Dominik Schötzau's publications

Journal Papers

To request any of these papers please e-mail me at schoetzau at math.ubc.ca



  1. D. Schötzau, C. Schwab and T. Wihler: hp-DGFEM for second-order mixed elliptic problems in polyhedra, Math. Comp., vol. 85(299), pp. 1051-1083, 2016. [link] [preprint version]

  2. D. Schötzau and C. Schwab: Exponential convergence for hp-version and spectral finite element methods for elliptic problems in polyhedra, Math. Models Methods Appl. Sci., vol. 25(9), pp. 1617-1661, 2015. [link] [preprint version]

  3. K. Mustapha and D. Schötzau: Well-posedness of hp-version discontinuous Galerkin methods for fractional diffusion wave equations, IMA J. Numer. Anal., vol. 34(4), pp. 1426-1446, 2014. [link] [preprint version]

  4. R. Oyarzúa, T. Qin and D. Schötzau: An exactly divergence-free finite element method for a generalized Boussinesq problem, IMA J. Numer. Anal., vol. 34(3), pp. 1104-1135, 2014. [link] [preprint version]

  5. S. Giani, D. Schötzau and L. Zhu: An a-posteriori error estimate for hp-adaptive DG methods for convection-diffusion problems on anisotropically refined meshes, Comput. Math. Appl., vol. 67(4), pp. 869-887, 2014. [link] [preprint version]

  6. D. Schötzau, C. Schwab and T. Wihler: hp-DGFEM for second-order elliptic problems in polyhedra II: Exponential convergence, SIAM J. Numer. Anal., vol. 51(4), pp. 2005-2035, 2013. [link] [preprint version]

  7. D. Schötzau, C. Schwab and T. Wihler: hp-DGFEM for second-order elliptic problems in polyhedra I: Stability on geometric meshes, SIAM J. Numer. Anal., vol. 51(3), pp. 1610-1633, 2013. [link] [preprint version]

  8. D. Li, C. Greif and D. Schötzau: Parallel numerical solution of the time-harmonic Maxwell equations in mixed form, Numer. Linear Algebra Appl., vol. 19(3), pp. 525-539, 2012. [link] [preprint version]

  9. K. Mustapha, H. Brunner, H. Mustapha and D. Schötzau: An hp-version discontinuous Galerkin method for integro-differential equations of parabolic type, SIAM J. Numer. Anal., vol. 49(4), pp. 1369-1396, 2011. [link] [preprint version]

  10. J. Könnö, D. Schötzau and R. Stenberg: Mixed finite element methods for problems with Robin boundary conditions, SIAM J. Numer. Anal., vol. 49(1), pp. 285-308, 2011. [link] [preprint version]

  11. L. Zhu, S. Giani, P. Houston and D. Schötzau: Energy norm a-posteriori error estimation for hp-adaptive discontinuous Galerkin methods for elliptic problems in three dimensions, Math. Models Methods Appl. Sci., vol. 21(2), pp. 267-306, 2011. [link] [preprint version]

  12. L. Zhu and D. Schötzau: A robust a-posteriori error estimate for hp-adaptive DG methods for convection-diffusion equations, IMA J. Numer. Anal., vol. 31(3), pp. 971-1005, 2011. [link] [preprint version]

  13. C. Greif, D. Li, D. Schötzau and X. Wei: A mixed finite element method with exactly divergence-free velocities for incompressible magnetohydrodynamics, Comput. Methods Appl. Mech. Engrg., vol. 199(45-48), pp. 2840-2855, 2010. [link] [preprint version]

  14. D. Schötzau and T. Wihler: A posteriori error estimation for hp-version time-stepping methods for parabolic partial differential equations, Numer. Math., vol. 115(3), pp. 475-509, 2010. [link] [preprint version]

  15. P. Houston, D. Schötzau and X. Wei: A mixed DG method for linearized incompressible magnetohydrodynamics, J. Sci. Comput., vol. 40(1), pp. 281-314, 2009. [link] [preprint version]

  16. M. Grote and D. Schötzau: Optimal error estimates for the fully discrete interior penalty DG method for the wave equation, J. Sci. Comput., vol. 40(1), pp. 257-272, 2009. [link] [preprint version]

  17. B. Cockburn, G. Kanschat and D. Schötzau: An equal-order DG method for the incompressible Navier-Stokes equations, J. Sci. Comput., vol. 40(1), pp. 188-210, 2009. [link] [preprint version]

