A strongly aperiodic SFT in the Grigorchuk group.

Sebastián Barbieri Lemp

University of British Columbia

Algorithmic questions in dynamical systems
Toulouse
April, 2018
The Grigorchuk group

Generated by a, b, c, d acting over $\{0, 1\}^\mathbb{N}$.

Graph showing the relations between a, b, c, d, and id. The edges indicate the action of the elements on the binary sequences.
The Grigorchuk group

Generated by a, b, c, d acting over $\{0, 1\}^\mathbb{N}$.

$x = \begin{array}{cccccccc}
1 & 1 & 1 & 0 & 1 & 0 & 0 & 0 \\
\downarrow & b
\end{array} \ldots$

$b(x) =$

\ldots
The Grigorchuk group

Generated by a, b, c, d acting over $\{0, 1\}^\mathbb{N}$.

$x = 1 \ 1 \ 1 \ 0 \ 1 \ 0 \ 0 \ 0 \ \ldots$

\downarrow

$b(x) = 1 \ \ldots$
The Grigorchuk group

Generated by a, b, c, d acting over $\{0, 1\}^\mathbb{N}$.

\[x = 1 \ 1 \ 1 \ 1 \ 0 \ 1 \ 0 \ 0 \ 0 \ldots \]
\[\downarrow \]
\[b \ c \ d \]
\[b(x) = 1 \ 1 \ldots \]
The Grigorchuk group

Generated by a, b, c, d acting over $\{0, 1\}^\mathbb{N}$.

\[x = \begin{array}{cccccccc}
1 & 1 & 1 & 0 & 1 & 0 & 0 & 0 \\
\end{array} \ldots \]

\[\downarrow \]

\[b \quad c \quad d \quad b \]

\[b(x) = \begin{array}{cccc}
1 & 1 & 1 & \ldots \\
\end{array} \]
The Grigorchuk group

Generated by a, b, c, d acting over $\{0, 1\}^\mathbb{N}$.

\[
x = \begin{array}{cccccccccc}
1 & 1 & 1 & 0 & 1 & 0 & 0 & 0 & \ldots \\
\downarrow \\
b & c & d & b & \ a
\end{array}
\]

\[
b(x) = \begin{array}{cccccccccc}
1 & 1 & 1 & 1 & 0 & \ldots
\end{array}
\]
The Grigorchuk group

Generated by a, b, c, d acting over $\{0, 1\}^\mathbb{N}$.

$x = \begin{array}{ccccccc} 1 & 1 & 1 & 0 & 1 & 0 & 0 \\ \downarrow & b & c & d & b & a & id \\ b(x) = \begin{array}{ccccccc} 1 & 1 & 1 & 0 & 0 & \end{array} \ldots \end{array}$
The Grigorchuk group

Generated by a, b, c, d acting over $\{0, 1\}^\mathbb{N}$.

$x = 1 \ 1 \ 1 \ 0 \ 1 \ 0 \ 0 \ 0 \ 0 \ldots$

\downarrow

$b \ c \ d \ b \ a \ id \ id$

$b(x) = 1 \ 1 \ 1 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ldots$
What about the Grigorchuk group?

- a, b, c, d are involutions.
- Infinite and finitely generated.
- It contains no copy of \mathbb{Z} as a subgroup. For every $g \in G$, there is $n \in \mathbb{N}$ such that $g^n = 1_G$.
- Decidable word (and conjugacy) problem.
- It has intermediate growth.
- Amenable but not elementary amenable.
- It is commensurable to its square. ie: G and $G \times G$ have an isomorphic finite index subgroup.

The goal of this talk is to construct a strongly aperiodic SFT here.
What about the Grigorchuk group?

- a, b, c, d are involutions.
- Infinite and finitely generated.
- It contains no copy of \mathbb{Z} as a subgroup. For every $g \in G$, there is $n \in \mathbb{N}$ such that $g^n = 1_G$.
- Decidable word (and conjugacy) problem.
- It has intermediate growth.
- Amenable but not elementary amenable.
- It is commensurable to its square. i.e: G and $G \times G$ have an isomorphic finite index subgroup.

The goal of this talk is to construct a strongly aperiodic SFT here.
Definitions

- G is a finitely generated group.
- \mathcal{A} is a finite alphabet. Ex: $\mathcal{A} = \{0, 1\}$.
- \mathcal{A}^G is the set of configurations, $x : G \to \mathcal{A}$
- $G \curvearrowright \mathcal{A}^G$ is the left shift action given by:

$$ (gx)(h) := x(g^{-1}h). $$
Definitions

- G is a finitely generated group.
- \mathcal{A} is a finite alphabet. Ex: $\mathcal{A} = \{0, 1\}$.
- \mathcal{A}^G is the set of configurations, $x : G \to \mathcal{A}$
- $G \curvearrowleft \mathcal{A}^G$ is the left shift action given by:

$$ (gx)(h) := x(g^{-1}h). $$

Definition: subshift

A closed and shift-invariant set $X \subset \mathcal{A}^G$ is called a subshift.
Definitions

- G is a finitely generated group.
- \mathcal{A} is a finite alphabet. Ex: $\mathcal{A} = \{0, 1\}$.
- \mathcal{A}^G is the set of configurations, $x : G \to \mathcal{A}$
- $G \actson \mathcal{A}^G$ is the left shift action given by:

 $$(gx)(h) := x(g^{-1}h).$$

Definition: subshift

A closed and shift-invariant set $X \subset \mathcal{A}^G$ is called a subshift.

