Important Note: Substitution Rule

Good choice for Substitution Rule include:

1. functions inside of other functions
2. functions under square roots
3. function in denominators
4. functions where something else is the derivative of your substitution

"General Idea"
Quiz #5:

1. Friday 24th November 2017

2. Only Lecture notes 28 and 29

"Important Example: Finding an anti-derivative using an extra condition." "Easy examples of Substitution rule."
Lecture note 30 (Nov 20, 2017)

- Homework #7 is posted (More Weight compared to HW 1-6)
- Homework #7 due date is Friday Dec 1, 2017
- End of year MAPS data for Math 190:
 "Math attitudes and perceptions survey"
 [link: https://survey.ubc.ca/s/MAPS/Nov2017/]
 Please complete the survey before Dec 1
- Please complete the Math 190 Teaching Evaluation Survey before Dec 4, 2017.

"Bonus Point if you do it"

Substitution Rule:

The best choice for the substitution is a function \(g(u) = u \) such that (at least) the main part of its derivative \(g'(x) \) appears in the integral.

- \(\int 2x \sin(x^2) \, dx \). We take \(u = x^2 \), so,
 \[du = (x^2)' \, dx = (2x) \, dx \]
 derivative of \(x^2 \) appears in integral
 \[\int 2x \sin(x^2) \, du \]
 \[= \frac{1}{2} \sin(x^2) \, d(x^2) \]
 \[\frac{1}{2} \int \sin(u) \, du \]
 \[= -\frac{1}{2} \cos(u) + C \]
 \[= -\frac{1}{2} \cos(x^2) + C \]
\[\int x^2 e^{x^3+1} \, dx \]
we take \(u = x^3 + 1 \), so,

\[du = (x^3+1)' \, dx = (3x^2) \, dx \]

\[g'(x) \]

\[\int x^2 e^{x^3+1} \, dx \rightarrow g'(x) \]

\[\text{s somehow } g'(x) = \frac{1}{3} x^2 \]

\[\Rightarrow = \int \frac{1}{3} e^u \, du \]

Example 1: Find \(\int \sin x \cos x \, dx \)

(1) \(u = \cos x \rightarrow du = (\cos x)' \, dx = (-\sin x) \, dx \)

(2) \(u = \sin x \rightarrow du = (\sin x)' \, dx = \cos x \, du \)

we go for (2) so,

\[u = \sin x \]

\[du = \cos x \, dx \rightarrow dx = \frac{du}{\cos x} \]
we have \(\frac{du}{\cos x} \)

\[
\int \frac{\sin x}{u} \cos x \, du = \int u \cdot \cos x \, \frac{du}{\cos x} \\
= \int u \, du \quad (\text{\# I}) \int u^n \, du = \frac{1}{n+1} u^{n+1} + C \\
= \frac{u^2}{2} + C.
\]

We write the final answer in terms of \(u \):

\[
u = \sin x \quad \Rightarrow \quad \int \sin x \cdot \cos x \, dx = \frac{(\sin x)^2}{2} + C.
\]

Example 2: Find \(\int \frac{x}{\sqrt{2x^2 + 3}} \, dx \).

We let

\[u = 2x^2 + 3 \quad \text{and we have} \]

\[
du = (2x^2 + 3)' \, dx \quad \rightarrow \quad du = (4x) \, dx
\]

so,

\[
\int \frac{x}{\sqrt{2x^2 + 3}} \, dx = \int \frac{x}{\sqrt{u}} \, \frac{du}{4x} = \int \frac{du}{4\sqrt{u}}
\]
we compute \(\int \frac{1}{4} \frac{1}{\sqrt{u}} \, du \)
\[
= \frac{1}{4} \int \frac{1}{u^{\frac{1}{2}}} \, du = \frac{1}{4} \int u^{-\frac{1}{2}} \, du
\]
\[
= \frac{1}{4} \left(\frac{1}{\frac{1}{2}^{-\frac{1}{2}}} + C \right)
= \frac{1}{4} \left(2 \cdot u^{\frac{1}{2}} \right) + C = \frac{1}{2} \sqrt{u} + C
\]

we write the final answer in terms of \(u \):

\[
\frac{1}{2} \sqrt{2x^2 + 3} + C \quad (u = 2x^2 + 3)
\]

Examples: Find \(\int \frac{\ln x}{x} \, dx \)

\[
= \int \frac{1}{x} \ln x \, dx
\]

so, we take

\(u = \ln x \), then

\(du = \left(\ln x \right)' \, dx = \frac{1}{x} \, dx \)

\(\Rightarrow du = \frac{1}{x} \, dx \rightarrow xdu = x^1 \, du \rightarrow \)
So,

\[u = \ln x \quad \& \quad \int dx = x \, du \]

Then,

\[\int \frac{\ln x}{x} \, dx = \int \frac{u}{x} \frac{dx}{du} = \int u \, du = \frac{u^2}{2} + C \]

(Again **)

we write the final answer in terms of \(x \):

\[\frac{(\ln x)^2}{2} + C \quad \text{(} u = \ln x \text{)} \]

Example 4: Find \(\int x \sqrt{x+3} \, dx \)

we go for under square root:

\[u = x + 3 \quad \Rightarrow \quad du = (x+3)' \, dx \]

\[\Rightarrow \quad du = (1) \, dx \]

\[\Rightarrow \quad du = dx \]
\[\int x \sqrt{x+3} \, dx = \int x \sqrt{u} \, du \]

We use relation between \(u \) and \(x \) to get rid of \(x \): In other words,

\[u = x+3 \implies x = u-3 \]

So, we replace \(x \) by \(u-3 \):

\[\int x \sqrt{x+3} \, dx = \int (u-3) \sqrt{u} \, du \]

"We solve it next lecture"