting N,x(p)"" in the denominator of (3.3) gives

N,

P

Nx ™'+ 1= D(k) + ®,0) — ®,(k)

p

G, (k) =

For later use we also define

N
X,=-7
P Ap p

X
=[1 + 2dpG,le;) + mo]7", Y, = 2—”.
p

3.2. Main estimates

(3.2)

(3.3)

(34

(3.5

(3.6)

3.7

(3.8)

The main estimates on ® and IT are given in the following lemma. This lemma will
be proved by bounding IT and ® (and their derivatives with respect to k and p) in terms
of the basic bubble quantities, and then using Lemma 2.1. [In fact (3.9) follows

immediately from Table 1.]

Lemma 3.1. Given P,(1) of Definition 1.3, we have

sup |x|2G,(x) < 0.1425,

BN < T DL(x) < 0.0054562605 = c; ,

|DEvem(k) < T e (x) < 0.0091636501 = c;,

(3.9)

(3.10)
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and foru=1,2,
|3 DLk < ¥ |x2DED(x) < 0.0205754616 = c;,
x

daEdET k)| < Y [x]2DEve(x) < 0.0436887388 = c, .

For u = 1 we also have the k-dependent bound

C3+C4

10,®,(k)| <

Isin k,|.

Also,
—e3{l — D(k)} < @,(0) — ®,(k) < ¢, {1 — D(k)}.
For bounds on flp we have
[T K) < ¥ TT9(x) < 0.1730244 = ¢},
[TIEvm(k)) < Y ITE*"(x) < 0.03864779 = ¢},
and foru=1,2
d|9A IO (k)| < Y %2 ITE9(x) < 0.02406226 = ¢},
| TIE (k)] < Y |xP 1YV (x) < 0.07354167 = ¢, .
Finally,
—c3{1 — D(k)} < T1,(0) — M1,(k) < c4{1 — D(k)}.

We also prove the following lemma.

Lemma 3.2. Given P,(1),

2

N, < 0.877253586, X, =

p

P <0.869945794,

S

L]

>

A, > 0988764783, Y, =

p

P < 0.879830885.

|

'S
5

These two lemmas will be proven throughout the remainder of Sec. 3.

261

3.11)

(3.12)

(3.13)

(3.14)

(3.15)

(3.16)

(3.17)

(3.18)
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3.3. Estimates on some basic diagrams

In [5], where there was a very small parameter, adequate diagrammatic estimates
were obtained using the Hausdorff-Young inequality. For diagrams having eight loops
or less, we will use the following inequality instead.

Lemma 3.3. Suppose f and g are nonnegative functions on Z°, with given pointwise

upper bounds f(y) < f(y) and g(y) < g(y), y € Z*. Suppose also that Y. zag(y) < Sg.
Then for any nonnegative o,

Y fe(y) <aSe+ Y, max{f(y) — «,0}g(y). (3.19)

ye Z4 ye 24
In particular, if for some subset U c Z° we take o = sup, . f(), then

de(y)g(y) < sugf_(y”)-sg + ZU max {f(—y) — sup jTy),O}gTy). (3.20)

yel yelUs

Remark. For U = ¢, (3.20) is just the Hausdorff-Young inequality. For nonempty
U, (3.20) gives an improvement by taking variations of f into account.

Proof. ForanyaeR,

Y fMg) =a Y g0+ Zd{f(y)—a}g()’)- (3.21)

ye 24 ye 24 ye Z

When a and g(y) are both nonnegative, the right side is bounded above by

aSg+ Y {(f)—ajg<aSe+ Y {f()—atg(y. (3.22)

yez4 y:f»>a

Then (3.20) follows from the fact that all contributions from y ¢ U are nonpositive in
the second term of (3.20). [

To simplify the notation, we introduce the following abbreviations for frequently
encountered versions of the right side of (3.20). We will in fact encounter only sums of
the form Y, .o f(3)g(y), or 3., 40, f(¥)g(x — y) with x 3 0. With this in mind, given a
subset U or V of Z¢ (U, V 3 0), nonnegative functions f and g, and § = ', 0 g(»), and
given upper bounds for these, we define

UGS,g,f;U) = sugc fo-s+ X o max {JTy) — sup )Tz),o}w) (3.23)

yeU:y

and

V(x;S,g,/;V)=sup f(»)-S+ Y  max {,Ty) — sup f(2), O} glx —y). (3.29)

yeve yeV:y#0,x zeVe
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To apply (3.20), we need to make a choice of U. In practice, we evaluate the right
side for nine sets U, each of which is given by the union of all Z3-rotations and
reflections of each of the following nine sets:

{0}, {0.e;}, {0,es,0,}, {0,61,261}, {0,e1,05,05}, {0,e,,2e,0,,03}

{0,e,,2e,,v5,05,0, + €,}, {0,e;,2e,,0,,05,0,}, {0,e;,2e,,0,5,03,04,0, + €,}.
(3.25)

We then take the minimum of U(S, g, f; U) over these choices of U, and define

U(S,g,f) = min U(S, g, f; U). (3.26)
U

To compute the right side of (3.26), individual upper bounds are required on g(y) only
for || yll; < 4. Similarly we define

V(x;S,g,f) = min V(x; 8,4, f; V), (3:27)
A\ 4

where now the minimum is taken over three, two or one set V, depending on x, as
follows:

V={0}, {yeZ%:|yl, <1}, {yeZ’: |yl,</2} for|x|, <2
V={0}, {yeZ’:lyl, <1}, for [xf, =3 (3.28)
V = {0} for ||x|, = 4.

Then again to evaluate the right side, individual upper bounds are required on g(y)
only for 0 < ||y|l; < 4.
Then by Lemma 3.3 we have

;0 fg(y) < UGS, 49.f), ;Z)j fglx —y) < V(x;8,9.f). (3.29)

In the following, we use the above lemma to derive efficient bounds on 11, @, and
their derivatives. We will encounter only the sum on the left side of {3.29), i.e. with the
restrictions y # 0 or y # 0, x. The basic approach is to use the lemma in an iterative
fashion to reduce a diagram to smaller units, which themselves can be bounded using
the lemma.

We now define the six basic types of diagrams that will be used. We first define
diagrams of type-#® and # as in Fig. 2 (a) and (b). Here * denotes one of 4, b, , d,
and the superscript denotes the number of loops. Then we define

AP =Y By, ZPx) = Y GBD(x —y), (3.30)

y#0 y+0
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;N N NN
[¢2) 2 0 ( 2) @)
3! B B, a;a B,” $C

4

B4
ZSZV 6257 6237
$(5) $;5)
NN, INNIN zxzm
gI;G) fBa(7) ﬂ‘:8)
(a)
0 x
:Fa( 4) ?—a(5) T b( 5) };l 6) }- b(6‘)
(b)
ZX7 ZXZ_ ZXL AVA
a u a 11(4)
©

Fig. 2. Definitions of basic diagrams. (a) Diagrams £#"(x). (b) Diagrams #{(x). (c) Examples of &/{", 2,
EM, &0, In each diagram it is implicit that all elementary loops in the diagram are self-avoiding, in the sense
that no pair of lines in any loop has a common point other than the common endpoints explicitly indicated.

%;"’(x) = Z G(y).@""(x 9""(x) + BP(x), (3.31)
yEX
EN(x) = ), BM(x— )BTV, (3.32)
y#£0,x

and #(0) = €(0) = 28°(0) = 0
We first establish bounds on diagrams of type </, 8, %, 2. Then bounds on diagrams
of type & and & follow rather easily.

3.3.1. One loop diagrams

There are four types of one-loop diagram. By definition,

AV =RO), BV <GP (3.33)
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To bound 2, we use (3.29) to obtain

FP(x) = Y GWBI(x—y) <Vix; oD, BD,G), (3.34)

y#0,x

and then use (3.33) and the results of Lemma 2.1 for the upper bounds on .&/(*), 8" (x)
and G(x) in the definition of V(x; &7\, 81, G). Finally, by definition

EM(x) = PPV (x) + BV(x). (3.35)

3.3.2. Higher loop diagrams

Diagrams with a higher number of loops are bounded similarly. To demonstrate the
method, we now bound the two-loop diagrams of type a. The method is the same for
type b.

Beginning with &>, we use ), .o Z."(v) = <" and apply (3.29) to obtain

AP = ) RWBD() < U, B, R). (3.36)

y#0

Next, 82 is simply the product of €{!) and G with repulsion. Ignoring the repulsion
gives the upper bound

B (x) < €V(x)G(x). (3.37)
Then 2 is estimated using (3.29) as for 2V, to obtain

2P = Y GBI (x —y) < V4, B2, G). (3.38)

y#0,x
Finally, by definition of ¢!, we have
EP(x) = 9P (x) + BP(x). (3.39)

Diagrams with more loops are estimated similarly, yielding the results summarized
below. In these bounds all one-loop diagrams are estimated first, then their upper
bounds are used in the estimates of the two-loop diagrams, and so on.
Type & and 4

AP < U(AD, BV, R), AP <UD, B, R),
BP(x) <€V () G(x), H(x) < DV(x) G(x),

4O <UD, BD.R), o <UD, BPR), 49 <UD, 9D,R),

BI(x) <€) Gx), B <EGV(x)Glx), BOx) < 2P(x) G(x),
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AP <UD, B, R), 4O <UAD, B R),
AW < UL, B, R), AP <UAD, B3R,
BP(x) < 6(x)-Gx), BY(x) < 2P (%) G(x),
BI(x) <67 G(x), BP(x) < €I (x) Gx),

AP U BOR), oD <UD BOR), 49 < US89 ,R),

B7() < 6I(x) G(x), B <E) Glx),  BOX) <€) G),
A0 <UD, B R),  BO(x) < €7(x) G(x),
A7 <UL, BO,R),  B(x) < €°(x) Glx),

A < U, B0, R).

Type € and 2
DP(x) < V(x; LD, BP, G), EI(x) = DO(x) + B (x). (3.40)
Type &
EFV(x) < V(x; LT, BD, G?). (3.41)
Type #

To simplify notation, we temporarily write

G = sup G(x), R’ = sup R'(x), R = sup R(x).
x#£0 x#0 x#0

FI) = G*(R)*R(),
FI9() =G (RYR®,  F9() =GR (RYRE,

FOx) =G (R)*R(x), FHx)=G*R-(R) R(x).

34. BoundsonY ,M™(x), Y, |x|'T™(x), Y, ®®(x) and ¥, | x|2®*)(x)

In this section we use the results of the previous section to derive bounds on
Y P®(x) and Y, |x|*¥®(x), where here and in the following ¥ denotes either I1

or .
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34.1. Boundson ,¥™(x)

Bounds are obtained for ), 'P™(x) (n < 8) using Lemma 3.3 as follows. Defining

#0() = {;ﬁ”(x) EKLZ\S;S?) ’ (3.42)
we have
N, Y 0(x) < U(R(0), B, G), (3.43)
Y MT9(x) < U(R(O), Y, G). (3.44)
Similarly, defining
&) = {Z’,ﬁz’(x) EL):L:‘\’(:lsle)) ’ (343
we have
N,1Y 0¥x) < U({0)2, 82, G) (3.46)
and
Y I9(x) < U2, B2, G). (3.47)
For4 <n<8g,
N,1Y @) = ¥ [I®(x) < U(L"D, B, G). (3.48)
For n > 9, we simply bound
NP Y o(x) = MT"(x) < o sxig G(2) [sgg R’(y)]nng. (3.49)
* P z y
3.42. Boundson) . |x|*¥™(x)
We now obtain bounds for ) |x[*TT™(x) and ), |x{>*®™(x). Let
G(x) = |x|2G(x). (3.50)

Arguing as when no factor |x|? was present, we have
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VAV R/AV/E/AV ER/AVAN/AVAY

4 @) 4 ) &)
Wa Wb Wc Wa wb
(6) 6 6) 6 (6)
A Wy W, Wy W,
OM om o‘m
6) @) 7
w We n,
w 7 0 w(7) W (7) 0 (7)
b ¢ f W,

Fig. 3. Diagrams used to estimate Y |x|*W®(x).

N, TP < UR(0), 3V, G), (3.51)
2 IXPI9() < U(R(O), £, G), (3.52)
and
N, T PO < U0 82, ), (3.53)
2 IxPTIO) < U1, 62, G). (3.54)

To deal with higher orders, we define several diagrams in Fig. 3. In these diagrams,
bold lines represent lines weighted with a factor |x|%. Note that for n > 4, N, ®"(x) =
™).

Then for example, to estimate the four-loop diagram we use

X

0 ) x
X Ixf? =Z{ly|2+lx—y|2+2y'(x—y)}N
x xy 0oy

2 (D« D+ (D o
0 0 0

In the last step, we used 2(x — y)'y < |x — y|* + |y|> and took into account the fact
that this gives rise to a diagram with the constraint y # 0, i.e. ). Then we bound
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the diagrams #* as in Sec. 3.4.1, obtaining
WO <UPALPE0,G),  #® <UD, 4.6),
~ (3.56)
W < UL, B, G).

Thus we have

N, Y [xPOW(x) = T [xPI(x) < 2#® + #;® + w®. (3.57)

Similarly, using the triangle inequality and keeping track of non-zero lines, we obtain

N, Y xPOS(x) = T [xPIO(x) < 29 + 29, (3.58)

with
W < U(AOAD,69,G), WD < UALDAD,E5,G). (3.59)
Also

z |x|2n(6)(x) < 2«/1/;(6) + 21//17(6) + 1;/;(6) + 1//'1(6) + 1//2(6) + 7;/}(6) + 1//9(6), (3.60)

with
WO <UD, E9.6), O <UL, Z,G),

VO <UD, B5,6), W < UIDAP,65,0),

O <UD T, O <UD A0,
WS < UAS, B, E).
For the seven-loop diagram we have
TIxPIIOG) < #.7 + 20457 + #D + # 7 + H ), (3.62)

with
WO S UADAD, F9,G), W < UL AP, F9,G),
W < UL LD, 69,G), W < UHIDAD,E9,G), (3.63)

W < UL, 69,G).
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For n = 8,9, we have

¥ IxPTI®(x) < sup G(x)- {4V + 44 + LPQAP + AP + AD)

+ ALPQAD + AP) + AP A, (3.64)

Y |XI2(x) < sup G(x)- {84Vt + 8Dt} (3.65)
X X
For n > 10, we use less careful estimates. To simplify the notation, we temporarily
write

M =sup [x[>G,(x), r=R,0), R =supR,(x). (3.66)
x x#0

We begin with n odd, and write n = 2m + 1. To bound

Yo qx? ZXZXZYZ& (3.67)
0 yl yz ym—l x

Yis¥2re0en Ym-1:%

we first use the inequality |x|> <m) ™, |y; — y;_;|* and then bound each term of the
resulting expression. For example,

5 (@ZXLYZB <(sop6,00)(5 NXLYZX)
By x \» S0y

< Mr3(R'y*™2, (3.68)
All other contributions are bounded in the same way, with the result that

Y IxPI™D(x) < m>*Mr?(R')*™2. (3.69)

X
For n = 2m even we similarly have

Y [x2TI?™(x) < mMr{R’ + (m — 1)r}(R'}™"3. (3.70)

The numerical bounds on ), ¥(x) and Z,, |x|2¥(x) stated in Lemma 3.1 then follow,
once the results of this section are combined with those of Sec. 3.3. The bounds of
Lemma 3.1 on the Fourier transforms are then obtained as explained in the next
subsection.