A subshift is a set of configurations avoiding patterns from a list \mathcal{F}.

$$p \in \mathcal{A}^S, \quad \llbracket p \rrbracket = \{x \in \mathcal{A}^G \mid x|_S = p\}$$

$$X = X_{\mathcal{F}} = \mathcal{A}^G \setminus \bigcup_{g \in G, p \in \mathcal{F}} g(\llbracket p \rrbracket)$$
A subshift $X \subset \mathcal{A}^G$ is called:

- a *subshift of finite type (SFT)* if $X = X_F$ for some finite F.
- a *sofic subshift* if X is the image of an SFT by a topological factor (a local recoding).
- an *effectively closed subshift* if X can be defined by a recursively enumerable coding of a set of forbidden patterns.

Strongly aperiodic

A subshift $X \subset \mathcal{A}^G$ is strongly aperiodic if the shift action is free. That is, for all $x \in X$, $gx = x \Rightarrow g = 1$.

\[\forall x \in X, \quad gx = x \Rightarrow g = 1 \]
Definitions

Classes of subshifts

A subshift $X \subseteq A^G$ is called:

- a **subshift of finite type (SFT)** if $X = X_F$ for some finite F.
- a **sofic subshift** if X is the image of an SFT by a topological factor (a local recoding).
Definitions

Classes of subshifts

A subshift $X \subset \mathcal{A}^G$ is called:

- a *subshift of finite type (SFT)* if $X = X_F$ for some finite F.
- a *sofic subshift* if X is the image of an SFT by a topological factor (a local recoding).
- an *effectively closed subshift* if X can be defined by a recursively enumerable coding of a set of forbidden patterns.

Strongly aperiodic

A subshift $X \subset \mathcal{A}^G$ is *strongly aperiodic* if the shift action is free.

$$\forall x \in X, \quad gx = x = \Rightarrow g = 1_G.$$
Classes of subshifts

A subshift $X \subset A^G$ is called:

- a *subshift of finite type (SFT)* if $X = X_{\mathcal{F}}$ for some finite \mathcal{F}.
- a *sofic subshift* if X is the image of an SFT by a topological factor (a local recoding).
- an *effectively closed subshift* if X can be defined by a recursively enumerable coding of a set of forbidden patterns.

Strongly aperiodic

A subshift $X \subset A^G$ is *strongly aperiodic* if the shift action is free.

$$\forall x \in X, gx = x \implies g = 1_G.$$

Problem

Question

Which groups admit strongly aperiodic SFTs?
Which groups admit strongly aperiodic SFTs?

Baby (alpaca) example: Let $G = \mathbb{Z}^2/20\mathbb{Z}^2$
Which groups admit strongly aperiodic SFTs?

Baby (alpaca) example: Let $G = \mathbb{Z}^2/20\mathbb{Z}^2$
Which groups admit strongly aperiodic SFTs?

Baby (alpaca) example: Let $G = \mathbb{Z}^2/20\mathbb{Z}^2$
Abelian case

Proposition

Every non-empty \(\mathbb{Z}\)-SFT contains a periodic configuration.
Abelian case

Proposition
Every non-empty \mathbb{Z}-SFT contains a periodic configuration.

There exist strongly aperiodic SFTs on \mathbb{Z}^2.
what’s known? are there any SA SFTs?

result: **nay!**
what’s known? are there any SA SFTs?

result: **nay!**

- (Jeandel ‘15) If G is recursively presented and has undecidable word problem.
what’s known? are there any SA SFTs?

<table>
<thead>
<tr>
<th>Result: nay!</th>
</tr>
</thead>
<tbody>
<tr>
<td>- (Jeandel ’15) If G is recursively presented and has undecidable word problem.</td>
</tr>
<tr>
<td>- (Cohen ’15) If G has two or more ends.</td>
</tr>
</tbody>
</table>
what’s known? are there any SA SFTs?

result: **nay!**
- (Jeandel ’15) If G is recursively presented and has undecidable word problem.
- (Cohen ’15) If G has two or more ends.

result: **aye!**
- (Folklore) \mathbb{Z}^d for $d > 1$.
what’s known? are there any SA SFTs?

result: nay!

- (Jeandel ’15) If G is recursively presented and has undecidable word problem.
- (Cohen ’15) If G has two or more ends.

result: aye!