  18. D. Schötzau and L. Zhu: A robust a-posteriori error estimator for discontinuous Galerkin methods for convection-diffusion equations, Appl. Numer. Math., vol. 59(9), pp. 2236-2255, 2009. [link] [preprint version]

  19. G. Kanschat and D. Schötzau: Energy norm a-posteriori error estimation for divergence-free discontinuous Galerkin approximations of the Navier-Stokes equations, Int. J. Numer. Meth. Fluids, vol. 57(9), pp. 1093-1113, 2008. [link] [preprint version]

  20. M. Grote, A. Schneebeli and D. Schötzau: Interior penalty discontinuous Galerkin methods for Maxwell's equations: Optimal L^2-norm error estimates, IMA J. Numer. Anal., vol. 28(3), pp. 440-468, 2008. [link] [preprint version]

  21. C. Greif and D. Schötzau: Preconditioners for the discretized time-harmonic Maxwell equations in mixed form, Numer. Linear Algebra Appl., vol. 14(4), pp. 281-297, 2007. [link] [preprint version]

  22. B. Cockburn, G. Kanschat and D. Schötzau: A note on discontinuous Galerkin divergence-free solutions of the Navier-Stokes equations, J. Sci. Comput., vol. 31(1), pp. 61-73, 2007. [link] [preprint version]

  23. M. Grote, A. Schneebeli and D. Schötzau: Interior penalty discontinuous Galerkin method for Maxwell's equations: Energy norm error estimates, J. Comput. Appl. Math., vol. 204(2), pp. 375-386, 2007. [link] [preprint version]

  24. P. Houston, I. Perugia and D. Schötzau: An a posteriori error indicator for discontinuous Galerkin discretizations of H(curl)-elliptic partial differential equations, IMA J. Numer. Anal., vol. 27(1), pp. 122-150, 2007. [link] [preprint version]

  25. P. Houston, D. Schötzau and T. Wihler: Energy norm a posteriori error estimation of hp-adaptive discontinuous Galerkin methods for elliptic problems, Math. Models Methods Appl. Sci., vol. 17(1), pp. 33-62, 2007. [link] [preprint version]

  26. M. Grote, A. Schneebeli and D. Schötzau: Discontinuous Galerkin finite element method for the wave equation, SIAM J. Numer. Anal., vol. 44(6), pp. 2408-2431, 2006. [link] [preprint version]

  27. H. Brunner and D. Schötzau: hp-Discontinuous Galerkin time-stepping for Volterra integrodifferential equations, SIAM J. Numer. Anal., vol. 44(1), pp. 224-245, 2006. [link] [preprint version]

  28. P. Houston, D. Schötzau and T. Wihler: An hp-adaptive mixed discontinuous Galerkin FEM for nearly incompressible linear elasticity, Comput. Methods Appl. Mech. Engrg., vol. 195(25-28), pp. 3224-3246, 2006. [link] [preprint version]

  29. B. Cockburn, D. Schötzau and J. Wang: Discontinuous Galerkin methods for incompressible elastic materials, Comput. Methods Appl. Mech. Engrg., vol. 195(25-28), pp. 3184-3204, 2006. [link] [preprint version]

  30. J. Carrero, B. Cockburn and D. Schötzau: Hybridized globally divergence-free LDG methods. Part I: The Stokes problem, Math. Comp., vol. 75(254), pp. 533-563, 2006. [link] [preprint version]

  31. C. Greif and D. Schötzau: Preconditioners for saddle point linear systems with highly singular (1,1) blocks, Electron. Trans. Numer. Anal., vol. 22, pp. 114-121, 2006. [link] [paper]

  32. P. Houston, I. Perugia, A. Schneebeli and D. Schötzau: Mixed discontinuous Galerkin approximation of the Maxwell operator: The indefinite case, ESAIM Math. Model. Numer. Anal., vol. 39(4), pp. 727-754, 2005. [link] [preprint version]

  33. B. Cockburn, G. Kanschat and D. Schötzau: A locally conservative LDG method for the incompressible Navier-Stokes equations, Math. Comp., vol. 74(251), pp. 1067-1095, 2005. [link] [preprint version]

  34. P. Houston, I. Perugia, A. Schneebeli and D. Schötzau: Interior penalty method for the indefinite time-harmonic Maxwell equations, Numer. Math., vol. 100(3), pp. 485-518, 2005. [link] [preprint version]

  35. P. Houston, D. Schötzau and T. Wihler: Energy norm a posteriori error estimation for mixed discontinuous Galerkin approximations of the Stokes problem, J. Sci. Comput., vol. 22(1-3), pp. 347-370, 2005. [link] [preprint version]