3.4.3. Bounds on lf’(k)

The bounds of Lemma 3.1 on 6,"“3‘ (u = 0, 1,2) now follow easily from the bounds
on)  W(x)and ) |x|*¥(x). For u = 0 we simply use
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—~ o0
PEI< Y Y PP(x). (3.71)
n=1 x

Similarly, for u = 1, 2 we use |x,| < x? and symmetry to obtain

8

|0¥ P (k)| < Y IxPPO(x). (3.72)
1 x

| -

To prove (3.12), we first use symmetry to write
8,0,(k) =i x,®,(x)e** = =Y x,sin(k,x,) [] cosk,x,)®,(x). (3.73)
x x vER

Thus we have

10,®,(k) <Y |x,sink,x,||®,(x)|. (3.74)

Since |sin nt} < njsin t| for any nonnegative integer n, this gives

Cy+ ¢y, .
3 y *|sink,|. (3.79)

10,8,(k)| < |sink,| Y, x2|®,(x)| <
We next observe that

(0 — ¥ = 3 (=17 {1 - cos(k-x)} ¥y

> — i Y {1 — cos(k-x)} ¥ (x). (3.76)

n=3:0dd

To bound the right side we proceed as follows. First we use symmetry to replace the
cosine by an exponential, and then use a telescoping sum:

1— eik~x =1—= eiklxl + e"‘""(l . eik;xz) 4+ eik,x1+--~+ik,,-1xd_l(1 _ eik,,xd).

By symmetry all these exponentials can be replaced by cosines. Then using the fact
that 1 — cosnt < n?(1 — cos ¢) for every integer n, we obtain

P0) - P(k) = — f i ¥ x2{1 — cosk,} ¥ (x)

n=3:0dd u=1

——(1-D®} 3 T IxPPO). (3.77)

n=3:0dd

Similarly,



272 T. HARA and G. SLADE

P0) - Pk < f Y. {1 — cos(k- x)} ¥™(x)

n=2:even X

<{-DBE} 3 T IxP¥O). (3.78)

n=2:even Xx

This completes the proof of Lemma 3.1,

3.5. Proof of Lemma 3.2

To prove Lemma 3.2, we require upper boundson N,, X, = N,/A,,and Y, = X /A,
We obtain these with upper bounds on N, and X, and a lower bound on 4,. By
definition, these quantities are given by

N, =2dp+2dny, X, =1+ 2dpGyfe) + mg (3.79)
and

1+ 2dpGe,) + mg

A
P 2dp + 2dm,

(3.80)

Thus we need lower bounds on p, G,(e,), 7, and =, and upper bounds on =, and p.
To bound p we simply use p, < p < z,, and bound z, using Corollary A.2.
Lower bounds on 7y and #, are obtained using

o = MI¥(0) > 2d[p* + 4(Gyles) — PIP*] (3.81)

and
n, = 09e,) — Me,)

> p> + 3(Gyley) — p)p* + 3(2d — 2)(2d = 3)p” — G,le1)8P(er).  (3.82)
For an upper bound on n,, we discard the contribution from the three-loop diagram
to obtain

n, < Gle)). (3.83)

The right side of (3.83) and the last term on the right side of (3.82) are bounded using
Lemma 2.1 and (3.41).

It remains to obtain a lower bound on G,(e, ). This we do by first noting that a lower
bound is obtained when p = p,, and this is then bounded below using (2.25). Similarly

we use G,(e;) — p = G,.(e1) — Po-
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These bounds give the upper and lower bounds on N, X, and 4, stated in Lemma
32. O

4. Proof of P,(0.999)

In this section we prove P,(0.999), given P,(1), and thereby complete the proof of
Proposition 1.9. The basic strategy is to write the various quantities of P,(«) in k-space,
and then to-use the results of Secs. 2 and 3 to obtain an upper bound. The upper bounds
will be in terms of the Gaussian quantities introduced in Sec. 1.6.

We analyze separately the three kinds of bubble quantities, G,(e;), and
SUPL ¢ A, |x]2G,(x). To simplify the notation, we write ¢ = N,x(p)™' >0 and & =
¢/(1 — c;) without further mention, and often drop subscripts p.

4.1. Bubble quantities

Here we derive bounds on the three types of bubble quantities appearing in
P,(0.999).

4.1.1. Bound on B,(0)

d

d’k .
We first observe that 1 = G(0) = f (—277)" G(k). By the Parseval relation, for any

XeR

s [d% A, a% ) )
B,0) = ¥ G) =JW{G"‘) —1)= f GO0 = X = (L= X7 @)

x#0

Now we take X = X, = N,/A4,. Then from (3.3) and (3.7),

Gy —x,=x, 2000 ___ DO gy
A, — D(k) — ®(k) e+ 1— D(k) + D0) — D(k)
and hence
dk D(k) + d(k) )2
B.(0) = X2 _ _ — (1= X,)?. 4.3
o0 =X, 2n)* <£ + 1 — D(k) + ®(0) — Bk) ( ) .3

Next we expand the square in the numerator of the integrand, and estimate each of
the resulting terms. The first term can be bounded above, using (3.13) and the fact that
¢ >0, by

E SIS < E__1,,. 4.4)
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For the cross term, we first rewrite it as

, [ d% D(kyd(k) _2x,?2 [ d%

L _ =—F G(k)2D(k)D(k
e o 1= Do+ 50 -G N, J ey T P

2;(’;2 (G * G * D x®)(0), 4.5)

4

where * denotes convolution in x-space. Because G and D are nonnegative in x-space,
we can bound the above convolution by neglecting the negative part of ®, i.e. contri-
butions from an odd number of loops. Returning then to k-space and using (3.7), (3.13),
(3.10), we can bound (4.5) above by

2X2 [ dik
N, ) @2nr)

e 2X,%, .
GRPDR)D (k) < (T:’fc—c;—zJ;f ). 4.6)
3

For the third term, we now have @ # ® instead of D * ®@. Proceeding as for the cross
term, we obtain

2

X
Bp(O) S m' {12_2 + 262J2,1 + (C% + C§)Iz’o} - (1 - Xp)z. (4.7)

Now we use the bound on X, of Lemma 3.2 and the Gaussian bounds of Lemma B.8
to conclude that B,(0) < 0.49012, and hence the bound of P,(0.999) is satisfied.

4.1.2. Bound on EP(O)

'k o~ ., 1
2ny D(k)* = for any X, Y € R we have

Using the fact that =,
sing the fact tha 2

dk

T {Gk)* — 1 — 2dG(e,)*}

B0)= Y G,x?=
Ixj>1

d’k

= W{G(k) — X — YD(k)}? — (1 — X)? — 2d{G,(e,) — Y/(2d)}*. (4.8)

Taking X = X, = N,/A,and Y = Y, = N,/A,? gives

X,0(k) + Y,D(k)> + Y, B(k)D(k)

G(k) - X, — Y,D(k) = A — D(k) — d(k)

4.9)

Inserting (4.9) into (4.8), performing the square, and then bounding the resulting
expression term by term gives
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~ 1
B,(0) < 1—c) {204 + 2¢,(Y, 202 5 + X, Y, 1 5)
— €3

(e} + N L + X2, 0+ 2X, Y, 05 1)}
- (1 - X,,)2 —2d{G,(e;) — Yp/(2d)}2. (4.10)
Now we use the bound on Y, of Lemma 3.2, the Gaussian bounds of Lemma B.8, and
the lower bound on G,(e, ) of (2.25) to conclude that EP(O) < 0.3121, which satisfies the
bound of P,(0.999).

4.1.3.  Bounds on B,(x)

To bound B,(x), we will write it as a perturbation of a Gaussian quantity which
decays nicely with |x|. To begin, we proceed as above and write, for any x € Z¢,

Ak . .
mm=f@ﬁamam~&+xf4w“
~N,X d%{mmﬂ“+¢“wm®}—u—X»@uL @.11)

Trlen! (4, — Dk — Bk))?

where we have used symmetry to replace ™ * by D®(k) of (1.77). In the last term we
use Lemma 3.2 to bound 1 — X, and the lower bound on G,(x) of Corollary A.4. For
the second term in the integrand, we argue exactly as in Sec. 4.1.1, using (3.10) and
(3.13) to bound it by

N, X ¢
Hgﬁ%xwuy 4.12)

Now for the first term in the integral, we extract the Gaussian contribution by writing

1 1 o 1—fk

A, —Dk)—D(K) &+ 1—Dk)+DO)—Dk) e+ 1— D)’

4.13)

with

(0) — d(k
Jk)y = f) LN (4.14)
e+ 1 — D(k) + ©0) — D(k)
By (3.13), we have —c3/(1 — ¢3) < f(k) < ¢,/(1 + ¢,). [For the upper bound, we used
the fact that x/(1 + x) is monotone increasing for small x.] Now, if f(k) were constant
then the first term in the integral of (4.11) would be proportional to I$;(x), which
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decays rather rapidly with |x|. In order to profit from this decay, we first introduce

1/ 3 _
fo= 5(—~1 T 63), 100 = 16— . @15)
Then
1 ¢, c3 \_
|fik)| < E(ﬁa + 1= 03) =f,. (4.16)

Next we rewrite the first term of the integral of (4.11), using (4.13) and (4.15), as

J d%k {1 — f(k)}2D(k)e™*
@n? (e +1— D(k)?

_ j d'k {1 — fo — fi(0}*D(k) D (k)
@2y {e + 1 — D(k))?

d%k  D(k)D™(k) dk f,(k)D(k)D™ (k)

=1 —fo)? —2(1 -
@~ Qn) (¢ + 1 — D(k))? ( f°)J Qo) (¢ + 1 — D(k))?

d'k f,(k*D(k) D™ (k)

. 4.17
Cm (& + 1 — D(k))> @1

The first term is equal to (1 — fo)*I{;(x), which is bounded above by (1 — f5)*I;,,(x).
The second term is bounded by ‘

dk |D(k)|- 1D (k)| _
@n* (1 — D(k))?

21~ folfs f 2(1 — fo)fsz,1(x)- (4.18)

Similarly, the third term is bounded by f7K, ,(x).
Combining the above bounds, we obtain

B;,(x) < Npo{(l - fO)zIZ,l(x) +2(1 — fO)fZKZ,l(x) + f22K2,1(x)}

N X
Kol = (1= X,)6,0). @19

For x € A,, we use this bound together with the bounds on N, and X, of Lemma 3.2,
the Gaussian bounds of Lemma B.8 [bounding K, , and K, ; as in (B.26) and (B.27)],
and the lower bound on G,(x) of (2.25), to conclude the required bounds on B,(x) from
P,(0.999), for x € A,.

For sup, 45, B,(x) we proceed as above, using the Gaussian bounds of Lemma B.8
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to conclude that sup, . ,\a, B,(x) < 0.2129, and those of Lemma B.9 to conclude that
SUP, ¢ A4, x 20 Bp(x) < 0.191. These bounds clear those of P,(0.999).

4.2. Bound on G,(e,)

To obtain the bound on G,(e, ) of P,(0.999), we use Lemma 2.4. This requires upper
bounds on G, (e,), R, (e), R)(e,) and z.. For G, (e,) we use Proposition 1.7, and for
z. we use Corollary A.2. For R}, (e,) we use Lemma 2.3, bounding B), (e,) via Proposi-
tion 1.7. For R/,(e;) we use the entry in Table 1. Substitution of these values into (2.19)
gives G,(e;) < 0.142021, which satisfies the corresponding bound of P,(0.999).

4.3. Bounds on |x|*G(x)

In this section we complete the proof of P,(0.999) by showing that sup, ; 5, 1x|2G,(x) <
0.0747. The limitations of our approach are most apparent at this point.

We mainly use two kinds of bounds. The first is to simply multiply the bound on
G,(x) of Lemma 2.4 by |x|%. This gives a good result for small |x|, but for large x any
overestimate of G,(x) is severely magnified and results in an inadequate bound. The
second and main approach is to go to k-space and use our bounds on ®. In this process
the factor |x|? is transformed to a second derivative with respect to k. Taking the
derivative explicitly gives rise to several terms. In extracting from these the correspond-
ing Gaussian quantity N, |x|21(x), we are left with a large number of error terms and
little room for comfort below the required bound 0.0749.

We divide Z° into four distinct regions, and employ a different method to bound
|x|*G,(x) in each of these regions. The regions are: {|xll,, <6}, {llx[, =7 and
dist(x,axes) > 0}, {lixllo =7 8 and dist(x,axes) =0}, and {|x]|, >9 and
dist(x, axes) = 0}. Here dist(x, axes) denotes the Euclidean distance from x to the
coordinate axes of Z>. The Gaussian quantities appearing in the upper bounds decay
least rapidly along coordinate axes, and this is why we consider separately the case of
x on an axis. For x on an axis, we use an iterative averaging process employing Lemma
2.2 to bound G,(x) in terms of its primarily smaller neighbouring values. We also use
monotonicity of upper bounds to bound |x|2G,(x) for large || x|, in terms of its values
for smaller | x| .

We now proceed through the four regions in sequence.

4.3.1. Bounds for x|, <6

We bound |x|*G(x) using two methods, and take the minimum.
The first method is to multiply (2.19) by |x|? to obtain

(4.20)

‘leGp(x) < lx,z {Gpo(x) + 2= Po R;;o(x) + R;)(x)} )

Do 2

As in Sec. 2.3, p, = (6611)/9°. To bound G, (x) and R} (x) in terms of gaussian
quantities, we use (1.62). For an upper bound on R),(x), we use (4.19) to calculate an
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upper bound on B,(x), and then bound R},(x) according to (2.10). An upper bound on
z, is given in Corollary A.2. This method is effective for small || x|| .
We now turn to the second method, which involves going to k-space. We have

d dik . A

ddk DA(k) - Zu af&)(k) eik~x
Pl @n (4, — Bk) — Bik))?

o, d"kd Y {(sink/d = 3,800} ...
@n)* {4, — D(k) — dk)}*

@.21)

We perform the square in the numerator of the second term on the right side. No
further manipulation is required of the second term of the first integral or the second
and third terms of the second integral. For the first terms of each integral, we rewrite
the denominator using (4.13) and (4.15). The resulting terms are

R R e VG L

. 1—fo — f1)3. 4.22
{e+1— D)2 o+ 1-Dp fo= 1) “22)

We then extract (1 — f5)*|x|?I, o(x) from the resulting expression. The result is

|x[*G(x) = N,(1 — S 1xPI(x) + N,(1 — Jo)foI91(x)

dik BOR)f(k)e™ dk YOS, (e
AN(1 — -
2N o) f Crf e+ 1—-DkR)}* )@Y e+ 1 — D(k)}?
dk f1(k)? (sin k,,)z ..
2N KX
% | Gy {e+1—Dk)}3 ; a)°
d%k _Zu afé(k) ik-x

N,
T ) @y {4, — D(k) — B(k)}?

ik-x

+an, d“kd Z“(sinAk“)/d-ai,d)(k) .
2n)* {4, — D(k) — D(k)}*
Y000 .

