Review [Parametric description of a circle/an ellipse]

<table>
<thead>
<tr>
<th></th>
<th>A circle of radius a centered at $(0,0)$</th>
<th>An ellipse centered at $(0,0)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Form</td>
<td>$x^2 + y^2 = a^2$</td>
<td>$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$</td>
</tr>
<tr>
<td>Parametric Equation</td>
<td>$x = a \cos \theta$</td>
<td>$x = a \cos \theta$</td>
</tr>
<tr>
<td></td>
<td>$y = a \sin \theta$, for $0 \leq \theta \leq 2\pi$</td>
<td>$y = b \sin \theta$, for $0 \leq \theta \leq 2\pi$</td>
</tr>
</tbody>
</table>

Why?!!

```
\[ \begin{align*}
\cos \theta &= \frac{x}{a} \\
\sin \theta &= \frac{y}{a}
\end{align*} \implies \begin{align*}
x &= a \cos \theta \\
y &= a \sin \theta,
\end{align*} \text{ for } 0 \leq \theta \leq 2\pi
```

θ is changing from 0 to 2π.

Check: (ellipse)

$x = a \cos \theta$ and $y = b \sin \theta$.

Plug into $\frac{x^2}{a^2} + \frac{y^2}{b^2}$:

$\frac{x^2}{a^2} + \frac{y^2}{b^2} = \frac{(a \cos \theta)^2}{a^2} + \frac{(b \sin \theta)^2}{b^2} = \frac{a^2 \cos^2 \theta}{a^2} + \frac{b^2 \sin^2 \theta}{b^2} = \cos^2 \theta + \sin^2 \theta = 1$.

So, by choosing $x = a \cos \theta$ and $y = b \sin \theta$, we have

$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$.

<table>
<thead>
<tr>
<th></th>
<th>A circle of radius a centered at the point (x_0, y_0)</th>
<th>An ellipse centered at the point (x_0, y_0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Form</td>
<td>$(x-x_0)^2 + (y-y_0)^2 = a^2$</td>
<td>$(x-x_0)^2 + \frac{(y-y_0)^2}{b^2} = 1$</td>
</tr>
<tr>
<td>Parametric Equation</td>
<td>$x = a \cos \theta + x_0$</td>
<td>$x = a \cos \theta + x_0$</td>
</tr>
<tr>
<td></td>
<td>$y = a \sin \theta + y_0$, for $0 \leq \theta \leq 2\pi$</td>
<td>$y = b \sin \theta + y_0$, for $0 \leq \theta \leq 2\pi$</td>
</tr>
</tbody>
</table>
Let’s go back and take a look at the last example that we solved in the lecture 8. Our objective function was \(f(x,y) = 5x - 3y \) and the constraint \(g(x,y) = x^2 + y^2 - 136 = 0 \). So, we got

\[
\begin{align*}
\nabla f(x,y) &= \lambda \nabla g(x,y) \\
g(x,y) &= 0
\end{align*}
\]

\[\Rightarrow (**) \]

\[
\begin{align*}
\frac{f_x}{g_x} &= \lambda \\
\frac{f_y}{g_y} &= \lambda \\
g(x,y) &= 0
\end{align*}
\]

\[\Rightarrow \begin{cases}
5 = \lambda (2x) \\
-3 = \lambda (2y) \\
x^2 + y^2 - 136 = 0
\end{cases}
\]

Now, to find \(x \) and \(y \) from (**) , we can do one of the following:

1. [we already did this one] Find \(x \) and \(y \) in terms of \(\lambda \), then plug them into the constraint \(g(x,y) = 0 \). So, we’ll find \(\lambda \), and then \(x \) and \(y \)!

\[
\begin{align*}
x &= \frac{5}{2\lambda} \\
y &= \frac{-3}{2\lambda}
\end{align*}
\]

plug into \(25 \frac{4}{4\lambda^2} + 9 \frac{-136}{4\lambda^2} = 0 \) \(\Rightarrow \) solve for \(\lambda \) \(\Rightarrow \lambda = \pm \frac{1}{4} \)

\[\Rightarrow \begin{cases}
x &= 10 \\
y &= -6
\end{cases}
\]

if \(\lambda = \frac{1}{4} \): \(\begin{cases}
x &= 10 \\
y &= -6
\end{cases} \)

if \(\lambda = \frac{1}{4} \): \(\begin{cases}
x &= 10 \\
y &= 6
\end{cases} \)

