Math 190 Quiz 4: Wednesday November 15 - 2017

The quiz is 15 minutes long and has one question. No calculators or other aids are permitted. Show all of your work for full credit.

Name: ___________________________ Student Number: ___________________________

Question:
1. Consider the following integral:
 \[\int_{0}^{\frac{1}{2}} (2x + 1) \, dx. \]

 (a) Use the area under the curve to compute this integral.

 \[\int_{0}^{\frac{1}{2}} (2x + 1) \, dx = \left[\frac{1}{2} \right] (2 \cdot 0 + 1) + \left[\frac{1}{2} \right] (2 \cdot \frac{1}{2} + 1) \]
 \[= \frac{1}{2} + \frac{1}{4} = \frac{3}{4}. \]

 (b) Use the **Fundamental Theorem of Calculus** to compute this integral.

 It's easy to see that the anti-derivative of 2x is \(x^2 \) and the anti-derivative of 1 is \(x \). So, the anti-derivative of \(f(x) = 2x + 1 \) is \(F(x) = x^2 + x \). By Fundamental Theorem we have

 \[\int_{0}^{\frac{1}{2}} (2x + 1) \, dx = F(x) \bigg|^{\frac{1}{2}}_{0} = (x^2 + x) \bigg|^{\frac{1}{2}}_{0} = \left[\left(\frac{1}{2} \right)^2 + \left(\frac{1}{2} \right) \right] - \left[0^2 + 0 \right] \]
 \[= \frac{1}{4} + \frac{1}{2} = \frac{3}{4}. \]