-2 £ , 423
No )" {4, — D(k) — (I>(k)}3e 423

where

. 1—f (sink,,,)2 "
(k) = 3 — D(k 424
e 8+1—5(k)§ d (k) 4.24)



THE LACE EXPANSION FOR SELF-AVOIDING WALK IN FIVE OR MORE DIMENSIONS 279

and

. 1—fo (sink,,)2 X
k) = 6 ¥ — D(k). 4.25
79k et 1 A(k) . d (k) (4.25)

Now the rest is routine. We bound each term above by using convolution methods as
for the bubble quantities, and also simple applications of the Schwarz inequality. We
also use (3.12) for the last two terms in (4.23). The result is

|x|ZG(x) < Np(l - fo)3 |x|21(18,)0(x) + Np(l - fo)zfol(zs,)x(x)

+ 2N,(1 = f) L LIPLE ()] + N2 [EPLY(x)] + 2N, £ U ()

N . Ny(cs +¢a) , Ny(cs +cg)? .
+ ﬁxg,},(x) + 4w_~¢_("1 2 ; ); UL (x) + 2_;1 > - )‘; U (%),
3 3 3
(4.26)
where we have introduced
ddk (e) 2 ddk (2) k 2
19 = L 19 = o 427)

SJen e+ 1 - D)’ e e+ 1 - D))

For later convenience we further bound the above in terms of Gaussian quantities
which are monotone in each |x,|. We proceed as follows. We remove all the &,¢-
dependence of the bounds except for that of I§? and I{? by setting ¢, ¢ = 0. This gives
an upper bound by Lemma B.2. Then, making use of the bounds (B.24)—(B.28), we
bound all terms except for the first one in (4.26) using

Hy(x)=(1 - fo)zfolz,o(x) + 2(1‘ - fo)fz[lff)Lz(x)]m + fzz[w)Lz(x)]l/z

+ gy (U0 LaGIT T O Ly + [y Ly (9]

. 1 (c3 + c4) (c3 + c4)* (Var Ly(x)| 2
e L) {0 4 40 2T RO

(4.28)
This gives
IXI2G(x) < N{(1 — fo) X121, o(x) + Ho(x)}. (4.29)

To calculate concrete values from the above equations, bounds are needed for I,‘,"
and I!Y. We employ Lemma B.11, but this needs an upper bound on ¢. For this we first

d
note that p% x(p) < x(p)*, or
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d
_mX(p)_l <1. (4.30)

Integrating (4.30) from z, down to p, gives, for any p € [pg, z.],

() < 1 (po) <In (;_) . 4.31)

0

Using Lemma 3.2 to bound N, and Corollary A.2 for z, then gives, for any p € [po, z.],
&= N,x(p)™" <0.0109388. 4.32)

This bound on ¢, together with Lemma B.11, gives
I <0.270562, IP < 1.653224. 4.33)

Now we can calculate concrete values from (4.29), employing the above bounds on
I and I!. Taking the minimum of (4.20) and (4.29), for || x|, < 6, gives

0.142021 (x =ey)
0091251 (x=e, +e,)

|x|*G(x) < ) (4.34)
0.109247 (x = 2e,)

0.074661 (||xli, > 2, x|, < 6)
which satisfies the bound of P,(0.999), for |x||,, < 6.

4.3.2. Bounds for {| x|, = 7 and dist(x, axes) > 0}

To get the desired bound for {|x||, > 7 and dist(x,axes) > 0}, we employ the
Fourier bound (4.29) and monotonicity of I, o(x) and L,(x).
Thatis, Lemmas B.10 and B.12 state that for x with ||x|| . > 7 and dist(x, axes) > 0,

IXI2, o(x) <0.019163, I, o(x) < 0.00037697, I, o(x) < 0.090467, (4.35)
L,(x) < 0036151,  L,(x) < 0.12102. (4.36)

Using Lemma B.11 and these values, with (4.28) and (4.29), yields | x|*G,(x) < 0.07383
for all x under consideration. This satisfies the bound of P,(0.999) for these values of x.

4.33. Bounds for {x = ne,:n=1,8}

In this section, we bound |x[*G(x) for x = ne, with n = 7, 8. By symmetry, it is only
necessary to consider x = ne,. The bounds obtained in the previous subsection are
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inadequate for these values of x. We improve them by an iterative averaging procedure,
which employs Lemma 2.2 to bound G,(x) essentially by the average of its primarily
smaller values at neighbours of x.

The basic averaging estimate (2.3) states that

C
Gyl) < 55 MZ:I G,(x —e), 4.37)

where by Lemma 2.1, the upper bound on z, of Lemma A.2, and the lower bound on
G,(x) of (2.25), we can take

C = 10127. (4.38)

To prepare for the iterative application of (4.37), we define H,,(x), for m > 1, recursively
by

Cy Ixf” 2-H,,,(x—e)} (4.39)

H,,,(x) = min {Hm(x), 2d 4= ————Ix e

starting from Hy(x). When there is insufficient information to evaluate the second
quantity on the right side, e.g. when the value of H,(x — e) is unknown but H,(x) is
known, then we define H,,,,(x) to be H,(x).

Multiplying (4.37) by | x|? gives

|XIZG',(X)<£ |X‘2

= 2d e |7:e—|2 |x - elsz(x - e). (440)

Now we use (4.29) to estimate the right side, noting that for x # 0 the simple random

walk two-point function satisfies Iy (X) = ==Y ,.ji=1 [1,0(x — €). This gives

1
2d
2 31,2 c x|
1X12Gy(x) < N, §C(1 = fo)*IxI21; 0(x) + 55 3. ——— Holx —¢)p. (441)
2d 171 |x — e
Since C > 1, it follows trivially from (4.29) that
IXI12G,(x) < Np{C(1 — fo)*1xI21},o(x) + Ho(x)}. (4.42)
Taking the minimum of the above two bounds gives
IX[2G,(x) < N,{C(1 ~ fo)*xI?1; o(x) + H,(x)}. (4.43)

Now we iterate, i.e. we substitute (4.43) into the right side of (4.40) and get a new
bound on |x{*G,(x), and then substitute the result into (4.40) again, and so on. The
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result, after m iterations, is
1X[2G,(x) < N{C™(1 — fo)|x[*1; o(x) + Hu(x)}. (4.44)

To use (4.44), we first calculate Hy(y) from (4.28), forall y with ||y — ne, ||, <2,n =17,
8. Then H,(y) is calculated using (4.39), for 1 < m < 2. [This iteration will of course

only improve the value of Hy(y) for y with ||y — ne,||; < 1.] As a result, forn =17, 8
we have

H,(ne,) < H,(7e,) < 0.06357. (4.45)

Now (4.44) for x = ne,, together with the bound |x|*I; ¢(x) < 0.01917 for ||x|,, > 7 of
Lemma B.12, gives

|x|2G,(x) < 0.07303 (x = ne,;n=17,8) (4.46)
p

which satisfies P,(0.999).

4.3.4. Bounds for {x = ne,:n > 9}

We now obtain bounds on |x|>G,(x) for x = ne,, with n > 9. The method uses the
averaging procedure employed in the last subsection to handle n = 9, and then appeals
to the monotonicity of Gaussian quantities appearing in (4.28) to deal with larger n.

We first calculate Hy(9¢, + w) for ||w|}; < 1. By symmetry, there are four distinct
values of w to consider. The corresponding values are

0.09193 (w=0)

0.09306 (w= —e,)
H0(9el + W) = . (4.47)
009102 (w=e,)

0.05936 (w=c¢e,)
The basic monotonicity result needed is stated in the following lemma.
Lemmad4.l. Thebounds Hy(ne, + w) < Hy(9e, + w)hold for |w||, < landn > 9.

Proof. We fix n > 9, and compare Hgy(ne, + w) and Hy(9¢, + w). Defining z =
(n — 9)e,, the two arguments of H, are related by ne; + w = (9¢, + w) + z. Therefore,

I.o(ne, + w) <1, ;(%e; + w), L, (ne; + w) < L,(9e, + w), (4.48)

by Lemma B.3 and Lemma B.4. The lemma then follows from the definition of H, in

428). O
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We now perform averaging once to improve the large on-axis values of (4.47). The
definition of H,(ne, + w) in (4.39) involves the factor {ne, + w|?/|ne; + w — e|? with
le} = 1. For n > 9 and w = 0, this factor can be bounded using

nfn+1)?* <1 (e=—ey)
2
I — 1P OB (e=e) (4.49)
ne;, —e
ntn*+1)<1 (e # +e,)

Using Lemma 4.1 and these bounds in the right side of (4.39) then gives, for n > 9,
H,(ne;) < 0.06833. (4.50)

This bound, together with the bound of Lemma B.12 (i.e. |x|*]; o(x) < 0.01455 for
x = ne, for n > 9) and (4.44), gives

|x]2G,(x) < 0.0729, (4.51)
which satisfies the bound of P,(0.999).

5. Bounds on 4,11, and the Circle of Convergence

We begin this section by completing the proof of Lemma 1.10, by establishing the
bounds (1.52) and (1.53) on ¢,I1,. We then prove Proposition 1.6.

5.1. Bounds on 0,11

Here we prove the remaining two bounds of Lemma 1.10, on pd,I1, for p € [ po, z.).

Lemma 5.1. Forpe[pg,z.),

0 A o A
panywmsammn, panrm@summn. (.1)

Proof. The proof makes use of the diagrams introduced in Fig. 4, and also the
diagrams 4™ defined by

A=Y LP(x) (n=34). (52

x#0

In the definition of £, contrary to our usual convention the square is not repulsive.
Explicitly,

L) =€V (x)60(x), L) =€) €D (). (5.3)

The right side of (5.3) can now be estimated using the existing estimates from Sec. 3.
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3 €2 (5) (5
ga gu ga G b
7 N VAY/EAYA
0 0 0 0o
3 (€] “) 5)
La Lu Z, Za

Fig. 4. Diagrams 4%, &, ™.

The diagrams % can be bounded using the methods of Sec. 3, to obtain

9 < U(ALPAL,ED,R), 49 <UD AP, 69,R),

(5.4)
GO <USDAD,ED,R), 4G9 < UAP AP, FO,R),
For ™, we have
A = (B + G+ B % G)(0) = (B » BL G * G)(0) = o@ "

Considering separately the case where the second slashed line does or does not have
zero length, and also the case where the right and left vertices are equal or not, gives

w5 O N+
x#0 0 x  x#0 % 0
< US40, 60, B) +

+ UV, 67,G) + [1 + BOJU(L, BV, G?). (5.6)

Using the fact that 82 (x) = #%'(— x) by symmetry, a similar manipulation of convo-
lutions gives
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< UAV AP, 87, B) + U AP, 62,G)
2
+ [1 + B(0)] {sup Gp(x)} AP, 5.7
x#0

We next observe that pd,I1,(x) can be estimated in terms of the diagrams defined
above. In fact, application of the operation pd, to a diagram produces a sum of similar
diagrams, with each term given by the original diagram with a new vertex on one line.
For example,

)
3 Gy(x) = Ry(x), (5.8)

and
po,[1(0) = pd,[2dpG,(e,)] = 2dp{G,(e,) + Ryley)} = 4V + 2dpGy(e,). (59)
Similarly,
po,fIP(0) < 34D
pd,IIP0) < 44 + 4
pd,{IV0) < 44 + 24 + 7
pd,fIP0) < 44D + 245 + 49 4+ 279 (5.10)
To estimate the right sides we use
ZP<UAPD, LIR),  ZP <UAD, Z9,R), (5.11)
In the above we have inequalities rather than equalities, because although we obtain
diagrams which appear identical to /2 etc., the left side has additional repulsive
restrictions. ‘
Diagrams with six or more loops are estimated less carefully. To illustrate the
method, we consider in detail only the seven-loop diagram. To simplify the notation,

we temporarily use

G = sup G,(x), r = R,(0), R’ = sup R,(x), (5.12)

x#0 x#0

and

b = B,(0), B’ = sup B,(x). (5.13)

x#0
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(a) (b) (c) (d)

Fig. 5. Diagrams used to estimate pd,I157(0).

Differentiating the diagram of Fig. 5(a), which represents f17(0), gives 13 new
diagrams which can be divided into three types:

1. A new vertex appears on a line in the bubble at the beginning or end of the
diagram, as in Fig. 5(b). There are four diagrams of this type, each of which is bounded
above by & < r(R')"71.

2. A new vertex appears on a horizontal line, as in Fig. 5(c). There are 5 =7 — 2
such diagrams, each of which is simply bounded by r*(R’)" 2.

3. A new vertex appears on a diagonal line, as in Fig. 5(d). There are 4 = 7 — 3 such
diagrams, each of which can be bounded in the same manner. We illustrate this bound
with the diagram of Fig, 5(d):

(TN <x( BN + (D)
< R'GB(R)"%r + R'max{b,B’}-( / ) ( @)

0 0
< (R 73[GrB’ + r*max{b,B'}]. (5.14)

Proceeding in a similar fashion, for any n > 6

p%ﬁg"(O) <4r(RY '+ (n— rX(R)"2 + (n — 3)yr* max{b, B} (Ry"3. (5.15)

Summing the estimates over even and odd n and using the numerical bounds from
the previous sections then completes the proof. []

5.2. The circle of convergence

In this section we prove Proposition 1.6, which states that 1 — 2dz — fIz(O) is nonzero
on the circle of convergence |z| = z_, apart from z = z.. In the course of the proof, we
employ the following elementary lemma whose proof is deferred to the end of the
section.

Lemma 5.2. Forall0e[0,2n]andn = 1,2,3, ..., the quantity y,(0) defined by
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1 1 — in6
) = Re=" 5 (5.16)

1 —e"

satisfies the sharp upper and lower bounds

1
—~0217233628... = — <y @) <1, (5.17)

V1 +a?

where a = 4.49340946 ... is the root of tan x = x in (%, 3n/2).