- (Folklore) \mathbb{Z}^d for $d > 1$.
- (Şahin, Schraudner, Ugarcovici, ’$+\infty$ ’14]) The discrete Heisenberg group.
what’s known? are there any SA SFTs?

result: **nay!**
- (Jeandel ’15) If G is recursively presented and has undecidable word problem.
- (Cohen ’15) If G has two or more ends.

result: **aye!**
- (Folklore) \mathbb{Z}^d for $d > 1$.
- (Şahin, Schraudner, Ugarcovici, ’$+\infty$ ’14) The discrete Heisenberg group.
- (Cohen, Goodman-Strauss, ’15) Surface groups.
what’s known? are there any SA SFTs?

result: **nay!**

- (Jeandel ’15) If G is recursively presented and has undecidable word problem.
- (Cohen ’15) If G has two or more ends.

result: **aye!**

- (Folklore) \mathbb{Z}^d for $d > 1$.
- (Şahin, Schraudner, Ugarcovici, ’+∞ [’14]) The discrete Heisenberg group.
- (Cohen, Goodman-Strauss, ’15) Surface groups.
- (Cohen, Goodman-Strauss, Rieck, ’17) One-ended Gromov-hyperbolic groups.
what’s known? are there any SA SFTs?

result: nay!

- (Jeandel ’15) If G is recursively presented and has undecidable word problem.
- (Cohen ’15) If G has two or more ends.

result: aye!

- (Folklore) \mathbb{Z}^d for $d > 1$.
- (Şahin, Schraudner, Ugarcovici, ’+∞ [’14]) The discrete Heisenberg group.
- (Cohen, Goodman-Strauss, ’15) Surface groups.
- (Cohen, Goodman-Strauss, Rieck, ’17) One-ended Gromov-hyperbolic groups.
- (B, Sablik, ’18+ [’16]) Groups of the form $\mathbb{Z}^d \rtimes_\varphi G$ with $d > 1$, G f.g. and decidable word problem.
what’s known? are there any SA SFTs?

result: nay!

- (Jeandel ’15) If G is recursively presented and has undecidable word problem.
- (Cohen ’15) If G has two or more ends.

result: aye!

- (Folklore) \mathbb{Z}^d for $d > 1$.
- (Şahin, Schraudner, Ugarcovici, ’$+\infty$ [’14]) The discrete Heisenberg group.
- (Cohen, Goodman-Strauss, ’15) Surface groups.
- (Cohen, Goodman-Strauss, Rieck, ’17) One-ended Gromov-hyperbolic groups.
- (B, Sablik, ’18+ [’16]) Groups of the form $\mathbb{Z}^d \rtimes \varphi G$ with $d > 1$, G f.g. and decidable word problem.
- (Jeandel, ’16) f.g. polycyclic groups which are not virtually \mathbb{Z}.
What about the Grigorchuk group?

All groups here are infinite, finitely generated and have decidable word problem.

∃ SA SFTs in the Grigorchuk group
What about the Grigorchuk group?

All groups here are infinite, finitely generated and have decidable word problem.

\[\exists \text{SA SFTs in } G_1 \times G_2 \times G_3 \]

\[\exists \text{SA SFTs in the Grigorchuk group} \]
What about the Grigorchuk group?

All groups here are infinite, finitely generated and have decidable word problem.

Every EC G-subshift is a sub-action of a $G \times H_1 \times H_2$-sofic

\exists SA EC subshifts in G

\exists SA SFTs in $G_1 \times G_2 \times G_3$

\exists SA SFTs in the Grigorchuk group
What about the Grigorchuk group?

All groups here are infinite, finitely generated and have decidable word problem.

Every EC $G \curvearrowright \{0,1\}^\mathbb{N}$ is a factor of a subaction of a $G \times H_1 \times H_2$-SFT

Every EC \mathbb{Z}-subshift is a subaction of a \mathbb{Z}^2-sofic

Every EC G-subshift is a subaction of a $G \times H_1 \times H_2$-sofic

\exists SA EC subshifts in G

\exists SA SFTs in $G_1 \times G_2 \times G_3$

\exists SA SFTs in the Grigorchuk group
What about the Grigorchuk group?

All groups here are infinite, finitely generated and have decidable word problem.

Every EC $G \curvearrowright \{0, 1\}^\mathbb{N}$ is a factor of a subaction of a $G \times H_1 \times H_2$-SFT

Every EC \mathbb{Z}-subshift is a subaction of a \mathbb{Z}^2-sofic

\exists SA EC subshifts in G

\exists SA SFTs in $G_1 \times G_2 \times G_3$

\exists SA SFTs in the Grigorchuk group

AS 2010, DRS 2010

ABT 2018+ (2015)
We say that two groups G_1, G_2 are \textit{commensurable} if they contain finite index subgroups H_1, H_2 such that $H_1 \cong H_2$.

\[G_1 \leftrightarrow H_1 \cong H_2 \leftrightarrow G_2 \]
We say that two groups G_1, G_2 are \textit{commensurable} if they contain finite index subgroups H_1, H_2 such that $H_1 \cong H_2$.

\[
G_1 \leftrightarrow H_1 \cong H_2 \leftrightarrow G_2
\]

- Recall that the Grigorchuk group G is commensurable to its square $G \times G$
Commensurability

We say that two groups G_1, G_2 are *commensurable* if they contain finite index subgroups H_1, H_2 such that $H_1 \cong H_2$.

\[
G_1 \leftrightarrow H_1 \cong H_2 \rightarrow G_2
\]

▷ Recall that the Grigorchuk group G is commensurable to its square $G \times G$
▷ if G is commensurable to $G \times G$, then it is also commensurable to $G \times G \times G$.