2. Find \(\lambda \) in terms of \(x \) and \(y \) in (I) and (II), separately, set them equal. It gives us the relation between \(x \) and \(y \). Then, plug it into \(g(x,y) = 0 \) to find \(x \) and \(y \)!

\[
\begin{align*}
\text{(I)} \Rightarrow \lambda &= \frac{5}{2x} \\
\text{(II)} \Rightarrow \lambda &= \frac{-3}{2y}
\end{align*}
\]

plug into \(25 \frac{5}{2x} = \lambda = \frac{-3}{2y} \) \(\Rightarrow \)

plug into \(g(x,y) = 0 \) \(\Rightarrow \)

\[\frac{2}{-3} \frac{x}{2y} = 136 \]

\[\Rightarrow x = \pm 10 \Rightarrow \begin{cases}
x &= 10 \Rightarrow y = -6 \end{cases} \text{ and } \begin{cases}
x &= -10 \Rightarrow y = 6 \end{cases}
\]

3. Divide (I) by (II) to find the relation between \(x \) and \(y \). Then, plug it into \(g(x,y) = 0 \) to find \(x \) and \(y \)!

\[
\text{(I)} \Rightarrow \frac{5}{-3} = \frac{x}{2y} \Rightarrow \frac{y}{2x} = \frac{-3}{5} \Rightarrow \begin{cases}
x &= 10, y = -6 \\
x &= 10, y = 6
\end{cases}
\]

Notes: if \(\lambda = 0 \), \(5 = 0(2x) = 0 \) and \(-3 = 0(2y) = 0 \), which is impossible. So, \(\lambda \) cannot be 0. The same reason \(\Rightarrow x \neq 0, y \neq 0 \).
Example 1: Use Lagrange multipliers to find the maximum and minimum values of \(f(x,y) \) subject to the given constraint.

- \(f(x,y) = x^2 + y^2 \) subject to \(2x^2 + 3xy + 2y^2 = 7 \).

The objective \(f(x,y) = x^2 + y^2 \).

The constraint \(g(x,y) = 2x^2 + 3xy + 2y^2 - 7 = 0 \).

\[\nabla f = \langle f_x, f_y \rangle = \langle 2x, 2y \rangle \]
\[\nabla g = \langle g_x, g_y \rangle = \langle 4x + 3y, 3x + 4y \rangle \]

\[\begin{align*}
 f_x &= 2x = \lambda (4x + 3y) = \lambda g_x \quad \text{(I)} \\
 f_y &= 2y = \lambda (3x + 4y) = \lambda g_y \quad \text{(II)}
\end{align*} \]

Now, if \(\lambda = 0 \), we have \(2x = 0 \) and \(2y = 0 \), which means \(x = y = 0 \). But, you can see \(x = y = 0 \) does not satisfy the constraint \(2x^2 + 3xy + 2y^2 = 7 = 0 \). So, \(\lambda \neq 0 \).

If \(\lambda \neq 0 \), we can divide (I) by (II) to get

\[\frac{2x}{2y} = \frac{\lambda (4x + 3y)}{\lambda (3x + 4y)} \quad \implies \quad \frac{x}{y} = \frac{4x + 3y}{3x + 4y} \]

\[\implies 3x^2 + 4yx = 4xy + 3y^2 \quad \implies \quad y^2 = x^2 \quad \implies \quad y = \pm x \]
If $y = x$:

\[
\begin{align*}
\begin{cases}
 y = x \\
g(x, y) = 0
\end{cases} \quad \Rightarrow \quad g(x, x) = 0 \quad \Rightarrow \quad 2x^2 + 3x(x) + 2(x)^2 = 7 \\
\Rightarrow \quad 7x^2 = 7 \quad \Rightarrow \quad x = \pm 1
\end{align*}
\]

\[
\begin{cases}
 x = 1 \quad \Rightarrow \quad y = x = 1 \\
x = -1 \quad \Rightarrow \quad y = x = -1
\end{cases}
\]

\[
\begin{align*}
\begin{pmatrix}
(1, 1) \\
(-1, -1)
\end{pmatrix}
\end{align*}
\]