Proof of Proposition 1.6, given Lemma 52. We first use the fact that
1 — 2dz, — 11, (0) = 0 to write
11,0 - 11,0)
—Z

1 —2dz — T1,(0) = (z, — 2) [:w + ] =(z. — 2)A(). (5.18)

c

It suffices to show that the real part of 4(z) is nonzero for z = z.e%, § # 0. Introducing
the temporary notation =, for the coefficient of z* in I1,(0), direct calculation gives

ReA(z)=2d + Y nmy,@)m,z’™", (5.19)

n>2

with y,(9) given by (5.16).
We further introduce z{c**™ and n**? to denote the coefficient of z" in IT¢**™ and
19 Then from (5.19) we obtain

z,Re A(z) = 2dz, + Y, ny,(O)nl™™z! — ¥ ny,(0)nle4®z]. (5.20)
n>2

n>2

Now we employ Lemma 5.2 to bound the right side from below. The result is

z,Re A(z) = 2dz, + (—0218) Y nnl*™zl — Y naleddz?

n>2 n>2
= 2dz, — (0.218)pd, XIE**™(0) | -, — pd,[IDO),—, .  (5:21)

To bound the right side, we apply the numerical estimates on p-derivatives of Proposi-
tion 1.5. The critical point is bounded below by the inverse of the connective constant
for memory-4 walks. This connective constant is shown in [7] to be the largest root
of the cubic equation A* — 2(d — 1)A*> — 2(d — 1) — 1 = 0, from which we conclude
that z, > (1.01)/9. The result is

z.Re A(z) > 10(1.01/9) — 0.91408 — (0.218)(0.60218) > 0.076866 > 0. (5.22)
0
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Proof of Lemma 5.2. The upper bound on y, follows immediately from the observa-
tion

n-1
Y e <1, (5.23)
m=0

S| =

1) <

and is attained at @ = 0. It remains to prove the lower bound. Since y,(0) = 7,(2r — 0)
we need only consider 8 € [0, 7], and since the lower bound is obvious for 8 = 0 or =,
we can restrict attention to 0 € (0, n).

We rewrite y,(0) as

(5.24)

N
y"(9)=21—n[1 — cosnf) + SRn7sInY Smg].

1 —cos@

Introducing the temporary notation x = 2n and ¢ = 6/2 and applying a trigonometric
identity gives

7,(0) = %[1 — cos x¢] + f4(x) (5.25)
with
J4(x) = cot g Sinxx¢ . (5.26)

Since f4(1) = cos ¢ > 0 and f,(c0) = 0, and since f, does take on negative values, there
is an x4 € (1, o) at which f,(x) takes on its (negative) global minimum. At x,, we have
sin x4¢ < 0and f;(x,) = 0,i.e.tan f = f where f = x,¢. Thus also cos 8 < 0, and from
tan § = f we obtain

1
COS,B = _W . (527)
We therefore have
1
f4(x) = fy(x,) = gcotpcosxyp = —pcotd ———. (5.28)

1+ p?

In fact whenever x satisfies tan x¢ = x¢ and sin x¢ < 0, we have the equality f,(x) =
—gcotp[1 + (x$)*]17/2, and hence in particular

fiad) = —%.

(5.29)
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Substituting (5.28) into (5.25) gives

7.(0) = :—C[l —cos x¢] — m (5.30)

J1+ B

Now by definition of §, f > a, and hence

7a(0) = 1 , (5.31)
1+ a?

where we have used the fact that ¢ cot ¢ < 1 for ¢ € (0, n/2). To see that (5.31) is sharp,
we take x = a/¢ and use (5.29) to observe that

dcotg

J1+a?

As ¢ — 0, the right side becomes arbitrarily close to —[1 + a?]7'2. [0

a2 = 211 — cosal - (5.32)

A. Bounds on the Two-Point Function

In this appendix, we derive upper and lower bounds on the self-avoiding walk two-
point function in terms of the two-point function of simple random walk. A special
case of the upper bound has already been stated explicitly in Proposition 1.7, and the
lower bound has already been used in (2.25). As a consequence of the lower bound, we
will obtain new upper bounds on the critical point (or lower bounds on the connective
constant) which are valid in three or more dimensions. The methods of this appendix
are elementary, and are independent of the rest of the paper. We do however use the
numerical values of certain simple random walk quantities which are computed in
Appendix B.

Before stating the results, we need some definitions. For any 7 € [0, co] let Q_ be the
set of all memory-t walks, i.e. simple random walks starting at the origin, of arbitrary
length (including zero), which contain no closed loops of length 7 or less. Evidently
1 = 0 corresponds to simple random walk, while t = oo is the self-avoiding walk. We
denote by Q (x, y) the set of all memory-t walks from x to y. For simplicity, we write
Q=Q, and Q(x, y) = Q,(x,y). For 1 < oo we define Z,(x) = Q.(x, x), the set of mem-
ory-t loops at x. It is worth noting that elements of .%Z,(x) may return several times to
x, and that the empty loop is contained in %,(x).

We denote the two-point function for the self-avoiding walk as usual by G,(x), and
for © < oo denote the memory-t two-point function by

Coul)= Y pol. (A1)

e Q.(0,x)

For the simple random walk two-point function we write simply C,(x). The memory-2
two-point function can be readily shown [18] to be given by the following expression,
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which can be used for numerical calculations:

C,.2(x) = 1, I17(x), (A.2)
where
ddk eik~x
I(e) —
2o = | i e+ 1= PR (A-3)
and
_1-p? 1 + (2d — 1)p?
y”_Tp_’ aP—T—l. (A4)
The memory-2 critical point occurs at p = 1/2d — 1).
The lower bound on the two-point function can now be stated as follows.
Proposition A.1. The inequality
Cpa(x) < a,Gpix) (A.5)
holds whenever both sides are defined, where
2d — 1 1
%y = <1 + 216,00 - 1]><1 + 54 0Cr2(0) 1]) (A6)
and
p'=I[1+d4p)p (A7
with
_[(2d—2)+2dp2](2d—3)+1 2d-3 , 2
5(p)= 210d-2) [Co 20— 114555 P [Cpa2e)—p). (A8)

As an immediate corollary we obtain upper bounds on the critical point for d > 2.

Corollary A.2. Ford > 2, the critical point z_ is bounded above by the value of (A.7)
at p = 1/(2d — 1). Explicitly, writing z.(d) for the critical point for Z?, we have

z.(3) < 0.22536066 z,(4) < 0.14885372 z,(5) < 0.11336221. (A9)
Taking reciprocals gives

u(3) > 4.43733 u(4) > 6.71800 u(S) = 8.82128. (A.10)
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Proof of Corollary A.2, given Proposition A.1. Atp = 1/(2d — 1) the left side of (A.5)
does not decay exponentially, and «,, is finite. Since the subcritical self-avoiding walk
two-point function decays exponentially, we must have p’ > z,. Evaluation of §, at
p = 1/(2d — 1) using (A.2) and Lemma B.8 then gives the numerical bounds quoted.
(Ford = 2,6, = oo at p = 1/3 and the resulting bound is z.(2) < c0.) O

As another consequence of Proposition A.1, we will obtain an explicit numerical
lower bound on G, (x), for a particular choice of p,. As the choice we make for p, is

influenced by an upper bound on the two-point function, we postpone the precise
numerical lower bound until after stating the upper bound.

Proposition A.3. Whenever both sides make sense,
C,.2(x) = B,G,, (%), (A.11)
where
py =pl1 + {(2d — 3)> + 1}p*] (A.12)
and

_ [1+@2d—1)2d—2)p*]-[1 + {(2d — 2)(2d — 3) + 1}p*]

by 1+ {(@d -3+ 1}p*

(A.13)

Specializing now to d = 5, defining p, to be the value of p, corresponding top = 1/9, i.e.

6611
Po = 95 (A.14)
gives
713988
Gpo(x) < mll,o(x). (A].S)

Remark. From Proposition A.3 it can be concluded as in the proof of Corollary
A.2 that for d = 5, z, > (1.00762)/9. This is not as good as the lower bound (1.01)/9
obtained from the memory-4 critical point using the cubic polynomial derived in [7].

For d = 5, a numerical lower bound on the two point function at p, is given by the
following corollary to Proposition A.1.

Corollary A4. Ford =35,

G, (x) > —El‘f,’o(x) (A.16)
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with
y = 0.900 315 651, o = 1.027 899 148, £¢=0.0100503098. (A.17)

Proof. By (A.5),

GPo(x) 2 alcp,Z(x), (A18)

P

where pis given by p(1 + 8(p)) = p,- Since §(p) is increasing in p and infinite forp > 1/9,
we have p < 1/9. Hence a lower bound on p is given by p > po/(1 + 6(1/9)) = p, =
0.109 734 658 4.... Since «, is increasing, we decrease the right side of (A.18) by
replacing a, by its value at p = 1/9, an upper bound for which is given by the value of
o stated in the corollary. Since the memory-2 two-point function is also increasing in
p, we bound it below by its value at p,. Then we rewrite the memory-2 two-point
function using (A.2) and calculate y,, and ¢, explicitly, to obtain the corollary. [

The remainder of this appendix is devoted to the proofs of Propositions A.1 and A.3.

A.l Lower bound on the two-point function

In this section we prove Proposition A.1.

A.1.1. Step 1: Loop erasure

A basic notion in the proof of Proposition A.1 is that to each simple random walk
there can be associated a unique self-avoiding walk, by applying chronological loop
erasure as in [16]. This provides a many-to-one correspondence between Q,(0, x) and
Q(0, x).

The sum

p'@! ﬁ Z p'H (A.19)

w e Q(0,x) =0 Le Lo(a(D)

can thus be interpreted in two ways. First, if we sum over loops first then each sum
over L is independent of the base point w(l) and is equal to C,(0). Therefore (A.19) is
equal to

Y, {p GO} C,0) = C,(0)- Gy, (x) (A.20)

weH0,x)
with
p; = pC(0). (A21)

Second, we note that because of the correspondence between €2, and Q mentioned
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above, (A.19) is greater than or equal to C,(x). As a result, we have
C,(x) < C,(0): G, (x) (A.22)

with p and p, related by (A.21). The inequality clearly holds whenever both sides have
meaning.

This bound can be improved if instead of adding all loops at each vertex as in (A.19)
we add only the memory-2 loops %,. Then by the same argument we obtain

C,.2(x) < G, ,(0)G,,(x), (A.23)
where now

p2 = pC,,(0). (A.24)

A.1.2. Step 2: Removal of loops giving immediate reversals

One source of overcounting on the right side of (A.23) is due to the fact that in adding
memory-2 loops at each vertex we have included loops which give rise to an immediate
reversal, for which there is no counterpart on the left side. For example, consider a site
a on a self-avoiding walk w, with incoming step (a — e, a) and outgoing step (a,a + f)
(le] = |f] = 1). Then there is no need to add a loop at a with initial step (a,a — e) or
final step (a + f, a), as this would produce an immediate reversal.

To proceed systematically to avoid this sort of overcounting, we classify memory-2
loops according to their first and last steps. Usinge,, (1 = +1, +2,..., +d) to denote
a unit vector in the positive or negative u™ direction, a loop is said to have endings
(u,v) if its first step is e, and its last step is e,. Similarly, we say that a given site a on
a self-avoiding walk w has steps (1, v) if the incoming step is (@ — e,,, a) and the outgoing
stepis(a,a + e,).

We further classify loops and sites according to the relative position of u and v. A
(nonempty) loop which has endings (u, — p) is said to be of type-I. Loops and sites with
endings or steps (u, u) are said to be of type-I1, and those with (g, v) with || # |v| are
said to be of type-111. These definitions are illustrated in Fig. 6. Note that there can
be no site of type-I on a self-avoiding walk.

We can then avoid the introduction of immediate reversals by observing the follow-
ing three rules. If we add memory-2 loops according to these rules then we will generate
exactly the set of all memory-2 walks (with some walks generated more than once—see
Step 3).

Rule 1. At the initial point of a walk with first step e,, either add the empty loop,
or add a loop with endings (u,v), v # —A.

Rule 2. At a site with steps (4, p), add either the empty loop, or a loop with endings
(u,v), with u # —1and v # —p.

Rule 3. At the final point of a walk with last step e,, either add the empty loop or
a loop with endings (u,v), u # — 4.

We now compute the fraction of loops which will be accepted on the basis of these
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type-I type-Il type-1I1
- -
A
type-1T type-II1

Fig. 6. Types of loops and sites.

three rules. For a site of type-II, with steps (4, 1), Rule 2 prohibits loops with endings

(#,v)if p = —Aorv = —A. This means that of 2d possible endings of loops of type-I,

only 2d — 2 of them are allowed; of 2d endings of loops of type-I1, only 2d — 1 of them

are allowed; and of 2d(2d — 2) endings of loops of type-III, only (2d — 2)(2d — 3) +

1(2d — 2) = (2d — 2)? of them are allowed. Continuing in a similar fashion for the case

of type-11l sites, and for the walk’s endpoints, gives the result summarized in Table I1.
Taking the above into account, we now consider the sum

wef0,x) Loe £5(0) =1

lol=1
p'®! Z p'Lel ( n Z plel) 2 p'Lel, (A.25)
Lie Z3(0®) Lo L3 (oo

Here %, (w(l)) denotes the set of memory-2 loops which start and end at w(l) and satisfy
Rules 1-3. This set depends on w. Now we proceed along the lines of Step 1.

First, by symmetry thesum Y ; ¢ o @ P' depends only on whether w(l)is of type-II
or type-11I. We denote its maximum by 1 + J,. We also write

2d — 1
1+4,= Z piol = y pllel =1 + T[Cp.z(o) —1]. (A.26)

Loe £5(0) Livie 23 (w(w))

Then (A.25) is bounded above by

Table II. Ratios of accepted loops in Step 2. Column headings label loop types and row headings label site
types.

type-I type-11 type-I11
11 (2d —2)/2d | (2d — 1)/2d (2d - 2)2/{2d(2d - 2)}
111 (2d - 2)/2d | (2d —1)/2d | {(2d — 2) + 1}/{2d(2d - 2)}
beginning | (2d — 1)/2d | (2d — 1)/2d (2d—-1)/2d
ending (2d —1)/2d | (2d - 1)/2d (2d — 1)/2d
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1+ 6,)?
weg(:o o lel(l + 6,)(1 + 51)'(01—1(1 +6,) = %GDS(X) (A.27)

with
ps=(1+4,)p. (A.28)

On the other hand, (A.25) involves a sum over all memory-2 walks (with some
overcounting), and hence is greater than or equal to C, »(x). Therefore,

1+ 8,)?
Ca(x) < ml—) Gm(x). (A.29)

To get a concrete value for 8;, we denote by I (resp. 11, 111) the total contribution
t0 C,5(0) — 1 (=Y 4e 2,00, jwixo P*") from type-I (resp. 11, I1) memory-2 loops. Then
from Table 11, if w(j) is of type-11 we have

2d —2 2d -1 2d -2
Hal — 1 4 I+ II) + (I11), A.30
Lie .qu'z(ma)) P 2d M 2d un 2d ) ( )
while if w(l) is of type-I1I,
24-2  2d-1 Qd—2?+1
l = 4 =~ — I - (D). A.31
e Zom© g D U+ ey WD A3D

Thus 1 + §, is the right side of (A.31).