Theorem (Carroll-Penland, 2015)

Admitting a strongly aperiodic SFT is a commensurability invariant.
We say that two groups G_1, G_2 are *commensurable* if they contain finite index subgroups H_1, H_2 such that $H_1 \cong H_2$.

\[
G_1 \leftrightarrow H_1 \cong H_2 \rightarrow G_2
\]

Recall that the Grigorchuk group G is commensurable to its square $G \times G$

if G is commensurable to $G \times G$, then it is also commensurable to $G \times G \times G$.

Theorem (Carroll-Penland, 2015)

Admitting a strongly aperiodic SFT is a commensurability invariant.
\[\exists \text{ SA SFTs in } G_1 \times G_2 \times G_3 \]

\[\exists \text{ SA SFTs in the Grigorchuk group} \]
∃ SA SFTs in $G_1 \times G_2 \times G_3$

\[\xrightarrow{\text{In fact, the same result can be extended to branch groups.}}\]

∃ SA SFTs in the Grigorchuk group
∃ SA SFTs in $G_1 \times G_2 \times G_3$

∃ SA SFTs in branch groups

In fact, the same result can be extended to **branch groups**.
In fact, the same result can be extended to **branch groups**.

Theorem

Let G be a finitely generated and recursively presented branch group. Then G has decidable word problem if and only if there exists a non-empty strongly aperiodic G-SFT.
We want to show next:

Every EC G-subshift is a sub-action of a $G \times H_1 \times H_2$-sofic

\[\exists \text{ SA SFTs in } G_1 \times G_2 \times G_3 \]

\[\exists \text{ SA EC subshifts in } G \]
We want to show next:

Every EC G-subshift is a sub-action of a $G \times H_1 \times H_2$-sofic

\exists SA EC subshifts in G

\exists SA SFTs in $G_1 \times G_2 \times G_3$
Square-free vertex coloring

Let $G = (V, E)$ be a graph. A vertex coloring is a function $x : V \rightarrow \mathcal{A}$. We say it is square-free if for every odd-length path $p = v_1 \ldots v_{2n}$ then there exists $1 \leq j \leq n$ such that $x(v_j) \neq x(v_{j+n})$.

C_5 has a square-free vertex coloring with 4 colors, but not with 3.
Let $G = (V, E)$ be a graph. A vertex coloring is a function $x : V \to A$. We say it is square-free if for every odd-length path $p = v_1 \ldots v_{2n}$ then there exists $1 \leq j \leq n$ such that $x(v_j) \neq x(v_{j+n})$.

C_5 has a square-free vertex coloring with 4 colors, but not with 3.
Some infinite graphs do not admit square-free vertex colorings: $K_{\mathbb{N}}$.
Square-free vertex coloring

Some infinite graphs do not admit square-free vertex colorings: $K_\mathbb{N}$.

Theorem: Alon, Grytczuk, Haluszczak and Riordan
Every finite graph with maximum degree Δ can be square-free vertex colored with $2^{17} \Delta^2$ colors.
Some infinite graphs do not admit square-free vertex colorings: $K_\mathbb{N}$.

Theorem: Alon, Grytczuk, Haluszczak and Riordan

Every finite graph with maximum degree Δ can be square-free vertex colored with $2^{17}\Delta^2$ colors.

Let

$$\Gamma(G, S) = (G, \{\{g, gs\}, g \in G, s \in S\})$$

be the undirected right Cayley graph of G with respect to $S \subseteq G$. A compactness argument shows:

Theorem

$\Gamma(G, S)$ can be square-free vertex colored with $2^{19}|S|^2$ colors.
Let $|A| \geq 2^{19}|S|^2$ and $X \subset A^G$ be the subshift such that every square in $\Gamma(G, S)$ is forbidden.
Constructing an EC SA subshift

Let $|A| \geq 2^{19}|S|^2$ and $X \subset A^G$ be the subshift such that every square in $\Gamma(G, S)$ is forbidden.

- $X \neq \emptyset$.
Constructing an EC SA subshift

Let $|A| \geq 2^{19}|S|^2$ and $X \subset A^G$ be the subshift such that every square in $\Gamma(G, S)$ is forbidden.

- $X \neq \emptyset$.
- Let $g \in G$ such that $gx = x$ for some $x \in X$.

If G has decidable word problem, then X is effectively closed.
Constructing an EC SA subshift

Let $|A| \geq 2^{19}|S|^2$ and $X \subset \mathcal{A}^G$ be the subshift such that every square in $\Gamma(G, S)$ is forbidden.

- $X \neq \emptyset$.
- Let $g \in G$ such that $gx = x$ for some $x \in X$.
- Factorize g as uvw with $u = v^{-1}$ and $|w|$ minimal (as a word on $(S \cup S^{-1})^*$). If $|w| = 0$, then $g = 1_G$.

If G has decidable word problem, then X is effectively closed.
Constructing an EC SA subshift

Let $|A| \geq 2^{19}|S|^2$ and $X \subset A^G$ be the subshift such that every square in $\Gamma(G, S)$ is forbidden.

