Dominik Schötzau's publications
Journal Papers and Preprints
To request any of these papers please e-mail me:
schoetzau at math.ubc.ca
Journal Papers:
- Parallel numerical solution of the time-harmonic Maxwell equations in mixed form
D. Li, C. Greif and D. Schötzau, Numerical Linear Algebra with Applications, published electronically, 2011.
-
An hp-version discontinuous Galerkin method for integro-differential equations of parabolic type
K. Mustapha, H. Brunner, H. Mustapha and D. Schötzau,
SIAM J. Numer. Anal., Vol. 49,
pp. 1369-1396, 2011.
-
Mixed finite element methods for problems with Robin boundary conditions
J. Könnö, D. Schötzau and R. Stenberg,
SIAM J. Numer. Anal., Vol. 49, pp. 285-308, 2011.
-
Energy norm a-posteriori error estimation for hp-adaptive discontinuous
Galerkin methods for elliptic problems in three dimensions
L. Zhu, S. Giani, P. Houston and D. Schötzau,
Math. Models Methods Appl. Sci., Vol. 21, pp. 267-306, 2011.
-
A robust a-posteriori error estimate for
hp-adaptive DG methods for convection-diffusion equations
L. Zhu and D. Schötzau, IMA J. Numer. Anal., Vol. 31, pp. 971-1005, 2011.
-
A mixed finite element method with exactly divergence-free velocities for incompressible
magnetohydrodynamics
C. Greif, D. Li, D. Schötzau and X. Wei, Comput. Methods Appl. Mech. Engrg., Vol. 199, pp. 2840-2855, 2010.
-
A posteriori error estimation for hp-version time-stepping methods for parabolic partial differential equations
D. Schötzau and T. Wihler, Numer. Math., Vol 115, pp. 475-509, 2010.
-
A mixed DG method for linearized incompressible magnetohydrodynamics
P. Houston, D. Schötzau and X. Wei, J. Sci. Comput. (Special Issue: Discontinuous Galerkin Methods), Vol. 40, pp. 281-314, 2009.
-
Optimal error estimates for the fully discrete interior penalty DG method for the wave equation
M. Grote and D. Schötzau, J. Sci. Comput. (Special Issue: Discontinuous Galerkin Methods), Vol. 40, pp. 257-272, 2009.
-
An equal-order DG method for the incompressible Navier-Stokes equations
B. Cockburn, G. Kanschat and D. Schötzau, J. Sci. Comput. (Special Issue: Discontinuous Galerkin Methods), Vol. 40, pp. 188-210, 2009.
-
A robust a-posteriori error estimator for discontinuous Galerkin methods for convection-diffusion equations
D. Schötzau and L. Zhu, Appl. Numer. Math., Vol. 59, pp. 2236-2255, 2009.
-
Energy norm a-posteriori error estimation for divergence-free discontinuous
Galerkin approximations of the Navier-Stokes equations
G. Kanschat and D. Schötzau,
Int. J. Numer. Meth. Fluids,
Vol. 57, pp. 1093-1113, 2008.
-
Interior penalty discontinuous Galerkin methods for Maxwell's equations: Optimal L^2 norm error estimates
M. Grote, A. Schneebeli and D. Schötzau,
IMA J. Numer. Anal.,
Vol. 28, pp. 440-468, 2008.
-
Preconditioners for the discretized time-harmonic Maxwell equations
in mixed form
C. Greif and D. Schötzau,
Numererical Linear Algebra with Applications, Vol. 14,
pp. 281-297, 2007.
-
A note on discontinuous Galerkin divergence-free solutions of the
Navier-Stokes equations
B. Cockburn, G. Kanschat and D. Schötzau,
J. Sci. Comput., Vol. 31, pp. 61-73, 2007.
-
Interior penalty discontinuous Galerkin method for Maxwell's equations:
Energy norm error estimates
M. Grote, A. Schneebeli and D. Schötzau,
Journal of Computational and Applied Mathematics, Vol. 204, pp. 375-386, 2007.
-
An a posteriori error indicator for discontinuous Galerkin discretizations
of H(curl)-elliptic partial differential equations
P. Houston, I. Perugia and D. Schötzau,
IMA J. Numer. Anal., Vol. 27, pp. 122-150, 2007.
-
Energy norm a posteriori error estimation of hp-adaptive discontinuous Galerkin methods
for elliptic problems
P. Houston, D. Schötzau and T. Wihler,
Math. Models Methods Appl. Sci., Vol. 17, pp. 33-62, 2007.
- Discontinuous Galerkin finite element method for the wave equation
M. Grote, A. Schneebeli and D. Schötzau,
SIAM J. Numer. Anal., Vol. 44, pp. 2408-2431, 2006.
- hp-Discontinuous Galerkin time-stepping for Volterra integrodifferential equations
H. Brunner and D. Schötzau,
SIAM J. Numer. Anal., Vol. 44, pp. 224-245, 2006.
-
An hp-adaptive mixed discontinuous Galerkin FEM for nearly incompressible
linear elasticity
P. Houston, D. Schötzau and T. Wihler,
Comput. Methods Appl. Mech. Engrg.