A.1.3. Step 3: Removal of some redundant overlapping loops

We can further improve the above by reducing the overcounting in Step 2. An example
of this overcounting is given in Fig. 7. In this example, the addition of two loops at
neighbouring sites gives rise to the same memory-2 walk, even though the two addi-
tions both satisfy Rules 1-3. We will remove the overcounting corresponding to
overlapping loops of this type which are added at neighbouring sites on a self-avoiding
walk, and leave all other overcounting intact.

When a loop with endings (y, v) is added to a site with steps (4, p), overcounting of

(a) (b) (c)

Fig. 7. An example of overcounting: The walk (a), in which the thick line at the bottom is traversed twice,
can be constructed by adding a loop either as in (b), or as in (c).
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Table III. Ratios of accepted loops in Step 3. Column headings label loop types and row headings label
site types.

type-1 type-11 type-111
I (2d -2)/2d | (2d — 2)/2d (2d — 2)(2d — 3)/{2d(2d - 2)}
111 (2d — 2)/2d | (2d — 3)/2d | {(2d — 2)(2d — 3) + 1}/{2d(2d - 2)}
beginning | (2d —1)/2d | (2d — 1)/2d (2d - 1)/2d
ending (2d - 1)/2d | (2d - 2)/2d (2d —2)/2d

the above type occurs when p = p or v = A We can avoid this overcounting by
employing a rule that we do not add loops when v = 4, and still construct all memory-2
walks. The loop will thus be considered to be attached at the earlier of the two
neighbouring sites on the self-avoiding walk. We incorporate this new restriction by
augmenting Rules 1-3 with the following two rules:

Rule 4. At a site with steps (4, p), either add the empty loop, or a loop with endings
(u,v) with v #£ A, »

Rule 5. At the endpoint of  with last step e,, either add the empty loop or add a
loop with endings (g, v) with v # A.

Taking Rules 1-5 into account, the acceptance ratio of added loops can be calculated
as in Step 2. The result is summarized in Table III.

Arguing as in Step 2, we obtain

(1 +3,)(1 +4,)

Cpal) =2 5. G,,(x), (A.32)
with p, = [1 + d;]p and

8y = 3‘1—2;—2(1 +y+ & —2‘21)((22:__23)) *Lm,

5= G0 - 1),

5y = 2d2; ! )+ 2‘12; 2(11) + 2‘12; 2 (1. (A.33)

To obtain concrete values for I, I1, I11, we first note that by definition
I+ 1+ 1H=C,,0) —1. (A.34)
Also, it can be seen from Fig. 6 that

1 <2dp*{C,,(0)— 1}, I <2dp*{C,,(2e,) — p*}. (A.35)
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This gives
_d-—1 (2d —2)(2d - 3)+ 1
53—T(I+II)+ 2d(2d —2) 11
2d —2)(2d - 3) + 1 2d -3
= — (I +1I
2d2d — 2) (1+"+m)+2d(2d—2)( + 1)

d —2)(2d - 3) +

1

4 2d -3
2d(2d - 2)

(2dp*{C,,(0) — 1} + 2dp*{C, ,(2e,) — p*})
= 4(p). (A.36)
Letting p’ = [1 + d(p)]p, we thus obtain

(14 6,)(1 + 44)

<
Cralx) = 1+ 0,

G, (x).

Let S = I + II + 111. The value of «, given in Proposition A.1 then comes from the
fact that

2d -3 I S

1+‘54<1+ 2 S+ﬁ+ﬁ<1+£. (A37)
T+ d-3 1 T
2d 2d
O

A2. Upper bound on the two-point function

For the lower bound on the two-point function obtained in the previous section, we
added loops to self-avoiding walks to obtain all possible memory-2 walks, with some
overcounting. To obtain the upper bound on the two-point function of Proposition
A.3, we will now add loops to self-avoiding walks in such a way as to produce a subset
of all memory-2 walks, with no overcounting. To simplify the prevention of overcount-
ing, we will add at each site only the smallest loops, namely the 4-loops consisting of
exactly four steps.

In the addition of 4-loops, it must be ensured that (1) the resulting walk is in 2, (0, x),
and (2) distinct ways of adding 4-loops to self-avoiding walks lead to distinct memory-2
walks. The first requirement will be satisfied for 4-loop additions which satisfy Rules
1-3 of the previous section. The second requirement, which prevents overcounting,
requires more attention. Rules 4 and 5 have already been used to partially reduce
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‘)_m—) 5

' '

. '

' )

7 € -
P
) '
oS

(@) (b) ©

Fig. 8. A memory-2 walk (a) which can be constructed either as in (b) or (c).

overcounting. However these rules do not prevent all overcounting, as illustrated in
the example of Fig. 8. In the figure, the memory-2 walk (a) can be constructed by adding
a 4-loop to a self-avoiding walk either as in (b) or (c), and both of these constructions
satisfy Rules 1-5.

To prevent this overcounting, we supplement Rules 1-5 with the following new rule.

Rule 6. Considering loops to be added sequentially from the initial point to the final
point of a self-avoiding walk w, suppose that loops have been added up to but not
including the site a on w, and let @’ denote the walk formed by w up to and including
a together with all loops added before a. Suppose that the three steps of w’ leading
into a are e,, €4, e,. Then if y = —a, any 4-loop may be added at a except those with
endings (— f,v), for any v. If y # —a or fewer than three steps precede a in w’, then
there is no restriction beyond Rules 1-5.

For example, Rule 6 disallows (b) in Fig. 8, so that the memory-2 walk (a) can be
constructed only as in (c). Addition of 4-loops according to Rules 1-6 always produces
a memory-2 walk. The following lemma shows that a memory-2 walk can be con-
structed in at most one way by adding 4-loops to self-avoiding walks following Rules
1-6.

Lemma A.5. 4 memory-2 walk which can be constructed by adding at most one 4-loop
at each site of a self-avoiding walk from 0 to x, obeying Rules 1-6, can be constructed
in one and only one way.

Proof. Let Q(0,x) denote the subset of Q,(0,x) consisting of walks which are
constructed by adding at most one 4-loop at each site of a self-avoiding walk from 0
to x. Suppose that w € Q(O, x) can be constructed in more than one way. We will show
that any construction of w must violate one of the Rules 4-6.

Of all possible constructions of w, with different underlying self-avoiding walks or
“packbones” B, ..., B, € Q(0, x), consider the first site a along the backbones after
which two of the constructions differ. Let @’ denote the portion of w up to and including
the step in the backbone which leads to a. Now since w can have different construc-
tions beyond a, it must have a loop at a. By definition of a, w could have been formed
either by adding a 4-loop L at g, or by not adding L at a but rather adding a 4-loop
M at a later backbone site b. If both of these constructions are to lead to the same
element of Q(0, x), b can be at most 3 sites along a backbone from a.

Now if w is formed by not adding L at a but rather M at b, at least one of the steps
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in M must be identical to a step in L (considered as steps in w). There are three
possibilities: either one or two or three steps in M are identical to steps in L. The four
steps in M cannot be identical to those of L, because in that case L and M would both
be added to the backbone at site a. We consider each of these possibilities in turn, and
show that the addition of M rather than L leads to a violation of Rules 4—6.

First, suppose that three steps of M are identical to steps in L. This corresponds to
the situation where the first steps of w leading out of a after w’ are topologically
(abbreviations are for cardinal directions) ENWSE. Here M would be the last four
steps, but this possibility is disallowed by Rules 4 or 5.

Second, suppose that exactly two steps of M are identical to steps in L. Then the
steps leading out of a as above are topologically ENWSEN, and M consists of the last
four of these steps. (The middle four steps have three steps in common with L, not
two.) This possibility is disallowed by Rules 4 or 5.

Third, suppose that exactly one step of M is identical to a step in L. The only
possible topology here is that of Fig. 8, i.e. the steps leading out of a are topologically
NESWSEN, with M given by the last four steps. But this possibility is the one explicitly
disallowed by Rule 6.

Therefore any construction of @ violates one of Rules 1-6, and the lemma is proved.

O

Now we consider

plxl Z p|L0| < Iuﬁl Z pILd) Z plbu.,,ll , (A.38)

we(0,x) Loe £5(0) =1 Lie £5(a() Liyie La(o(|wl)

where the %; are mutually and w-dependent and denote the set of all 4-loops satisfying
Rules 1-6. The sum (A.38) can be considered as a sum over a subset of Q,(0, x), and
hence is bounded above by C, ,(x). On the other hand it can be bounded below by the
self-avoiding walk two-point function at a modified activity. For this we want to
minimize the sums over loops which appear in (A.38). Let 1 + §,, denote a lower bound
onY 1 e #ywmy P let (1 + &) denote alower boundony | . 410 P, andlet (1 + J,)
denote a lower bound on Y ;. .. ¢, ey P Then (A.38) is bounded below by

Z P+ 8)(1 + 5m)|wl—1(1 + ) = (1_+(_S'_)(_1iéi)
welX0.0) 1+,

G, (x) (A.39)
with

py=(1+6,)p. (A.40)

To obtain concrete lower bounds for 6;, 8, dr, we need only decrease the numbers

of accepted loops found in Table IIT by an amount prescribed by Rule 6. The only
change will be in the case where there are three steps leading into the site of the form
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Table IV. The number of 4-loops to be added at a site with incoming steps e, ¢;, e, and outgoing step e;,
to satisfy Rules 1-6.

a# -y =7
6=1 (2d - 2)(2d - 3) (2d -3 +1
6] # 171,18t = 18] || (2d—2)(2d-3)+1 | (2d—3)* +1
|81 # |71, 181 (2d-2)(2d-3)+1]|(2d-3)*+2
endpoint (2d — 2)? (2d-3)(2d—2)+1

| initial site || (2d - 1)(2d - 2) |

e, €4, e, With y = —a, and in this case the reduction in the number of allowed 4-loops
will depend on the backbone step e, following e,. For é = y an additional (2d — 4)
4-loops can be disallowed; for || # |y|, | B] = |d| an additional (2d — 3) 4-loops can be
disallowed; for |3| # |l B| an additional (2d — 4) 4-loops can be disallowed. The initial
site is not affected by Rule 6. The result is summarized in Table IV.

From Table IV we obtain

S, = (2d — 1)(2d — 2)p*, (A.41)
8, = [(2d — 3)(2d — 2) + 11p*, (A42)
s = [(2d — 3)* + 1]p*, (A.43)

and hence

[1+Qd—1)Q2d—-2)p*][1 + {@2d -3)2d - 2) + 1}p4]
Cral) 2 1+ [@2d— 37 + 11p° Gr, )
(A.44)
with

py = p[l + {(2d — 3)* + 1}p*]. (A.45)

This completes the proof of Proposition A.3.

B. Numerical Estimation of Simple Random Walk Quantities

This appendix consists of three subsections. The first discusses relations between the
various Gaussian (simple random walk) quantities introduced in Sec. 1.6 and encoun-
tered throughout the paper, and derives formulas for Gaussian quantities involving
integrals of modified Bessel functions. The second subsection describes the method we
use to obtain numerical estimates, with controlled errors, of the Gaussian quantities.
The final subsection discusses the control of round-off errors in the numerical calcula-
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tions of the Gaussian quantities and in the computations involved in the proof that
P(1) implies P,(0.999).

B.1. General properties of simple random walk quantities

It will be shown below that all the Gaussian quantities used in this paper can be
calculated or bounded in terms of

dk Dky"

I(s) =
) = @n) (e + 1 — D(k)}"

ex (B.1)

withn= 1,2, m =0 and ¢ > 0. In fact only three values of ¢ are required for d = 5:
¢ = 0 for Lemma B.8, ¢ = 0.0100504 for (2.25), ¢ = 0.0109388 for Lemma B.11. The
right side of (B.1) can be written in terms of the modified Bessel functions I'y(z), or more
precisely in terms of

ful2) = e*y(2) = f gi ~2(1-c036) 505 N§, (B.2)

3

if we use the identity

1 o0
A -n _ dt —Attn—l
(1) j 0o 1 F

with 4 = ¢ + 1 — D(k). This leads to

n

IE(x) = d il j dt e 45 gn! H S @) (B.3)

(n—1)!

To analyze the right side of (B.3), the properties of fy summarized in the next
proposition will be useful. Alternate expressions for fy are provided by the following
standard integral representation and Taylor expansion for Iy, for nonnegative integers
N:

N n d0
Iy(z) = (2—N£~W J T e?°%%sin 0)?7, (B.4)
AN
In) = (§> 2o mi(m + N (B.5)

Proposition B.1. (a)

L do
T T f Se e O sin O (B.6)
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(b) Fort >0,

2
fx(t) > max {0, \/;th (1 _N ;5"'1 - 2”“e">} : (B.7)

(c) For z € C with Rez = 0,

. T 1/2 |Z|N
@)l = mm{l’ (8 Rez) "GN = 1)!!} ' (B8)

(d) Fort > 0, I4(t) and f\(t) are strictly decreasing in N. For t = 0, I4(0) = fy(0) =
5N,0-

Proof. (a) This is an immediate consequence of (B.4).

(b) The fact that fy(t) is nonnegative follows immediately from (a). To prove the

second bound, we begin by making the change of variable s = t(1 — cos 8) in (B.6) to
obtain

2N 2t s N—-1/2
PR R )
T RS2t 2N = 1t Jo 2t ®3)

Consider first N > 2. Using (1 — y)” > 1 — vy, which is valid when v > 1 and 0 <
y < 1, we obtain

2Y e (N — 1/2)s>
W)= ——————— | dse sV 1 - 77, B.10
f(t)>nﬁ(2N—1)!! L e ( 2 (519

The second integral is bounded above by extending the domain of integration to (0, co).
To obtain a lower bound on the first integral, we use

2t @©
J dse™s*=T(v+1)— J dse™s" (B.11)

0 2t

and bound the second integral above using the fact that forany 0 < a < 1,

o0 a0
dse Ss¥ = dse gve (1s
2t 2t

< g~ 2(1mw) j dse s’ = F(V + l)a_v_le_z(l_")'. (B.12)
]

For a concrete bound we take a = 1/2.
For N =0 we use (1 —y)2>1 and for N=1 we use (1 — y)/>>1 -y, and
proceed similarly. This gives the bound stated in (b).
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(c) By (B.2),

T df
|fN(z)| < J‘ Eﬁe—kez(l-—cosﬂ)' (B13)

-

Using e Rez17cs® < | gives the first bound of (c), and using e Rez(17cs® <
exp(—2 Re z6%/n?) and extending the integration domain to the whole real line gives
the second bound. The third bound follows immediately from (a).