- $X \neq \emptyset$.
- Let $g \in G$ such that $gx = x$ for some $x \in X$.
- Factorize g as uvw with $u = v^{-1}$ and $|w|$ minimal (as a word on $(S \cup S^{-1})^*$). If $|w| = 0$, then $g = 1_G$.
- If not, let $w = w_1 \ldots w_n$ and consider the odd length walk $\pi = v_0 v_1 \ldots v_{2n-1}$ on $\Gamma(G, S)$ defined by:

$$v_i = \begin{cases}
1_G & \text{if } i = 0 \\
 w_1 \ldots w_i & \text{if } i \in \{1, \ldots, n\} \\
 ww_1 \ldots w_{i-n} & \text{if } i \in \{n+1, \ldots, 2n-1\}
\end{cases}$$
Constructing an EC SA subshift

Let $|\mathcal{A}| \geq 2^{19}|S|^2$ and $X \subset \mathcal{A}^G$ be the subshift such that every square in $\Gamma(G, S)$ is forbidden.

- $X \neq \emptyset$.
- Let $g \in G$ such that $gx = x$ for some $x \in X$.
- Factorize g as uvw with $u = v^{-1}$ and $|w|$ minimal (as a word on $(S \cup S^{-1})^*$). If $|w| = 0$, then $g = 1_G$.
- If not, let $w = w_1 \ldots w_n$ and consider the odd length walk $\pi = v_0 v_1 \ldots v_{2n-1}$ on $\Gamma(G, S)$ defined by:

$\begin{align*}
v_i &= \begin{cases}
1_G & \text{if } i = 0 \\
 w_1 \ldots w_i & \text{if } i \in \{1, \ldots, n\} \\
ww_1 \ldots w_{i-n} & \text{if } i \in \{n+1, \ldots, 2n-1\}
\end{cases}
\end{align*}$

- π is a path and $x_{v_i} = x_{v_{i+n}}$. $\rightarrow \leftarrow$
Let $|\mathcal{A}| \geq 2^{19}|S|^2$ and $X \subset \mathcal{A}^G$ be the subshift such that every square in $\Gamma(G, S)$ is forbidden.

- $X \neq \emptyset$.

- Let $g \in G$ such that $gx = x$ for some $x \in X$.

- Factorize g as uvw with $u = v^{-1}$ and $|w|$ minimal (as a word on $(S \cup S^{-1})^*$). If $|w| = 0$, then $g = 1_G$.

- If not, let $w = w_1 \ldots w_n$ and consider the odd length walk $\pi = v_0 v_1 \ldots v_{2n-1}$ on $\Gamma(G, S)$ defined by:

 \[v_i = \begin{cases}
 1_G & \text{if } i = 0 \\
 w_1 \ldots w_i & \text{if } i \in \{1, \ldots, n\} \\
 ww_1 \ldots w_{i-n} & \text{if } i \in \{n + 1, \ldots, 2n - 1\}
 \end{cases} \]

- π is a path and $x_{v_i} = x_{v_{i+n}}$.

- Therefore, $g = 1_G$.

If G has decidable word problem, then X is effectively closed.
Constructing an EC SA subshift

Let $|A| \geq 2^{19}|S|^2$ and $X \subset A^G$ be the subshift such that every square in $\Gamma(G, S)$ is forbidden.

- $X \neq \emptyset$.
- Let $g \in G$ such that $gx = x$ for some $x \in X$.
- Factorize g as uwv with $u = v^{-1}$ and $|w|$ minimal (as a word on $(S \cup S^{-1})^*$). If $|w| = 0$, then $g = 1_G$.
- If not, let $w = w_1 \ldots w_n$ and consider the odd length walk $\pi = v_0v_1 \ldots v_{2n-1}$ on $\Gamma(G, S)$ defined by:

$$v_i = \begin{cases} 1_G & \text{if } i = 0 \\ w_1 \ldots w_i & \text{if } i \in \{1, \ldots, n\} \\ w w_1 \ldots w_{i-n} & \text{if } i \in \{n+1, \ldots, 2n-1\} \end{cases}$$

- π is a path and $x_{v_i} = x_{v_{i+n}}$. $\rightarrow \leftarrow$
- Therefore, $g = 1_G$.

If G has decidable word problem, then X is effectively closed.
We want to show next:

Every EC G-subshift is a sub-action of a $G \times H_1 \times H_2$-sofic

\[\exists \text{ SA SFTs in } G_1 \times G_2 \times G_3 \]

\[\exists \text{ SA EC subshifts in } G \]
We want to show next:

Every EC G-subshift is a sub-action of a $G \times H_1 \times H_2$-sofic

\exists SA EC subshifts in G

\exists SA SFTs in $G_1 \times G_2 \times G_3$
The philosophy behind it

Finitely presented group

A group G is finitely presented if $G \cong \langle S \mid R \rangle$ where both S and $R \subset (S \cup S^{-1})^*$ are finite.

$$\mathbb{Z}^2 = \langle a, b \mid aba^{-1}b^{-1} \rangle$$
The philosophy behind it

Finitely presented group

A group G is finitely presented if $G \cong \langle S | R \rangle$ where both S and $R \subset (S \cup S^{-1})^*$ are finite.

$$\mathbb{Z}^2 = \langle a, b | aba^{-1}b^{-1} \rangle$$

Recursively presented group

A group G is recursively presented if $G \cong \langle S | R \rangle$ where $S \subset \mathbb{N}$ and $R \subset (S \cup S^{-1})^*$ are recursively enumerable sets.

$$L = \langle a, t | (at^n at^{-n})^2, n \in \mathbb{N} \rangle$$
The philosophy behind it

Theorem (Higman, 1961)

For every recursively presented group H there exists a finitely presented group G such that H embeds into G.