  36. P. Houston, I. Perugia and D. Schötzau: Mixed discontinuous Galerkin approximation of the Maxwell operator: Non-stabilized formulation, J. Sci. Comput., vol. 22(1-3), pp. 315-346, 2005. [link] [preprint version]

  37. B. Cockburn, G. Kanschat and D. Schötzau: The local discontinuous Galerkin method for linear incompressible fluid flow: A review, Comput. Fluids, vol. 34(4-5), pp. 491-506, 2005. [link] [preprint version]

  38. P. Houston, I. Perugia and D. Schötzau: Energy norm a posteriori error estimation for mixed discontinuous Galerkin approximations of the Maxwell operator, Comput. Methods Appl. Mech. Engrg., Vol. 194(2-5), pp. 499-510, 2005. [link]

  39. U. Hasler, A. Schneebeli and D. Schötzau: Mixed finite element approximation of incompressible MHD problems based on weighted regularization, Appl. Numer. Math., vol. 51(1), pp. 19-45, 2004. [link] [preprint version]

  40. P. Houston, I. Perugia and D. Schötzau Recent developments in discontinuous Galerkin methods for the time-harmonic Maxwell's equations, International Compumag Society Newsletter, vol. 11(2), pp. 11-17, 2004. [preprint version]

  41. P. Houston, I. Perugia and D. Schötzau: Nonconforming mixed finite element approximations to time-harmonic eddy current problems, IEEE Trans. Magn., vol. 40(2), pp. 1268-1273, 2004. [link] [preprint version]

  42. D. Schötzau: Mixed finite element methods for stationary incompressible magneto-hydrodynamics, Numer. Math., vol. 96(4), pp. 771-800, 2004. [link] [preprint version]

  43. D. Schötzau, C. Schwab and A. Toselli: Mixed hp-DGFEM for incompressible flows II: Geometric edge meshes, IMA J. Numer. Anal., vol. 24(2), pp. 273-308, 2004. [link] [preprint version]

  44. P. Houston, I. Perugia and D. Schötzau: Mixed discontinuous Galerkin approximation of the Maxwell operator, SIAM J. Numer. Anal., vol. 42(1), pp. 434-459, 2004. [link] [preprint version]

  45. B. Cockburn, G. Kanschat and D. Schötzau: The local discontinuous Galerkin method for the Oseen equations, Math. Comp., vol. 73(246), pp. 569-593, 2004. [link] [preprint version]

  46. D. Schötzau and T. Wihler: Exponential convergence of mixed hp-DGFEM for Stokes flow in polygons, Numer. Math., vol. 96(2), pp. 339-361, 2003. [link] [preprint version]

  47. D. Schötzau, C. Schwab and A. Toselli: Stabilized hp-DGFEM for incompressible flow, Math. Models Methods Appl. Sci., vol. 13(10), pp. 1413-1436, 2003. [link] [preprint version]

  48. A. Schneebeli and D. Schötzau: Mixed finite elements for incompressible magneto-hydrodynamics, C. R. Acad. Sci. Paris, Ser. I, vol. 337(1), pp. 71-74, 2003. [link] [preprint version]

  49. D. Schötzau, C. Schwab and A. Toselli: Mixed hp-DGFEM for incompressible flows, SIAM J. Numer. Anal., vol. 40(6), pp. 2171-2194, 2003. [link] [preprint version]

  50. I. Perugia and D. Schötzau: The hp-local discontinuous Galerkin method for low-frequency time-harmonic Maxwell equations, Math. Comp., vol. 72(243), pp. 1179-1214, 2003. [link] [preprint version]

  51. I. Perugia, D. Schötzau and P. Monk: Stabilized interior penalty methods for the time-harmonic Maxwell equations, Comput. Methods Appl. Mech. Engrg., vol. 191(41-42), pp. 4675-4697, 2002. [link] [preprint version]

  52. B. Cockburn, G. Kanschat, D. Schötzau and C. Schwab: Local discontinuous Galerkin methods for the Stokes system, SIAM J. Numer. Anal., vol. 40(1), pp. 319-343, 2002. [link] [preprint version]

  53. I. Perugia and D. Schötzau: An hp-analysis of the local discontinuous Galerkin method for diffusion problems, J. Sci. Comput., vol. 17(1-4), pp. 561-571, 2002. [link] [preprint version]

  54. P. Alotto, A. Bertoni, I. Perugia and D. Schötzau: Efficient use of the local discontinuous Galerkin method for meshes sliding on a circular boundary, IEEE Trans. Magn., vol. 38(2), pp. 405-408, 2002. [link] [preprint version]