(d) The statement for ¢t = O follows immediately from (B.2). For ¢t > 0, integration
by parts in the expression for fy,, given in (B.6), using

etcoso= —1 _d_ tcos@
tsinf do ’
gives
tN " db —t(1—cos0) (o3 2N
Frsr() = av =i |2 (sin 6)2" - cos 6. (B.14)

The right side differs from (B.6) for f only by the presence of cos§ < 1. [

We now show that the Gaussian quantities can be calculated in terms of I (x), with
n = 1, 2. See Sec. 1.6 for the definitions of the various Gaussian quantities. Beginning
with 1§, (x), rewriting 5(k) =1+ ¢— {1 + & — D(k)} in the numerator gives

d*%  D(k)e™~

I9(x) = = =(1 + IP(x) — I¥o(x). (B.15)
109 = | ay {e + 1 - D(k)} o) = Iio
Arguing in a similar fashion, we obtain
195(x) = (1 + &) 19(x) — 2(1 + &)IF(x) + Iy, (B.16)

and at x = 0,
1,0 =1+ 100 -1, 1,0 =1,,0) -1,
1,.4(0) = 1, 4(0) — 1 — 1/2d), (B.17)
1,,4(0) = I, 5(0) — 41, ,(0) + 3 + 1/(2d). (B.18)

Explicit computation of the derivative followed by setting x = O in

a (g P 1
e fﬂe,‘*_<*_7g> B.19
|x1“1T u; Q2ny 0ki \&¢ + 1 — D(k) (E)
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gives
Wi% = {(1 + &)156(0) — IT(0)}/2. (B.20)

Also, by the definition of D*®(k) in (1.77),

Oy dik DX (k)?
Ln (x) J(zn)d {8 +1— ﬁ(k)}"

I95(x + p(x;v,0)), (B.21)
1

1
d
2%d! {VisVaseees vale $y 61,82,..., S4=+

where in the right side p(x; v, 6) denotes the site with coordinates p(x;v,4), = J,x,,.
Before estimating the remaining Gaussian quantities in terms of I(x), we observe
that they are all positive and decreasing in ¢.

LemmaB.2. Forany fixed x € Z°, 19, (x), LY (x), J&,, W3, V2, U (x), and K&, (x)
are all positive and decreasing in ¢ > 0 (in dimensions where they are well-defined).

Proof. Positivity and monotonicity in ¢ of these quantities, except 1%, (x), follow
immediately from definitions as integrals in (1.74)—(1.80). To deal with I, (x), we begin
with n = 1, m = 0. Positivity of I{,(x) follows from the fact that

® ddk eik-x ol
19(x) = 2dp O T 2B 2dp w.;x Pl >0 (B.22)

where the sum is over all simple random walks from 0 to x, and 2dp = (1 + ¢) .
Positivity of I (x) then follows from the fact that I9, = I * I{ x--- % I'9,, where *
denotes convolution in x-space, and there are n factors. Monotonicity in & of 1&(x)
then follows from positivity of I€), 4(x) and the fact that

0
%Iif,’o(x) = —nl o(x) <0. (B.23)

Form > 0, we observe that I, (x) can be expressed as a linear combination of I{(x),
. .. . . =~ 1 ; e
with positive coefficients, since D(k) = % Y isi=1€*7. Then positivity and mono-

tonicity of I{?,(x) follow from the corresponding properties of I%(x). [

The remaining Gaussian quantities we need can be estimated in terms of I, ,,(0) [and
hence in terms of I, 4(0) by the identities obtained above] using the Schwarz inequality,
with the following result (¥, is treated in Lemma B.11):

()
Jn,m S Jn,m

{= I, »(0) m even (B.24)

< Um0, 41 (0)] 12 m odd
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KP0(x) < K (%) < [I;0(0)L(x)]"/ (B.25)
K$o(x) < K3 0(x)

< min{[Iz,o(O)Lz(x)]”zsKx,o(x) + [1;.4(0) Ly (x)]1"* + [12,4(0)'L2(x)]1/2}

(B.26)
K$(x) < K, (%) < [I5,,(0)- Ly(x)]"/? (B.27)
UP(x) < Us(x) < [Va- L (x)]V2. (B.28)

We end this section with two lemmas concerning monotonicity of I, o(x) and L,(x)
in x. These lemmas will be used to bound these quantities for large x in terms of their
values at smaller x.

Lemma B.3. For any positive integer n and any ¢ > 0, I%(x) is monotone decreasing
in each |x,| (= 1,2,...,d).

Proof. Monotonicity follows immediately from the integral representation of
I¥(x) in (B.3) and the monotonicity of modified Bessel functions from Proposition
B.1d). O

Lemma B4. Let n be a positive integer, let € > 0, and consider x, z € Z* with
Xy=2x;22x,20andz >22,>->2,>0. Then

LO(x) > LO(x + z). (B.29)

Moreover if ||x|,, is strictly greater than some nonnegative integer J, then L (x) <
max -y LY ().

Proof. By (B.21) and Lemma B.3, it suffices to show that
Ix, + pOx; v, 0),| < lx, + 2, + plx + 2;v,0),| (B.30)

for each p and for every x, z as in the statement of the lemma. To obtain (B.30), we
first observe that by definition of p(x;v, d),

[x, + plx;v,0),| = |x, + 6,x, |,
|x, + 2, + p(x + z;v,0),| = |(x, + z,) + d,(x,, + 2,)I. (B.31)

If 6, = 1 then the absolute values can be removed in (B.31), and (B.30) is trivially
satisfied. For §, = — 1, we must show that

Ixy - xv,,l < |(xu + Zu) - (xvu + zvu)l (B'32)
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whenever x and z satisfy the conditions of the lemma. To dispense with the absolute
value signs we consider separately two cases:

L. If u <v, then (B.32) becomes x, — x, <(x, +2z,)—(x,, +z,), which is true

sincezy >z, =22, 20.

2. If u > v, then (B.32) becomes x, — x, <(x,, + z,) — (x, + z,), which is again

true for the same reason.

Thus (B.32) holds and the proof of (B.29) is complete.

To prove the last statement in the lemma, we proceed as follows. Given a site x with
Ix1., > J, we first make use of symmetry to replace x by a site x’ with {|x’[[, = l|xll..,
xj = x5 = -+ > 0,and LP(x) = L¥(x’). Next we define a site z by z, = max{x, — J,0},
and let y = x" — z. Then both y and z have nonincreasing nonnegative components,
and hence by (B.29) L®(y) > L®(x’). The result then follows, since by construction

Iylo=J. O

B.2. Numerical estimation of Gaussian quantities

We begin this section by describing the method used to evaluate fy(t), and then discuss
the evaluation of I, o(x) using (B.3). Finally we obtain the concrete numerical estimates
on Gaussian quantities that are used in the paper.

Although the methods apply in greater generality, all numerical values given in this
section are for d = 5. Also we restrict attention in the calculation of fy(x) to N < 54,
which is sufficient for our needs.

Bounds on the round-off errors involved in the computer calculations are discussed
separately in Sec. B.3.

B.2.1. Numerical estimation of fy(t)

We require numerical values of fy(t) for nonnegative t and for integer 0 < N < 54.1In
this section we describe methods for obtaining these values with relative error less than
10718,

We begin by introducing

TN, M) = e—'<5>N

S

(/4"

m=o m!(m + N)!’ (B:33)

2

which is an approximation of fy() obtained by approximating Iy(t) by its truncated
Taylor series. For large t we will use the truncated asymptotic series

1 ¥ (=Hw,)

</ 2nt l;) (2t)l

A(t; N, M) = (B.34)

to approximate fy(t). Here
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1 (=0

(N,)) = 1 (4N? — 12)(4N? — 32)(4N? — 5%)--(4N? — (2l — 1)?) :
2 I=12,..)

(B.35)

We will primarily be interested in relative, rather than absolute, approximation errors.
The relative error in the approximation of A by B is defined to be [(A — B)/A|.

The following proposition gives values of M which guarantee that (B.33) or (B.34)
provides an approximation to fy(f) with relative error less than 10716,

Proposition B.5. (a) For any nonnegative integer N, the relative error in the approxi-
mation of f(t) by T(t; N, M) is less than 1078 if

30 0 <t < 10)
M=160 (10 < ¢t < 30). (B.36)
12¢]+1 (30<9

(b) For t > 2000 and N < 54, the relative error in the approximation of fy(t) by
A(t; N, M) is less than 107'¢ if

{9 (0< N <10)
M_{N—l (100<N<54)° (B37)
Proof. (a) Let
_ M ey R (/4"
Sun(t) = ,..Zo mim + N)I° Ry .8(0) = m=;+1 i+ N)L° (B.38)
For M > 0, Sy, y(t) = 1/N!. For t < M/2,
(t2/4)M+1 0 t2 m’
Rucer 60 < 0 95N M 4 1) v <4M2>
16 (t3/4)M+1 (B39)

< — .
TISM+ DN+ M+ 1)
Thus the relative error satisfies

Ryppi1.8(0) < Ryr1,4(0)
Sun(t) + Ryog nt) — Spe n(t)

16 (/4™ N 16 ( (£/2)+1\2
STSM+ DN+ M+ D15 (m) . (B40)
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The desired result then follows, since the right side is less than 107'% when t = 10,
M=30ort=30, M =60 or t > 30, M = {2t]| + 1, using the inequality form of
Stirling’s formula in the last case.

(b) We start from the integral representation (B.9). The asymptotic expansion for
Jn(t) can be obtained by extending the domain of integration to (0, c0) and expanding

N-1/2

(1 - 2%) . To bound the errors involved in the asymptotic expansion, we proceed
as follows. Define r'™*1(y) by

D)...v—1+1)

7 (=y) + r0(y). (BA1)

Moy —
(1—py=5"
=0
ForO0<y<l|,

fv(v — 1)...(v — M)| M1

KM () < (B.42)

(M 4+ 1)
We rewrite (B.9) as
fult) = 2" M(N_%)(N"%)---(N—l+%)
T R 2N - ) i (= 2ty
% [fm dssitN-1/2p=s _ Jm dss”""”ze_‘:l
Y 2t
2N 2t
+Zﬁ@ﬁ7ﬁjd”ﬁwmﬂwwm- (B43)
- - JO

The first term on the right side is A(¢; fy, M). For the last term, we use (B.42) to obtain

N J‘zt
e dse ~SsN1/2pM+1) (o /g
n\/Z(ZN — 1t Jo N-1/2(5/2t)
< *—zv——— fw dse~sgN—1/2 (N —3)(N—3)...(N— M — )| sM*!
T /202N — it Jo M + 1) G
< (N,M +1)]| ot

T S 2m oM

For the second term, we use (B.12) with « = 1/2 to obtain

f dse™ssM*1712 < 2m)12(2N + 21 — 1)Me™. (B.45)

2t
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Combining the above, for ¢t > 0 and nonnegative integers N, M, we have

- 1 g —I)I(N’l) (M+1) :I
O Jz—m[z o T (B.46)

with

& INDE 1N, M+ 1)

EM+1) (4 < IN+1/2,~t .
I N ( ), € I=ZO tl (2t)M+1 (B 47)
We then use the fact that |(N,])] < N2/I1if | < N to see that
1.7 x 10~21
| /n(t) — A(t; N, M)| < (B.48)

< 2nt

ifM=9,N<10orM =N — 1,11 < N < 54. Combining this with the lower bound
(B.7), which states that fy(t) > (0.27)//2nt fort > 2000and N < 54, yields the required
bound on the relative error. [

B.2.2. Numerical estimation of I¥4(x) and I§)(x)

In this section we discuss the method used to obtain numerical estimates for I&(x) of
(B.3). In the paper, these quantities are required only for the three values ¢ =0,
¢ = 0.0100504, and ¢ = 0.0109388. When ¢ > 0, the integrand of (B.3) enjoys exponen-
tial decay, while for ¢ = 0 it decays like a power. We speed up the decay to simplify
the estimation of error terms, by making the change of variables t = ¢* in (B.3). This
gives

I(x) = J ) du F{?(u), (B.49)

—Q0
where

n

d d
FOu) = mexp(—dee“)e"“ ”IJI S (€*). (B.50)

We will use the following lemma (see e.g. [6]) to estimate the error involved in the
numerical evaluation of (B.49).

Lemma B.6. Suppose that F is analytic on the strip 0 < Imz < s for some s > 0,
that F(x) is real for real x, and that F(z) — O uniformly as |Re z| — oo in the strip. Then
for any h > 0,

J " wFW—h S F(mh)=Re f " RO — icot(nz/h)] dz.

—o m=—w0 —0 +is
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Consequently,

@© w© 2 w+is
J\—w du F(u) —h m_z_oo F(mh) < W J_w+is lF(Z)‘ dz.

Here the integrations on the right sides are performed along the horizontal line through
z = is.

Using h = 45/256 and M = 256, we will approximate I (x) ford = 5,n = 1,2 and
Ixll, < 54 by

d"  hexp{—(M + 1)(d/2 — n)h}
Qmny¥* 1 —exp{—(d/2 — n)h}
(B.51)

M d
AL M)y=d"h Y e [T fi(e™) +
pn=1

m=—M

for ¢ = 0, and by

M d
B(x,e;h, M) =d"h ), exp(—dee™)e™™ [] f.(e™) (B.52)
M =1

for ¢ > 0. Bounds on the absolute errors involved in these approximations are given
in the following proposition.