Corollary (Theorem: Novikov 1955, Boone 1958)

There are finitely presented groups with undecidable word problem.

Just apply Higman's theorem to $G = \langle a, b, c, d \mid b^n a b^n = c^n d, n \in \text{HALT} \rangle$... done!
The philosophy behind it

Theorem (Higman, 1961)

For every recursively presented group H there exists a finitely presented group G such that H embeds into G.

“A complicated object is realized inside another object which admits a much simpler presentation.”
The philosophy behind it

Theorem (Higman, 1961)

For every recursively presented group H there exists a finitely presented group G such that H embeds into G.

“A complicated object is realized inside another object which admits a much simpler presentation.”

Corollary [Theorem: Novikov 1955, Boone 1958]

There are finitely presented groups with undecidable word problem

Just apply Higman’s theorem to

$G = \langle a, b, c, d \mid b^{-n}ab^n = c^{-n}dc^n, n \in \text{HALT} \rangle$... done!
The case of subshifts

Every EC \mathbb{Z}-subshift X is a subaction of a \mathbb{Z}^2-sofic Y
The case of subshifts
The case of subshifts
In our case

proof

- Take G_1 EC SA subshift. Use simulation to obtain a $G_1 \times G_2 \times G_3$-sofic subshift Y_1 such that $G_2 \times G_3$ act trivially and G_1 acts freely.
- Do the same for G_2, G_3 to get Y_2, Y_3.
- $Y_1 \times Y_2 \times Y_3$ is a SA sofic subshift.
- Any SFT extension $X \rightarrow Y_1 \times Y_2 \times Y_3$ works.
In our case

proof

- Take G_1 EC SA subshift. Use simulation to obtain a $G_1 \times G_2 \times G_3$-sofic subshift Y_1 such that $G_2 \times G_3$ act trivially and G_1 acts freely.
- Do the same for G_2, G_3 to get Y_2, Y_3.
- $Y_1 \times Y_2 \times Y_3$ is a SA sofic subshift.
- Any SFT extension $X \hookrightarrow Y_1 \times Y_2 \times Y_3$ works.

Every EC G-subshift is a sub-action of a $G \times H_1 \times H_2$-sofic

\exists SA EC subshifts in G

\exists SA SFTs in $G_1 \times G_2 \times G_3$
How does one prove such a thing?

Every EC $G \curvearrowright \{0, 1\}^\mathbb{N}$ is a factor of a subaction of a $G \times H_1 \times H_2$-SFT

Every EC G-subshift is a subaction of a $G \times H_1 \times H_2$-sofic
How does one prove such a thing?

Every EC $G \curvearrowright \{0,1\}^\mathbb{N}$ is a factor of a subaction of a $G \times H_1 \times H_2$-SFT

Every EC G-subshift is a subaction of a $G \times H_1 \times H_2$-sofic

Two ingredients:
- A Toeplitz coding of EC actions from a work of me and M. Sablik.
- A coding of E. Jeandel of a theorem of Seward on translation-like actions.
How does one prove such a thing?

Let’s keep it simple, let’s do $G \times \mathbb{Z}^2$. Consider an action

$$G \curvearrowright X \subset \{0, 1\}^\mathbb{N}$$
How does one prove such a thing?

Let’s keep it simple, let’s do \(G \times \mathbb{Z}^2 \). Consider an action

\[
G \curvearrowright X \subset \{0, 1\}^\mathbb{N}
\]

Let \(\Psi : \{0, 1\}^\mathbb{N} \rightarrow \{0, 1, \$\}^\mathbb{Z} \) be given by:

\[
\Psi(x)_j = \begin{cases}
 x_n & \text{if } j = 3^n \mod 3^{n+1} \\
 \$ & \text{in the contrary case.}
\end{cases}
\]
How does one prove such a thing?