  55. P. Castillo, B. Cockburn, D. Schötzau and C. Schwab: Optimal a priori error estimates for the hp-version of the local discontinuous Galerkin method for convection-diffusion problems, Math. Comp., vol. 71, Issue 238, pp. 455-478, 2002. [link] [preprint version]

  56. P. Castillo, B. Cockburn, I. Perugia and D. Schötzau: Local discontinuous Galerkin methods for elliptic problems, Commun. Numer. Methods Eng., vol. 18(1), pp. 69-75, 2002. [link] [preprint version]

  57. D. Schötzau and C. Schwab: hp-Discontinuous Galerkin time-stepping for parabolic problems, C. R. Acad. Sci. Paris, Ser. I, vol. 333(12), pp. 1121-1126, 2001. [link] [preprint version]

  58. I. Perugia and D. Schötzau: On the coupling of local discontinuous Galerkin and conforming finite element methods, J. Sci. Comput., vol. 16(4), pp. 411-433, 2001. [link] [preprint version]

  59. T. Werder, K. Gerdes, D. Schötzau and C. Schwab: hp-Discontinuous Galerkin time-stepping for parabolic problems, Comput. Methods Appl. Mech. Engrg., vol. 190(49-50), pp. 6685-6708, 2001. [link] [preprint version]

  60. B. Cockburn, G. Kanschat, I. Perugia and D. Schötzau: Superconvergence of the local discontinuous Galerkin method for elliptic problems on Cartesian grids, SIAM J. Numer. Anal., vol. 39(1), pp. 264-285, 2001. [link] [preprint version]

  61. P. Alotto, A. Bertoni, I. Perugia, and D. Schötzau: Discontinuous finite element methods for the simulation of rotating electrical machines, COMPEL, vol. 20(2), pp. 448-462, 2001. [link] [preprint version]

  62. D. Schötzau and C. Schwab: Exponential convergence in a Galerkin least squares hp-FEM for Stokes flow, IMA J. Numer. Anal., vol. 21(1), pp. 53-80, 2001. [link] [preprint version]

  63. K. Gerdes, J.M. Melenk, D. Schötzau and C. Schwab: The hp-version of the streamline-diffusion finite element method in two space dimensions, Math. Models Methods Appl. Sci., vol. 11(2), pp. 301-337, 2001. [link] [preprint version]

  64. P. Castillo, B. Cockburn, I. Perugia and D. Schötzau: An a priori error analysis of the local discontinuous Galerkin method for elliptic problems, SIAM J. Numer. Anal., vol. 38(5), pp. 1676-1706, 2000. [link] [preprint version]

  65. D. Schötzau and C. Schwab: An hp a-priori error analysis of the DG time-stepping method for initial value problems, Calcolo, vol. 37(4), pp. 207-232, 2000. [link] [preprint version]

  66. D. Schötzau and C. Schwab: Time discretization of parabolic problems by the hp-version of the discontinuous Galerkin finite element method, SIAM J. Numer. Anal., vol. 38(3), pp. 837-875, 2000. [link] [preprint version]

  67. D. Schötzau, K. Gerdes and C. Schwab: Stable and stabilized hp-finite element methods for the Stokes problem, Appl. Numer. Math., vol. 33(1-4), pp. 349-356, 2000. [link] [preprint version]

  68. D. Schötzau: hp-DGFEM for parabolic evolution problems with applications to diffusion and viscous incompressible fluid flow, Calcolo, vol. 37(1), pp. 59-64, 2000. [link] [preprint version]

  69. D. Schötzau, C. Schwab and R. Stenberg: Mixed hp-FEM on anisotropic meshes II: Hanging nodes and tensor products of boundary layer meshes, Numer. Math., vol. 83(4), pp. 667-697, 2000. [link] [preprint version]

  70. K. Gerdes and D. Schötzau: hp-Finite element simulations for Stokes flow - stable and stabilized, Finite Elem. Anal. Des., vol. 33(3), pp. 143-165, 1999. [link] [preprint version]

  71. D. Schötzau and C. Schwab: Mixed hp-FEM on anisotropic meshes, Math. Models Methods Appl. Sci., vol. 8(5), pp. 787-820, 1998. [link] [preprint version]

  72. D. Schötzau, K. Gerdes and C. Schwab: Galerkin least squares hp-finite element method for the Stokes problem, C. R. Acad. Sci. Paris, Ser. I, vol. 326(2), pp. 249-254, 1998. [link] [preprint version]


back