Proposition B.7. Ford =5, h = 45/256, M = 256 and ||x||,, < 54,

1000 — Ay(x;h, M)| < {;2;? z igiz ((’; ; g)) (B.53)
and
[15.0(x) — A,(x; b, M)} < 1.882 x 10729, (B.54)
Also, for ¢ > 0.001,
[1P0(x) — By(x, &b, M)| < {;22 : igiz ((’; : g)) (B.55)
and
9o(x) — B,(x,&;h, M)| < 1.882 x 10720, (B.56)

Proof. Wedivide the summation involved in the discretization of the integral (B.49)
into three parts, and for n = 1, 2 define

—(M+1)
SO M)y=h Y F®(mh), (B.57)

m=—o0
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M
S\ (x;h, M) = h _ZM F?(mbh), (B.58)
SAUx;h My=h Y FO(mh). (B.59)
m=M+1

As usual we will drop the superscript (0) when ¢ = 0. The error involved in this
discretization is given by

EL(x; h) = IE5(x) — S (x; b, M) — S (x; h, M) — SE)(x; h, M). (B.60)
Writing S{,(x; h, M) in terms of A, or B,, we obtain
In,O(x) = An(x; h, M) + (gn(X; h) + Sn,a(x;h5 M)

d" hexp{—(M + 1)(d/2 — n)h}
2my¥* 1 —exp{—(d/2 — n)h} ) (B.61)

+ (Sn,c(x; h9 M) -

and

IE5(x) = B,(x, &b, M) + EP(x; h) + SE(x; b, M) + SEUx; b, M).  (B.62)

The last three terms on each side are error terms, which we now proceed to estimate.
We first consider the case ¢ = 0. We bound

&.(x;h) = J T WwE@W—h Y Fmh (B.63)

-0 m=—o0

using Lemma B.6 and the upper bound on fy(z) of Proposition B.1. The result, for
0<s<mf2is

sl ——22 " qwer| mindy, (o) emwel |
161(x; )lsexp(2ns/h)—1 o i ’<8coss> ¢

2d? T |
Td—2 (8 cos s> exp(2ns/h) — 1 (B-64)
and
a3 7 \2 1
; . B.
€2 bl < d—4 (8 cos s) exp(2ns/h) — 1 (B.65)

Taking s = arctan(2zn/h) for I, ; and s = arctan(n/h) for I, ,, this gives

|&;(x;45/256)] < 2.625 x 10722, |£,(x;45/256)| < 1.880 x 1072°. (B.66)
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For §, ,(x; h, M), it follows from (B.8) that

d
[T fix ™) < explmhilx]), (B.67)

and thus for M = 256, h = 45/256 and d = 5,

S1.40ch, M) < dh

exp{—(M + D)(Ix|l, + Dh} _ {1-3092 X107 (x=0) o

1 —exp{—C(lx|l, + Dk} 1.7095 x 1073° (x #0)
and

exp{—(M + D(lixll; +2)h}

S, o (x;h, M < d?h
2%, M) T —exp{—(IxI, + DA}

< 8.55 x 10739, (B.69)

Finally we consider the last term of (B.61). It is the estimation of this term which
places a restriction on the size of ||x||. The last term of (B.61) can be rewritten, for
n=1,as

a3 e"'"[ﬁ f,,‘",(e'"h)~(27te’"")"’/2:|. (B.70)
m=M+1 a=i

By (B.46) and (B.47) with M = 0, we have for N < 54 (in fact for much larger N),

NZ+1
< e
\/2716""'

| fu(e™) — —mh (B.71)

1
\/inemh

Using this to estimate the difference of products, we obtain for || x|, < 54 the following
bound on (B.70):

dh S e™Qme™) U2d[(54) + 1]e™ < 2 x 10747, (B.72)
=5

m +1

For n = 2 a similar argument gives

d* hexp[—(M + 1)(d/2 — 2)k]
Q21— exp[—(d/2 — 2)K]

S2,c(x; ha M) -

2[(54)* + 1]d>h exp{—(M + 1)h(d/2 — 1)} e
Tk epl—@n—Di] S3* 107 ®7)

Combining these estimates gives the bounds in the statement of the proposition for
e=0.
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For £ > 0, F?(u) = exp[ —dee"]F,(u), and we can proceed in a similar fashion to
what was done for the case of ¢ = 0. The only difference occurs in the treatment of
S (x; h, M), and here the argument is simplified. Specifically, for m > M = 256, h =
45/256 and ¢ > 0.001, we have

SE(x; h, M) < S, (x; h, M)exp[ —d(0.001)e**] < 1071990, (B.74)

where we have used the estimate for S, .(x; h, M) provided by (B.72) and (B.73). O

B.2.3. Numerical estimates for I, ,(x), K, (x), L,(x)

In the remainder of Sec. B.2, we present concrete estimates resulting from numerical
integration, beginning here with I, ,,(x), K,, ,,(x) and L,(x). A discussion of the round-off
errors associated with these calculations is given in Sec. B.3.2. In presenting numerical
values we use “...” to denote the result of rounding off, and write for example
x =0.1234... for x € [0.12335, 0.12345].

Although we do not use it in our calculations, the asymptotic behaviour of I, (x)
provides a good picture of its behaviour as |[x| — co. A straightforward calculation
shows that for d > 2n,

d>" T@2-m oo 460 o0 (B.75)

I 0(x) ~ (5 mbc

To get some idea of the accuracy of the asymptotic formula, we checked by explicit
calculation that for d = 5 and | x||,, = 7, the right side of (B.75) is within 5.6%, of the
left side for n = 1, and within 1.1% for n = 2.

Using Proposition B.7 to compute I, o(x), and using the fact that L,(x) can be
expressed in terms of I, o(x) via (B.21), we obtain the values given in the following
lemma. Any required values of these quantities which are not given explicitly are
calculated in the same way.

Lemma B.8. We have
I, 4(0) = 1.156 308 124 840 231... I, 4(0) = 1.934 941 440 382 351...(B.76)
with relative errors less than 1071°, as well as
I,,(0)=0.622 325 191... I, 4(0) = 0409 708 941.... (B.77)
Jy1 £1.097 343 520... J,3 <0504 947 715... (B.78)

and the values for x € A, tabulated in Table V. The values are truncated to 9 digits from
calculated values with relative errors less than 2 x 10713,

For nonzero x ¢ A;, we have the bounds given in the following lemma.
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Table V. Numerical values of I, o(x), I, 6(x), L1(x), L,(x), for x € A,, truncated to 9 digits.

z 11'0(1') Io(z) Lq(z) Lg(:l:)
(1,0,0,0,0) || 0.156 308 125 0.778 633 316 | 0.156 308 125 0.622 325 191
(1,1,0,0,0) || 0.047 408 596 0 | 0.489 556 284 | 0.051 355 448 8 | 0.394 713 379
(2,0,0,0,0) | 0.027 504 3553 | 0.371 860 192 | 0.120 869 006 0.395 633 763
(1,1,1,0,0) | 0.022 251 790 7 | 0.375 852 590 | 0.028 903 012 4 | 0.314 094 733
(2,1,0,0,0) j| 0.013 979 483 1 | 0.304 547 355 | 0.022 845 777 5 | 0.251 754 713
(3,0,0,0,0) || 0.006 899 562 80 | 0.228 546 210 | 0.117 077 493 0.325 241 384
(1,1,1,1,0) |} 0.013 352 323 7 | 0.316 556 003 | 0.025 286 254 4 | 0.277 956 622
(2,1,1,0,0) || 0.008 960 941 45 | 0.267 038 377 { 0.010 892 835 2 | 0.215 562 596
(2,2,0,0,0) || 0.006 238 781 91 | 0.232 065 361 | 0.031 815 831 8 | 0.215 709 722
(3,1,0,0,0) |} 0.004 877 449 32 | 0.209 966 622 | 0.019 701 787 3 | 0.192 725 802
(4,0,0,0,0) |} 0.002 471 678 15 | 0.164 873 308 | 0.116 226 126 0.291 635 603 |
(1,1,1,1,1) || 0.009 225 373 42 | 0.279 654 509 | 0.043 658 826 8 | 0.277 926 740
(2,1,1,1,0) || 0.006 516 331 88 | 0.242 329 353 | 0.008 559 463 38 | 0.198 297 476

Lemma B.9. For nonzero x ¢ A,

I o(x) < 0.00509 842 310,
I,1(x) < I, 4(x) < 0224302270,

K.0(%) < {I,.0(0)L,(x)}'/* < 0.725196 838

K, (%) < {I, ,00)L,(x)}"/* < 0.411273455.

(B.79)

Proof. The first bound on I, ,(x} is trivial, and the first bounds on K ,,(x) follow
from the Schwarz inequality.

To obtain the numerical bounds, we first calculate all values of I, o(x) and L,(x) as
in Lemma B.8, for x|, < 5, and find their respective maxima for x ¢ A, x # 0. (By

5+d . . . .
symmetry, there are fewer than the ( : > = 252 inequivalent sites with || x|, < Sto

be considered.) These maxima are
I, o(2,1,1,1,1) = 0.00509842310....,
1,0(2,1,1,1,1) = 0.224302269... ,
L,(5,0,0,0,0) = 0.271796572... . (B.80)

The desired bounds then follow, using the monotonicity obtained in Lemmas B.3 and
B4. O

Bounds for larger off-axis values of x are obtained in the next lemma by a similar
argument.



THE LACE EXPANSION FOR SELF-AVOIDING WALK IN FIVE OR MORE DIMENSIONS 315

Lemma B.10. For | x|, = 7 with dist(x, axes) > 0,
I, o(x) < 0.00037697 I, o(x) < 0.090467 (B.81)

Ly(x) 0036151  L,(x) < 0.12102. (B.82)

Proof. We first calculate I, o(x) and L,(x) for the <7 ; d) - (6 _; d) = 330 sites

with | x|, = 7. The respective maxima, for off-axis x, are

I, 0(7,1,0,0,0) = 0.0003769604506... I, (7, 1,0,0,0) = 0.0904661614117 ...
(B.83)

L,(7,7,7,7,7) = 00361508427181...  L,(7,1,0,0,0) = 0.1210137397886... .
(B.84)

Then we appeal to the monotonicity shown in Lemma B.3 to obtain the desired bound
on I, o(x). For L,(x) we appeal to Lemma B.4. Its statement is not enough to guarantee
the desired bound, but the argument of the last paragraph of its proof can easily be
applied to complete the proof. [J

B.2.4. Numerical estimates for Vy, I{ and I*®
B y

In this section, we derive the upper bounds on V,, I and I{? which are used in Sec.
4.3.1. Definitions of these quantities can be found in (1.76) and (4.27). We recall that
fo is defined in (4.15) by fi = [(ca /(1 + ¢4) — e/l — ¢5)1/2.

Lemma B.11. We have
VE <V, =010246019044.. ., (B.85)
and for ¢ € [0, ¢, = 0.0109388] and f, € [0, 1/3], we have

IP < 0.270 561 76, 1P <1.653 223 2. (B.86)
Proof. By (B.4) and (B.3),

( d%k in2k
i SR IO (ey),
J @ (¢ + 1 — D(k)}?
" dik in2k d
M 2190,

JQn (s 41— D) 2

(B.87)

[ d% sin’k,sin’k, _ {(d2/2)1‘2‘fo(2e1) (k=)
JCn (e + 11— Dk)}*  (d/0)Foles +e2) (n#V)
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Hence by symmetry

d —

Ve = Poles + ey) + 71‘ Do(2e,). (B.88)

Setting ¢ = 0, this gives (B.85).
For I and ¥, we first rewrite them in terms of simpler quantities. By the definitions
of B®(k) and y®(k) in (4.24) and (4.25),
If = 9(1 — fo)*V — 6(1 — fo) 3%, + 15,(0),
IP = 36(1 — fo)*Vi® — 12(1 — fo)W3?) + I$),(0). (B.89)

We rewrite W§% and V® using (B.87), (B.88), and algebra as

e+1 1
W3(£} = 2 I(Ze,)O(el) - I(f,)o(ﬁ) = 5[1(25?2(0) - 1(18?1(0)],
1
Vi = L 19,00) + 3 [5155(2e,) — 1§6(0)]. (B0)

Substituting (B.90) into (B.89) gives

— 312 2
19 = =1 P 10,0 + 30 — 10 + 2 519,00, - 19,01,
@ = (1 — 2y 1) @ 31— for? @ @
0= (1= 6, + Sf2)IE0) + 6(1 — )10,0) + IV ps190,) — 1901,

(B.91)

To obtain bounds which are uniform in ¢ € [0, ¢,], we use the fact that I§(x), I{,(0)
and I, (0) are monotone decreasing in & > 0, by Lemma B.2. Then bounds on (B.91)
which are uniform in ¢ € [0,¢,] are given by

— 32 2
19 < = 1590+ 30 - 1040 + 2L 15100, - 1901,

19 < (1 = 6y + 6/DILH0) + 6(1 — fILL(0) +

2
Dl is194 e — rgson.

(B.92)

Evaluating the right sides (using 1§} = 0.4432538877..., {3 = 1.704218873...), it is
easily seen that the right sides are bounded by their values at f, = 0, as long as
foel0,1/3]. O
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B.2.5. Numerical estimates for |x|*I, o(x)
This section contains a proof of the following lemma.

Lemma B.12, For |ix|, > 7,
Ix]31, o(x) < 0.0191625.
For x = ne,, withn > 9,

|x)21; o(x) < 0.0145427.

317

(B.93)

(B.94)

We have not succeeded in exploiting any simple monotonicity in the following proof,

but instead combine several different arguments.
We first check by direct computer calculation that:
1. (B.93) is satisfied for | x|, < 13.
2. For |jx||, = 14, 20,

0.13

Iox)<—.
1,0( ) |x|3

3. (B.94) and (B.95) hold for x = ne,, with 9 < n < 54. Also

0.66
I, (54e,) < ——.
2.0( e) < 54
To handle large x, we use the following lemma.
Lemma B.13. The identity

(Ix1* + D) o(x) = (1 - 3)12,0(’0 + R;(x)

holds, where

2 [d% e
Rk = d_ZJW {1 - D)} =

Also, R,(x) obeys the bound

34
Rl(x)sW.

i (1 — cosk,)*.

(B.95)

(B.96)

(B.97)

(B.98)

(B.99)

Proof of Lemma B.12, given Lemma B.13. 'We begin with (B.94), which is the easier
of the two bounds. The third item above takes care of 9 < n < 54. For n > 54, we use
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(B.96) and the monotonicity given in Lemma B.3 to conclude that I, o(x) < 0.66/54
for all ||x|,, > 54. This, combined with Lemma B.13, implies that for all ||x]|,, > 54,

066 | 3% _ootat1. (B.100)

|x|?1, o(x)—-(54)(5) 542——

We turn now to (B.93). The first and second items above take care of ||x|,, < 14.In
particular, for ||x{, = 14,

0.13
(%21 ,0(x) < T (B.101)

We next consider a site y with | y||, € [15, 19], and without loss of generality assume
Y12y, =2y, >0. We define z € Z* by setting z, = max{y, — 14, 0}, and let
x = y — z. Then z, is nonzero only when y, > 14 (in which case x, = 14), and because
Iyl <19 we have y,./%, < 19/14 (taking 0/0 = 1). By construction, | x|, = 14, and
so (B.101) holds. On the other hand, each component of z is nonnegative, so by the
monotonicity given in Lemma B.3, I, o(y) < I, o(x). Therefore

2 2
iyl 013<19 0.13

Iylzll,o(y)sIyl’Il,o(x)_| DR TIESVORTY < 0.01711. (B.102)

Similarly, using the bounds for ||x||, = 20 given in the second item above, for
¥l < 33 we have

332 013
IY1211,0(9) < Y121 0x) < 302 a9 = 001770, (B.103)

which gives (B.93) for | x|, < 33.
For ||x||,, € [34, 54], it follows from monotonicity and the third item above that

2 1
X" 013 _ 013 _oo19118. (B.104)

2y < |x|*I o S—7—= -
[x|211 0(x) < |x]°I o(ll Xl e1) 1x12 Ixl 34

Finally, {|x|l,, > 55 has already been taken care of by (B.100). O

It remains only to prove Lemma B.13.

Proof of Lemma B.13. It is a straightforward calculation to derive (B.97) from the
integral representation

ok d smk
2 1— . (B.10S
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To bound R, (x), we use the fact that

2 [d% ,.. & d
|x|2R1(x)=—d-2f(2 e 2,0 <{1_ STE ;(l—coskm)

1 9 + ac‘k ekx {_ 12-ST N 3T
I (2n)"{1 Pl {1 — Bk} 1 - Dk
d
2 sin k“)(l—cosk ) — T — 25} (B.106)
where
1 d d
S = Y. sin’k,, T=s= Z (1 — cosk,)*. (B.107)
u=1 n=1

We also use the crude estimates

< 2 ¥ (1 —cosk,)(1 — cosk,) = d{1 — D(k)}?,

T < 2{1 — D(k)}, (B.108)
and
4
Z sin®k, {1 — cosk,} < Z sink,(1 — cosk,) = d*S{1 — D(k)}. (B.109)
u=1 #,v=1
Combining this with the fact that a% § = dW; , gives
ombining this act tha o7 (1__15)5 = dW; o giv
d% { 268 3d+2 } 2(3d + 2)
xZRx_ - + ~ = (52} (W, 0) + ————1, ,(0).
[x[*Ry(x) < PR NeTT I Ty ER TR T E (52)(W;,0) d 2,0(0)
(B.110)

Substituting numerical values into the right side gives the bound on R (x) of the lemma.