Let’s keep it simple, let’s do \(G \times \mathbb{Z}^2 \). Consider an action

\[
G \ltimes X \subset \{0, 1\}^N \]

Let \(\Psi : \{0, 1\}^N \to \{0, 1, \$\}^\mathbb{Z} \) be given by:

\[
\Psi(x)_j = \begin{cases}
 x_n & \text{if } j = 3^n \mod 3^{n+1} \\
 $ & \text{in the contrary case.}
\end{cases}
\]

Example

If we write \(x = x_0x_1x_2x_3 \ldots \) we obtain,

\[
\Psi(x) = \ldots x_0x_1x_0\$x_2x_0x_1x_0\$x_0\$x_0x_1x_0\$x_0\$x_3x_0 \ldots
\]
How does one prove such a thing?

\[\ldots \cdot x_0 \cdot x_1 \cdot x_0 \cdot x_0 \cdot x_1 \cdot x_0 \cdot x_0 \cdot x_2 \cdot x_0 \cdot x_1 \cdot x_0 \cdot x_0 \cdot x_1 \cdot x_0 \cdot x_0 \cdot x_3 \cdot x_0 \cdot \ldots \]
How does one prove such a thing?

\[
\ldots x_0 x_1 x_0 \ldots x_0 x_2 x_0 x_1 x_0 \ldots x_0 x_1 x_0 \ldots x_0 x_3 x_0 \ldots
\]

↓

\[
\ldots x_0 x_1 x_0 \ldots x_0 x_2 x_0 x_1 x_0 \ldots x_0 x_2 x_0 x_3 x_0 \ldots
\]
How does one prove such a thing?

\[\ldots x_0 x_1 x_0 x_2 x_0 x_1 x_0 x_0 x_1 x_0 x_0 x_1 x_0 x_0 x_3 x_0 \ldots \]

\[\downarrow \]

\[\ldots x_0 x_1 x_0 x_2 x_0 x_1 x_0 x_0 x_1 x_0 x_0 x_1 x_0 x_0 x_3 x_0 \ldots \]

\[\downarrow \]

\[\ldots x_1 x_2 x_1 x_1 x_1 x_1 x_1 x_3 \ldots \]
How does one prove such a thing?

\[\ldots x_0 x_1 x_0 x_0 x_2 x_0 x_1 x_0 x_0 x_0 x_0 x_1 x_0 x_0 x_3 x_0 \ldots \]

\[\downarrow \]

\[\ldots x_0 x_1 x_0 x_0 x_2 x_0 x_1 x_0 x_0 x_0 x_0 x_1 x_0 x_0 x_0 x_0 x_3 x_0 \ldots \]

\[\downarrow \]

\[\ldots x_1 x_2 x_1 x_1 x_1 x_3 x_3 x_2 x_1 x_1 x_1 x_1 x_3 x_3 x_4 x_1 \ldots \]
How does one prove such a thing?

- pick a finite set of generators \(S \) of \(G \).
- construct a subshift \(\Pi \) where every configuration is (up to small details) an \(S \)-tuple of configurations of the previous form.

\[
S = \{1_G, s_1, \ldots, s_n\}
\]

\[
\begin{pmatrix}
\Psi(x) \\
\Psi(s_1(x)) \\
\vdots \\
\Psi(s_n(x))
\end{pmatrix} \in \Pi
\]
How does one prove such a thing?

▷ pick a finite set of generators S of G.
▷ construct a subshift Π where every configuration is (up to small details) an S-tuple of configurations of the previous form.

$$S = \{1_G, s_1, \ldots s_n\}$$

$$
\begin{pmatrix}
\Psi(x) \\
\Psi(s_1(x)) \\
\vdots \\
\Psi(s_n(x))
\end{pmatrix} \in \Pi
$$

Claim

If $G \curvearrowright X$ is an effectively closed action, Π is an effectively closed subshift.
How does one prove such a thing?

Every EC $G \curvearrowright \{0,1\}^\mathbb{N}$ is a factor of a subaction of a $G \times H_1 \times H_2$-SFT

Every EC \mathbb{Z}-subshift is a subaction of a \mathbb{Z}^2-sofic

▷ There exists a sofic \mathbb{Z}^2-subshift $\tilde{\Pi}$ having Π in every horizontal row.
How does one prove such a thing?

Every EC $G \curvearrowright \{0, 1\}^\mathbb{N}$ is a factor of a subaction of a $G \times H_1 \times H_2$-SFT

There exists a sofic \mathbb{Z}^2-subshift $\tilde{\Pi}$ having Π in every horizontal row.

Using the decoding argument, construct a map from $\tilde{\Pi}$ to X.

Every EC \mathbb{Z}-subshift is a subaction of a \mathbb{Z}^2-sofic
How does one prove such a thing?

Every EC $G \curvearrowright \{0,1\}^\mathbb{N}$ is a factor of a subaction of a $G \times H_1 \times H_2$-SFT

Every EC \mathbb{Z}-subshift is a subaction of a \mathbb{Z}^2-sofic

▷ There exists a sofic \mathbb{Z}^2-subshift $\tilde{\Pi}$ having Π in every horizontal row.

▷ Using the decoding argument, construct a map from $\tilde{\Pi}$ to X.