If $y = -x$:

\[
\begin{align*}
\begin{cases}
 y = -x \\
g(x, y) = 0
\end{cases} \quad \Rightarrow \quad g(x, -x) = 0 \quad \Rightarrow \quad 2x^2 + 3x(-x) + 2(-x)^2 = 7 \\
\Rightarrow \quad x^2 = 7 \quad \Rightarrow \quad x = \pm \sqrt{7}
\end{align*}
\]

\[
\begin{cases}
 x = +\sqrt{7} \quad \Rightarrow \quad y = -x = -\sqrt{7} \\
x = -\sqrt{7} \quad \Rightarrow \quad y = -x = \sqrt{7}
\end{cases}
\]

\[
\begin{align*}
\begin{pmatrix}
(\sqrt{7}, -\sqrt{7}) \\
(-\sqrt{7}, \sqrt{7})
\end{pmatrix}
\end{align*}
\]

So,

\[
\begin{align*}
f(1, 1) = f(1(-1)) &= 2 \\
f(\sqrt{7}, -\sqrt{7}) = f(-\sqrt{7}, \sqrt{7}) &= 14
\end{align*}
\]

\[
\begin{align*}
\text{Min} \\
\text{Max}
\end{align*}
\]
To find the relation between x and y, you can also multiply (I) by y and (II) by x, and subtract to get [example 1]:

$$y \cdot (\text{I}) \Rightarrow 2xy = \lambda (4xy + 3y^2)$$
$$x \cdot (\text{II}) \Rightarrow 2xy = \lambda (3x^2 + 4xy)$$

Subtracting these equations gives:

$$2xy - 2xy = \lambda (4xy + 3y^2) - \lambda (3x^2 + 4xy) = \lambda (3x^2 - 3y^2) = 0$$

So, we get $\lambda (3x^2 - 3y^2) = 0 \Rightarrow \lambda = 0$ or $y^2 = x^2$. As we saw before, λ cannot be zero, so $y = \pm x$. The rest would be the same.

Example 2. A manufacturer's production is modeled by the Cobb-Douglas function

$$u(x, y) = 100x^{\frac{4}{5}}y^{\frac{1}{5}}$$

where x represents the units of labor and y represents the units of capital. Each labor unit costs 200 and each capital unit costs 250. The total expenses for labor and capital cannot exceed $50,000$. Find the maximum production level.

The objective function is $f(x, y) = 100x^{\frac{4}{5}}y^{\frac{1}{5}}$.

The constraint comes from the sentence "The total expenses for labor and capital cannot exceed $50,000". So,

$$g(x, y) = 200x + 250y - 50,000 = 0 \quad \text{(constraint)}$$

$$\nabla f(x, y) = \langle f_x, f_y \rangle = \langle 80x^{\frac{1}{5}}y^{\frac{4}{5}}, 20x^{\frac{4}{5}}y^{\frac{1}{5}} \rangle$$

$$\nabla g(x, y) = \langle 200, 250 \rangle$$
\(\nabla f = \lambda \nabla g \) implies that

\[\begin{align*}
1. & \quad 80x - \frac{3}{5}y^\frac{4}{5} = 200\lambda \\
2. & \quad 20x^\frac{4}{5}y^{-\frac{2}{5}} = 250\lambda
\end{align*} \]

we have

\[\lambda = \begin{cases}
\frac{80x^\frac{4}{5}y^{-\frac{2}{5}}}{200} & \text{From (i)} \\
\frac{20x^\frac{4}{5}y^{-\frac{2}{5}}}{250} & \text{From (ii)}
\end{cases} \]

\[\begin{align*}
\frac{80}{200} \cdot y^\frac{1}{5} = \lambda = \frac{20}{250} \cdot x^\frac{4}{5}, \quad \text{so,}
80 \cdot 250 \cdot y = 20 \cdot 200 \cdot x
\end{align*} \]

\[5y = x \]

Now, plug \(5y = x \) into \(g(x,y) = 0 \) to get

\[200(5y) + 250y = 50,000. \]

So, \(y = 40 \), and \(x = 4(40) = 200 \). The point is \((200,40)\).

\(f(200,40) = 100 \cdot (200)^\frac{4}{5} \cdot (40)^\frac{1}{5} \).

Example 3. Use Lagrange multipliers to find the maximum and minimum values of \(xy^2 \) on the ellipse \(2x^2 + y^2 = 1 \).

the objective function \(f(x,y) = xy^2 \).

the constraint \(g(x,y) = 2x^2 + y^2 - 1 = 0 \).