O

B.3. Control of round-off errors

In this section, we briefly discuss rigorous bounds on the round-off errors involved in
the numerical calculation of the integrals I, 4(x), and in the numerical calculations in
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the remainder of the paper. We omit any detailed description of the analysis we used,
and merely give an overview. One approach to the rigorous control of round-off errors
is to use interval arithmetic, but in view of the fact that our computer program was
not originally written using interval arithmetic, we found it easier to perform the
analysis of round-off errors after the fact. We begin with a brief background on
round-off errors in numerical computations.

B.3.1. Background on round-off errors

Final numerical calculations were performed using VAX FORTRAN on VAX6440 at
the Meson Science Laboratory, Faculty of Science, University of Tokyo, running the
VAX/VMS operating system. On the computer, real numbers are approximated by
floating point binary numbers consisting of mantissa and exponent. Using a mantissa
of length L, the relative error incurred in converting a real number to binary is at most
2L In addition to this truncation error, there is round-off error involved in each
operation of addition, subtraction, multiplication and division. Given two floating
point binary numbers X and Y, let a(X - Y) denote the floating point binary product
produced by the computer, and similarly for the other three arithmetic operations.
Then the relative error generated in one of these operations is at most 27L*! (see e.g.
[6])- More precisely,

a(X+Y)_1
X+Y

l < 2-L# (B.111)

and similarly for the other three operations. To simplify the notation, we will write
¢ = 27L*! 10 denote this basic unit of error.

We next consider the propagation of errors in calculations involving several steps.
To be specific, we consider two nonnegative real numbers x and y, and denote their
representations on the computer as binary floating point numbers by X and Y. These
can be results of preceding algebraic operations on the computer. We now estimate
the relative errors involved in approximating x + y by X + Y, and similarly for
subtraction, multiplication and division. To distinguish between round-off and trunca-
tion errors, we will denote the relative error in representing x by X as

X
6(x)s|*— ll. (B.112)
X
To simplify the estimates, we assume that
& d(x), 6(y) < 107°, (B.113)

which will be the case for our applications.
For addition, we have
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a(X+Y)_1<a(X+Y)__ JX+Y X+Y_1
x+y I X+Y xX+y xX+y
< (1.00001)c + max {d(x), 5(y)} . (B.114)
Here we used (for a, b, A, B > 0)
A + Bb
A+B a ba A B
atbh - b Smax{;,g}. (B.115)
14—
a
For multiplication and division, we have
a(X-Y)_lls a(X-Y)_l ‘ X-Y‘ X-Y__1|
Xy XY x-y x-y
< (1.00001) {& + (x) + 6(y)} (B.116)
and
X/Y
a(x//y )_ l) < (1.00001) {& + d(x) + 6(»)} . (B.117)

Subtraction is most conveniently treated in terms of absolute errors:
laX - Y)—(x—pl<laX -Y)— (X -Y)+|X-Y - (x—y)
<elX — Y|+ dx)x + o(y)y
< (1.00001) {e}x — y| + d(x)x + 6(p)y}. (B.118)
The terms é(x)x and d(y)y can be interpreted as absolute errors of x and y.

B.3.2. Round-off errors in the numerical calculation of I, o(x)

Here we concentrate on the evaluation of I9y(x)(n = 1, 2) with ¢ = 0. The case of ¢ > 0
can be treated similarly. Values of I, ,(x) are computed using Proposition B.7, in which
I, o(x) is approximated by the finite sum A4,,(x; h = 45/256, M = 256) defined in (B.51).
For x = 0, which is the most fundamental value in our applications, all computations
are done usiﬁg quad precision (real # 16), which involves a 112 digit binary mantissa,
and hence ¢ = 27!, For x # 0 we compute the values of fy(e™) via Proposition B.S5,
using quad precision, but to save time we compute 4,(x; h = 45/256, M = 256) using
double precision (real » 8) (with 52 digit binary mantissa, so ¢ = 27°!). The round-off
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errors in these calculations are such that the overall round-off error in the evaluation
of I, o(x) (n = 1, 2) is less than 3 x 10713,

To see this, we first bound the errors involved in generating the integration points
e™. Then we consider the round-off errors involved in the computation of fy(¢), where
t = e™. For t < 2000, by Proposition B.5 f4(t) can be approximated by T(t; N, M) of
(B.33) with M < 4001. The resulting round-off error can be estimated using the bounds
given in the previous subsection, with the result that for N < 100 and M < 4001 the
relative error in the evaluation of T(¢; N, M) is less than 10724, Similarly, for t > 2000,
Jfx(t) is approximated by A(t; N, M) of (B.34). It can be shown that the relative error
due to round-off in the computation of A(t; N, M) is at most 5 x 10724,

Finally, the round-off errors in the numerical computation of A,(x; k,m) of (B.51)
are treated similarly. The result is that the relative error due to round-off is at most
3 x 10713,

In conclusion, the values of I, 4(x) and I, (x)(0 < ||x||,, < 54) used in Sec. B.2 are
accurate up to the sum of absolute error 2 x 107!° (see Proposition B.7) and relative
(round-off) error 3 x 1073, For I, ((0) and I, o(0) quad precision was used through-
out, reducing the relative (round-off) error to 1072°, All these errors in Gaussian
quantities are taken into account in the remaining numerical calculations explained
in the next subsection.

B.3.3. Round-off errors in other numerical calculations

All remaining numerical calculations presented in Secs. 2 through 5 were performed
using double precision. These calculations can all be written as inequalities, in which
either an upper bound or a lower bound (but not both) is required. This makes it
relatively easy to write a computer program which always gives a rigorous upper or
lower bound in each operation, taking round-off errors into account “by hand”. We
used such a program, thereby reducing round-off errors to zero.

To illustrate this approach we consider as a specific example the inequality (2.10),
which reads

R,(x) < [1 — 2dp* + 2pG,(e;) {1 + 2dpG,(e,)} 1B,(x). (B.119)

In our numerical upper bound we compute a bound on the right side and then multiply
by a factor slightly greater than one, to restore any possible diminution due to
round-off error. To be specific, for this inequality we use the values in P,(1) for G,(e,)
and B,(x). This entails conversion errors from decimal to binary of ¢ in each case. The
relative error in the calculation of 2dp is about 3¢ (being two multiplications, plus a
conversion error for d). Although there is one subtraction, the result of the subtraction
is more than 0.8 so there is little difference between absolute and relative errors.
Proceeding this way for the other operations, we can conclude that the overall relative
error involved in the calculation of the right side of (B.119) is less than 20e. Therefore
a rigorous upper bound on Rj(x) can be obtained by multiplying the computer
generated bound by (1 + 20¢).

Our computer program has been written to modify each calculation in a similar
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fashion to remove any possible underestimate in an upper bound (or overestimate in
the case of a lower bound) due to round-off error.

A word on the use of (3.23) and (3.24) is in order. Although these inequalities each
involve subtractions, the values of f on the machine are true upper bounds on f (being
generated according to the above procedure of obtaining rigorous bounds), and hence
their relative errors can be considered to be zero. Therefore we have only to account
for a relative error of ¢ in each of these subtractions.

C. Analysis for Six or More Dimensions

The numerical estimates given throughout the paper are for d = 5. In this appendix,
we discuss the modifications used for the treatment of higher dimensions. As explained
in Sec. 1.5, the method of proof relies on the fact that various Gaussian quantities are
small. Because these Gaussian quantities become smaller as the dimension increases,
the proof becomes relatively easier. In fact, if the d = 5 Gaussian values had been a
little smaller, the arguments in this paper could have been made less elaborate. To give
an indication of the effect of increasing the dimension, we note that the d = 5 value
1,,(0) = 0.6223...is reduced to I, ,(0) = 0.2802...in d = 6, and asymptotically
1,,(0) ~ 1/(2d) as d — o0.

We first consider 6 <d <9, and then discuss d > 10. For 6 < d <9 we perform
calculations similar to (but considerably simpler than) those for d = 5, while for d > 10
we work with bounds which are uniform in d.

C.1. Dimensions6,7,8,9

For 6 < d <9, we proceed essentially as for d = 5, but with many simplifications. For
the inequalities P,(x) we now take just the three inequalities

B,(0) <(0.26): a, sup B,(x) < (0.26)-«, sup |x|2G,(x) < (0.11)-a. (C.1)
x#0 x#0

We use p, = 1/(2d — 1), and z,(d) < (1.01185)/(2d — 1). The latter follows from Corol-
lary A.2, using explicit numerical values of Gaussian quantities calculated via Proposi-
tion B.7.

We then perform the calculations of Secs. 2-3, with many simplifications. For
example, we simply use R(0) < B(0) and R)(x) < B;(x), and thus do not require most
of Sec. 2.1. Also most of Sec. 3.3 can be omitted, because we just employ

T () < [sup Gp(x):|Rp(0)|:sup Ry y)]"_2 C2)
x x#0 y#0

and (3.69) and (3.70) to bound )" IT(x) and Y, |x|2IT®(x). Then we proceed to bound
B,(0), B,(x), and |x|? G,(x) as was done in Sec. 4 for d = 5. Because the Gaussian
quantities are so small, the values of I, 4(x) and L,(x) (n = 1, 2) turn out to be needed
only for ||x||, < 2.

We omit any detailed account of the calculation, but only give the resulting bounds
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on B,(0} and ¢} — c; (defined in Lemma 3.1);
c; <0.13, c; <0031, c3 < 0.010, ¢y < 0.038, B,(0) <0.26. (C3)

C.2. Dimensions 10 and higher

For dimensions 10 and higher, we use estimates which are uniform in d. For this we
use the following lemma, whose proof is deferred to the end of the section.

Lemma C.1. The integrals I, ,,(0) (n = 1, m = 0, 1) are monotone decreasing in d.
Moreover for d > 10,

Lo <106, I,00) <121, I, ,(0)<0.09 (C4)
and
sup |x|2I,; o(x) < 0.085,  sup L,(x) < 0.20. (C.5
x x#£0

For d > 10, we take for P,(x) simply

B,(0) < 0.10, sup |x]?G,(x) < 0.10. (C.6)

We do not explicitly extract the 2-loop or 3-loop contributions from I1, so that in Sec.

3.1 we now take ny = m; = 0. It then follows that N,,, X, ¥, < 1. We use

B,(0)
2d

B,(x) = B,(x) + G,(x) < B,(0) + ( )1/2 <0.17072 (C.7)

to bound B,(x), and then proceed asford < 10. Usingd > 10, we obtain the inequalities
¢; = 0.00176, ¢, = 0.01031, ¢; = 0.00113, ¢, =0.01099 (C.8)

for the constants c; of Lemma 3.1.

Then we proceed as in Sec. 4, using Lemma C.1, to estimate B,(0) and |x}|?G,,(x). The
bound (4.7) on B(0) is straightforward [using J, ; < (I, 0I5 ,)"/*]. The bound (4.26) on
|x|2G(x) requires bounds on ¥, I s> 1, and I, ;(x), in addition to the bounds of Lemma
C.1. To bound the first three of these, we use the fact that for x # 0 we have by
monotonicity in x and d I, o(x) < I, o(ey) = I, ,(0) < 0.15, together with the formulas
in the proof of Lemma B.11. For example,

d+2 1
Ve < =1 Laole) < 50.15). (C9)

In bounding |x|>G,(x), we use I, ;(x) < I, ;(x) + I; o(x) = I, o(x) < 0.15. Using the
fact that z, < (1.08)/(2d — 1), which follows from Corollary A.2 and Lemma C.1 (using
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C,(x) <1, o(x) < I 4(0) — 1), we obtain
c; <0.1155, ¢; <0.0104, c¢3<0.00113, ¢, <001099, B(0)<0.1 (C.10)
and can complete the proof that P,(0.999) is satisfied.

Proof of Lemma C.1. We follow the argument of [13, Appendix A] to prove
monotonicity of I, ,(0), using the integral representation (B.3) to write, form =0, 1,

(C.11)

_ 1 - 2 Jmls/d)
In,m(o)—(*ﬁ‘_—l)!L ds s"™* fo(s/d) “5/d)

Denoting the L,(—=, ) norm of g,(8) = exp(—s(1 — cos 8)) by llg,(6)ll,, the middle
factor of the integrand can be expressed as fo(s/d)’ = |g,(0)| 1,4, which is monotone
decreasing in d for fixed s. This proves the monotonicity of I, ,(0).

For m = 1, the last factor of the integrand is also monotone decreasing in d for fixed
s, because f,{x)/fo(x) is monotone increasing in x > 0. This can be seen from direct
calculation of its derivative, which gives

d (i)
dx \ o)

) = {cos20) — {cos0>2 >0 (C.12)

where {f(0)> = ([3"d0f(0)e*°=%/[3"d0e**°. This completes the proof of
monotonicity.

The first two inequalities of (C.4) then follow from monotonicity and the fact that
I 4(0) <106 and I, ((0) < 1.21 for d = 10, by direct computation. For the third
inequality of (C.4), we check by direct calculation that I, ,(0) < 0.09 for 10 < d < 14,
while ford > 15 we note that by monotonicity in d and direct computation I, (0) < 0.09,
and hence I, ,(0) =1, ,(0) — I, ,(0) < 0.09 for d > 15.

To prove the inequality for L,(x) we first recall (B.21), which expresses L,(x) as an
average over I, (). By monotonicity in |y,|, I, (y) <1, o(e;) = I,,(0) < 0.21, for
y # 0. Since on the right side of (B.21) at most a fraction 1/(2d) of the terms has
x + p{x;v,0) = 0 for x # 0, we have

1 24— 1
—I,0(0) + =1, o(e;) < 0.20. (C.13)

L
2(x) < 2d

T~ 2d

Finally, we turn to the bound on |x|?I, o(x). Since |w| > |x| when @ is a walk from
0 to x, we have (the following sums are over simple random walks)

1 \lol
X100 = x> 3 (27)

»:0—-x

(C.14)

p=1/(2d)

T lop ilwl— 262+ 0 Y pel
-w:O—»x 2d =\° 0}72 pap m:O—*xp
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After a little algebra, for x # 0 this gives
1%1215,0(%) < I32(X) + I5,1(x) = I5,1(x) < 15,4 (0). (C.15)

For 10 < d < 22, we proceed essentially as for d = 5 in the proof of Lemma B.12, also
making use of (C.15). Ford > 23, by monotonicity in d and direct calculation for d = 23
we have I, ;(0) < 0.0832, and thus |x|*I, o(x) < 0.084. [
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