(Special Issue: Discontinuous Galerkin Methods), Vol. 195, pp. 3224-3246, 2006.
-
Discontinuous Galerkin methods for incompressible elastic materials
B. Cockburn, D. Schötzau and J. Wang,
Comput. Methods Appl. Mech. Engrg. (Special Issue: Discontinuous Galerkin Methods),
Vol. 195, pp. 3184-3204, 2006.
-
Hybridized globally divergence-free LDG methods. Part I: The Stokes problem
J. Carrero, B. Cockburn and D. Schötzau,
Math. Comp., Vol. 75, pp. 533-563, 2006.
-
Preconditioners for saddle point linear systems
with highly singular (1,1) blocks
C. Greif and D. Schötzau,
Electronic Transactions on Numerical
Analysis (Special Issue: Saddle Point Problems), Vol. 22,
pp. 114-121, 2006.
-
Mixed discontinuous Galerkin approximation of the Maxwell operator: The indefinite case
P. Houston, I. Perugia, A. Schneebeli and D. Schötzau,
Math. Model. Numer. Anal., Vol. 39, pp. 727-754, 2005.
-
A locally conservative LDG method for the incompressible Navier-Stokes
equations
B. Cockburn, G. Kanschat and D. Schötzau,
Math. Comp., Vol. 74, pp. 1067-1095, 2005.
-
Interior penalty method for the indefinite time-harmonic Maxwell equations
P. Houston, I. Perugia, A. Schneebeli and D. Schötzau,
Numer. Math.,
Vol. 100, pp. 485-518, 2005.
-
Energy norm a posteriori error estimation for mixed discontinuous
Galerkin approximations of the Stokes problem
P. Houston, D. Schötzau and T. Wihler,
J. Sci. Comput. (Special Issue: Discontinuous Galerkin Methods), Vol. 22, pp. 347-370, 2005.
-
Mixed discontinuous Galerkin approximation of the Maxwell operator:
Non-stabilized formulation
P. Houston, I. Perugia and D. Schötzau,
J. Sci. Comput. (Special Issue: Discontinuous Galerkin Methods), Vol. 22, pp. 315-346, 2005.
-
The local discontinuous Galerkin method for linearized
incompressible fluid flow: A review
B. Cockburn, G. Kanschat and D. Schötzau,
Computer and Fluids (Special Issue: Residual Distribution Schemes, Discontinuous Galerkin Schemes and Adaptation), Vol. 34, pp. 491-506, 2005.
-
Energy norm a posteriori error estimation for mixed discontinuous
Galerkin approximations of the Maxwell operator
P. Houston, I. Perugia and D. Schötzau,
Comput. Methods Appl. Mech. Engrg. (Special Issue: Selected Papers from the 11th Conference on The Mathematics of Finite Elements and Applications),
Vol. 194, pp. 499-510, 2005.
-
Mixed finite element approximation of incompressible MHD problems based
on weighted regularization
U. Hasler, A. Schneebeli and D. Schötzau,
Appl. Numer. Math., Vol. 51, pp. 19-45, 2004.
- Recent developments in discontinuous Galerkin methods for
the time-harmonic Maxwell's equations
P. Houston, I. Perugia and D. Schötzau,
International Compumag Society Newsletter, Vol. 11, pp. 11-17, 2004.
-
Nonconforming mixed finite element approximations to time-harmonic
eddy current problems
P. Houston, I. Perugia and D. Schötzau,
IEEE Trans. on Magnetics, Vol. 40, pp. 1268-1273, 2004.
-
Mixed finite element methods for stationary incompressible magneto-hydrodynamics
D. Schötzau,
Numer. Math., Vol. 96, pp. 771-800, 2004.
-
Mixed hp-DGFEM for incompressible flows II: Geometric edge meshes
D. Schötzau, C. Schwab and A. Toselli,
IMA J. Numer. Anal., Vol. 24, pp. 273-308, 2004.
-
Mixed discontinuous Galerkin approximation of the Maxwell operator
P. Houston, I. Perugia and D. Schötzau,
SIAM J. Numer. Anal., Vol. 42, pp. 434-459, 2004.
-
The local discontinuous Galerkin method for the Oseen
equations
B. Cockburn, G. Kanschat and D. Schötzau,
Math. Comp., Vol. 73, pp. 569-593, 2004.
-
Exponential convergence of mixed hp-DGFEM for Stokes flow in polygons
D. Schötzau and T. Wihler,
Numer. Math., Vol. 96, pp. 339-361, 2003.
-
Stabilized hp-DGFEM for incompressible flow
D. Schötzau, C. Schwab and A. Toselli,
Math. Models Meth. Appl. Sci., Vol. 13, pp. 1413-1436, 2003.
-
Mixed finite elements for incompressible magneto-hydrodynamics
A. Schneebeli and D. Schötzau,
C. R. Acad. Sci. Paris, Serie I, Vol. 337, pp. 71-74, 2003.
-
Mixed hp-DGFEM for incompressible flows
D. Schötzau, C. Schwab and A. Toselli,
SIAM J. Numer. Anal., Vol. 40, pp. 2171-2194, 2003.