Let's find the gradient of \(f(x,y) \) and \(g(x,y) \).

\(\nabla f(x,y) = \langle f_x, f_y \rangle = \langle y^2, 2xy \rangle \)

\(\nabla g(x,y) = \langle g_x, g_y \rangle = \langle 4x, 2y \rangle \).
So,
\[\begin{align*}
\n\n\n\begin{cases}
\na = \frac{y^2}{4x} \text{ and } \lambda = \frac{2xy}{2x} = x \Rightarrow \frac{y^2}{4x} = \lambda = x \Rightarrow y^2 = 4x^2. \quad \text{Now, by plugging } y^2 = 4x^2 \text{ into the constant } 2x^2 + y^2 - 1 = 0, \text{ we get}

\text{if } y = 2x, \Rightarrow y = 2x \Rightarrow g(x, y) = 0 \Rightarrow g(x, 2x) = 0 \Rightarrow 2x^2 + (2x)^2 - 1 = 0

\Rightarrow 6x^2 = 1 \Rightarrow x = \frac{1}{\sqrt{6}} \Rightarrow x = \pm \frac{1}{\sqrt{6}}

\begin{align*}
\{ x = \frac{1}{\sqrt{6}} \Rightarrow y = 2x = 2\sqrt{\frac{1}{6}} \} & \Rightarrow \left(\frac{\sqrt{1}}{\sqrt{6}}, 2\sqrt{\frac{1}{6}} \right) \\
\{ x = -\frac{1}{\sqrt{6}} \Rightarrow y = 2x = -2\sqrt{\frac{1}{6}} \} & \Rightarrow \left(-\frac{1}{\sqrt{6}}, -2\sqrt{\frac{1}{6}} \right)
\end{align*}
If \(y = -2x \):

\[
\begin{align*}
g(x,y) &= 2x^2 + y^2 - 1 = 0 \\
y &= -2x
\end{align*}
\]

\[\Rightarrow g(x,-2x) = 0 \Rightarrow 2x^2 + (-2x)^2 - 1 = 0 \Rightarrow 6x^2 = 1 \Rightarrow x = \pm \sqrt{\frac{1}{6}}.
\]

\[
\begin{align*}
\{ \frac{x}{\sqrt{\frac{1}{6}}} & \Rightarrow y = -2x = -2\sqrt{\frac{1}{6}} \} \Rightarrow (\sqrt{\frac{1}{6}}, -2\sqrt{\frac{1}{6}}) \\
\{ \frac{x}{-\sqrt{\frac{1}{6}}} & \Rightarrow y = -2x = -2(-\sqrt{\frac{1}{6}}) \} \Rightarrow (-\sqrt{\frac{1}{6}}, 2\sqrt{\frac{1}{6}})
\end{align*}
\]

So, we have the four points:
\((\sqrt{\frac{1}{6}}, 2\sqrt{\frac{1}{6}}), (-\sqrt{\frac{1}{6}}, -2\sqrt{\frac{1}{6}}), (\sqrt{\frac{1}{6}}, -2\sqrt{\frac{1}{6}}), (-\sqrt{\frac{1}{6}}, 2\sqrt{\frac{1}{6}}) \).

The values of \(f(x,y) \) at these points:

\[
\begin{align*}
f(\sqrt{\frac{1}{6}}, 2\sqrt{\frac{1}{6}}) &= f(\sqrt{\frac{1}{6}}, -2\sqrt{\frac{1}{6}}) = \frac{4\sqrt{\frac{1}{6}}}{6} = \frac{2\sqrt{\frac{1}{6}}}{3} \\
f(-\sqrt{\frac{1}{6}}, 2\sqrt{\frac{1}{6}}) &= f(-\sqrt{\frac{1}{6}}, -2\sqrt{\frac{1}{6}}) = \frac{-4\sqrt{\frac{1}{6}}}{6} = -\frac{2\sqrt{\frac{1}{6}}}{3}
\end{align*}
\]

So,
\[
\begin{align*}
\frac{2}{3} \sqrt{\frac{1}{6}} & \text{ max} \\
-\frac{2}{3} \sqrt{\frac{1}{6}} & \text{ min}
\end{align*}
\]