▷ Put in every G-coset of $G \times \mathbb{Z}^2$ a configuration of $\tilde{\Pi}$. Tie them using local rules.
How does one prove such a thing?

\[\begin{pmatrix} \psi(z) \\ \psi(s_1(z)) \\ \vdots \\ \psi(s_n(z)) \end{pmatrix} \in \tilde{\Pi} \]

\[\begin{pmatrix} \psi(y) \\ \psi(s_1(y)) \\ \vdots \\ \psi(s_n(y)) \end{pmatrix} \in \tilde{\Pi} \]

\[\begin{pmatrix} \psi(x) \\ \psi(s_1(x)) \\ \vdots \\ \psi(s_n(x)) \end{pmatrix} \in \tilde{\Pi} \]
How does one prove such a thing?

\[\begin{pmatrix} \Psi(z) \\ \Psi(s_1(z)) \\ \vdots \\ \Psi(s_n(z)) \end{pmatrix} \in \tilde{\Pi} \]

\[\begin{pmatrix} \Psi(y) \\ \Psi(s_1(y)) \\ \vdots \\ \Psi(s_n(y)) \end{pmatrix} \in \tilde{\Pi} \]

\[\begin{pmatrix} \Psi(x) \\ \Psi(s_1(x)) \\ \vdots \\ \Psi(s_n(x)) \end{pmatrix} \in \tilde{\Pi} \]
How does one prove such a thing?

\[
\begin{pmatrix}
\Psi(z) \\
\Psi(s_1(z)) \\
\vdots \\
\Psi(s_n(z))
\end{pmatrix} \in \tilde{\Pi}
\]

\[
\begin{pmatrix}
\Psi(y) \\
\Psi(s_1(y)) \\
\vdots \\
\Psi(s_n(y))
\end{pmatrix} \in \tilde{\Pi}
\]

\[
\begin{pmatrix}
\Psi(x) \\
\Psi(s_1(x)) \\
\vdots \\
\Psi(s_n(x))
\end{pmatrix} \in \tilde{\Pi}
\]
How does one prove such a thing?

\[
\begin{pmatrix}
\psi(s_1 s_1(x)) \\
\psi(s_1 s_2 s_1(x)) \\
\vdots \\
\psi(s_n s_1(x))
\end{pmatrix} \in \tilde{\Pi}
\]

\[
\begin{pmatrix}
\psi(s_1(x)) \\
\psi(s_1 s_1(x)) \\
\vdots \\
\psi(s_n s_1(x))
\end{pmatrix} \in \tilde{\Pi}
\]

\[
\begin{pmatrix}
\psi(x) \\
\psi(s_1(x)) \\
\vdots \\
\psi(s_n(x))
\end{pmatrix} \in \tilde{\Pi}
\]
From \mathbb{Z}^2 to $H_1 \times H_2$

How to go from \mathbb{Z}^2 to $H_1 \times H_2$?
From \mathbb{Z}^2 to $H_1 \times H_2$

How to go from \mathbb{Z}^2 to $H_1 \times H_2$?

[Whyte] translation-like action

An action $G \curvearrowright (X, d)$ is \textit{translation-like} if:

- G acts freely
- For each $g \in G$, $\sup_{x \in X} d(x, gx) < \infty$.

Theorem (Seward, 2013)

Each infinite and f.g. group admits a translation-like action of \mathbb{Z}.

This means that each infinite and f.g. group admits a Cayley graph that can be partitioned into disjoint bi-infinite paths.
From \mathbb{Z}^2 to $H_1 \times H_2$

How to go from \mathbb{Z}^2 to $H_1 \times H_2$?

[Whyte] translation-like action

An action $G \curvearrowright (X, d)$ is translation-like if:

- G acts freely
- For each $g \in G$, $\sup_{x \in X} d(x, gx) < \infty$.

Theorem (Seward, 2013)

Each infinite and f.g. group admits a translation-like action of \mathbb{Z}.
From \mathbb{Z}^2 to $H_1 \times H_2$

How to go from \mathbb{Z}^2 to $H_1 \times H_2$?

[Whyte] translation-like action

an action $G \curvearrowright (X, d)$ is translation-like if:

- G acts freely
- For each $g \in G$, $\sup_{x \in X} d(x, gx) < \infty$.

Theorem (Seward, 2013)

Each infinite and f.g. group admits a translation-like action of \mathbb{Z}.

This means that each infinite and f.g. group admits a Cayley graph that can be partitioned into disjoint bi-infinite paths.
[Jeandel] Use the set of generators of the Cayley graph to define an SFT which codes the translation-like action.

Figure: Finding a grid in $H_1 \times H_2$
Every EC $G \curvearrowleft \{0, 1\}^\mathbb{N}$ is a factor of a subaction of a $G \times H_1 \times H_2$-SFT

Every EC G-subshift is a subaction of a $G \times H_1 \times H_2$-sofic

\exists SA EC subshifts in G

\exists SA SFTs in $G_1 \times G_2 \times G_3$

\exists SA SFTs in the Grigorchuk group
Every EC $G \curvearrowright \{0, 1\}^\mathbb{N}$ is a factor of a subaction of a $G \times H_1 \times H_2$-SFT

Every EC \mathbb{Z}-subshift is a subaction of a \mathbb{Z}^2-sofic

Every EC G-subshift is a subaction of a $G \times H_1 \times H_2$-sofic

\exists SA EC subshifts in G

\exists SA SFTs in $G_1 \times G_2 \times G_3$

\exists SA SFTs in the Grigorchuk group
Thank you for your attention!