-
The hp-local discontinuous Galerkin method
for low-frequency time-harmonic Maxwell equations
I. Perugia and D. Schötzau,
Math. Comp., Vol. 72, pp. 1179-1214, 2003.
-
Stabilized interior penalty methods for the time-harmonic
Maxwell equations
I. Perugia, D. Schötzau and P. Monk,
Comput. Methods Appl. Mech.
Engrg., Vol. 191, pp. 4675-4697, 2002.
-
Local discontinuous Galerkin methods for the Stokes system
B. Cockburn, G. Kanschat, D. Schötzau and C. Schwab,
SIAM J. Numer. Anal., Vol. 40, pp. 319-343, 2002.
-
An hp-analysis of the local discontinuous Galerkin
method for diffusion problems
I. Perugia and D. Schötzau,
J. Sci. Comput. (Special Issue: Proceedings of the 5th International Conference on Spectral and High Order Methods), Vol. 17, pp. 561-571, 2002.
-
Efficient use of the local discontinuous Galerkin method for meshes
sliding on a circular boundary
P. Alotto, A. Bertoni, I. Perugia and D. Schötzau,
IEEE Trans. on Magnetics, Vol. 38, pp. 405-408, 2002.
-
Optimal a priori error estimates for the hp-version of the
local discontinuous Galerkin method for convection-diffusion problems
P. Castillo, B. Cockburn, D. Schötzau and C. Schwab,
Math. Comp., Vol. 71, pp. 455-478, 2002.
-
Local discontinuous Galerkin methods for elliptic problems
P. Castillo, B. Cockburn, I. Perugia and D. Schötzau,
Commun. Numer. Meth. Engng., Vol. 18, pp. 69-75, 2002.
-
hp-discontinuous Galerkin time-stepping for parabolic problems
D. Schötzau and C. Schwab
C. R. Acad. Sci. Paris, Serie I, Vol. 333, pp. 1121-1126, 2001.
-
On the coupling of local discontinuous Galerkin and
conforming finite element methods
I. Perugia and D. Schötzau,
J. Sci. Comput., Vol. 16, pp. 411-433, 2001.
-
hp-discontinuous Galerkin time-stepping for parabolic problems
T. Werder, K. Gerdes, D. Schötzau and C. Schwab,
Computer Methods in Applied Mechanics and
Engineering, Vol. 190, pp. 6685-6708, 2001.
-
Superconvergence of the local discontinuous Galerkin method for elliptic
problems on Cartesian grids
B. Cockburn, G. Kanschat, I. Perugia and D. Schötzau,
SIAM J. Numer. Anal., Vol. 39, pp. 264-285, 2001.
-
Discontinuous finite element methods for the simulation of
rotating electrical machines
P. Alotto, A. Bertoni, I. Perugia, and D. Schötzau,
COMPEL, Vol. 20, pp. 448-462, 2001.
-
Exponential convergence in a Galerkin least squares hp-FEM for Stokes flow
D. Schötzau and C. Schwab,
IMA J. Numer. Anal., Vol. 21, pp. 53-80, 2001.
-
The hp-version of the streamline-diffusion finite element method
in two space dimensions
K. Gerdes, J.M. Melenk, D. Schötzau and C. Schwab,
Math. Models Meth. Appl. Sci., Vol. 11, pp. 301-337, 2001.
-
An a priori error analysis of the local discontinuous Galerkin method
for elliptic problems
P. Castillo, B. Cockburn, I. Perugia and D. Schötzau,
SIAM J. Numer. Anal., Vol. 38, pp. 1676-1706, 2000.
-
An hp a-priori error analysis of the DG time-stepping method for
initial value problems
D. Schötzau and C. Schwab,
Calcolo, Vol. 37, pp. 207-232, 2000.
-
Time discretization of parabolic problems by the hp-version of the
discontinuous Galerkin finite element method
D. Schötzau and C. Schwab,
SIAM J. Numer. Anal., Vol. 38, pp. 837-875, 2000.
-
Stable and stabilized hp-finite element methods for the Stokes
problem
D. Schötzau, K. Gerdes and C. Schwab,
Appl. Numer. Math. (Special Issue: Proceedings of the 4th International Conference on Spectral and High Order Methods), Vol. 33, pp. 349-356, 2000.
-
Mixed hp-FEM on anisotropic meshes, II: Hanging nodes and
tensor products of boundary layer meshes
D. Schötzau, C. Schwab and R. Stenberg,
Numer. Math., Vol. 83, pp. 667-697, 2000.
-
hp-finite element simulations for Stokes flow - stable and stabilized
K. Gerdes and D. Schötzau,
Finite Elements in Analysis and Design, Vol. 33, pp. 143-165, 1999.
-
Mixed hp-FEM on anisotropic meshes
D. Schötzau and C. Schwab,
Math. Models Methods Appl. Sci., Vol. 8, pp. 787-820, 1998.
-
Galerkin least squares hp-finite element method for the Stokes problem
D. Schötzau, C. Schwab and K. Gerdes,
C. R. Acad. Sci. Paris, Serie I,
Vol. 326, pp. 249-254, 1998.
back