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What is functional analysis?

• Study of topological spaces and of functional relations between them

• Study of spaces of functions

• Language of PDE, calculus of variations, integral equations

• Language of quantum mechanics

Functional analysis arose in the 19th century, was developed in the first part of the 20th cen-

tury, in a paradigmatic shift from the study of (the properties of) a single function/solution

to the study of (the properties of) sets of functions/solutions and the relations between them.

It is the language of much of modern mathematics, encompassing (linear) algebra, analysis

and stochastic analysis.
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CHAPTER I

Topological spaces

1. Point set topology

Understanding limits and convergence is central to functional analysis. This ultimately has

to do with the notions of open sets and neighbourhoods of a point. If the set is equipped

with a distance, this can be done with open balls. In the more general setting of topological

spaces, these concepts are introduced by the notion of a topology.

Definition I.1.1. A topological space (S, T ) is a nonempty set S with a family of subsets

T such that

• ∅ ∈ T , S ∈ T

• T is closed under finite intersections:

A1, . . . An ∈ T ⇒
n⋂
j=1

Aj ∈ T

• T is closed under arbitrary unions:

{Aα : α ∈ I} ⊂ T ⇒
⋃
α∈I

Aα ∈ T

where I is an arbitrary index set.

The elements of T are called the open sets of S.

Example 1. (i) The discrete topology: T = P(S) the power set of S, containing all subsets

of S

(ii) The indiscrete topology: T = {∅, S}

(iii) Let S = Rn with the elementary notion of open sets, namely X ∈ T iff ∀x ∈ X, ∃r > 0

s.t. {y ∈ S : d(y, x) < r} ⊂ X , where d(·, ·) is the Euclidean distance.

A metric space is a setM equipped with a function d : M×M → [0,∞) such that (i) d(x, y) =

0 iff x = y, (ii) d(x, y) = d(y, x), and (iii) d(x, z) ≤ d(x, y) + d(y, z), the triangle inequality.
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The metric defines a topology as in the third example above. Since any metric on S gives

rise to a topology, one may wonder whether every topology arises from a metric and the

answer is, not surprisingly, no. If it is the case, T is called metrizable.

Topologies on a space S can be ordered in a set-theoretic fashion: T1 ≺ T2 iff T1 ⊂ T2 and

T1 is called weaker than T2.

Given a family E ⊂ P(S), the unique weakest topology T (E) on S containing E is called the

topology generated by E . It can be shown that T (E) consists of ∅, S and all unions and all

finite intersections of elements of E .

Definition I.1.2. A base of T is a family B ⊂ T such that for any nonempty O ∈ T , there

is a family {Bα : α ∈ I} ⊂ B and O = ∪α∈IBα.

If (S, T ) is a topological space, and X ⊂ S, then TX := {O ∩X : O ∈ T } defines a topology

on X called the relative topology.

The following concepts, familiar in Rn, extend to general topological spaces. Let X ⊂ S.

• X is closed if there is Y ∈ T such that X = Y c

• The interior Xo of X is the largest open set contained in X

• The closure X of X is the smallest closed set containing X

• The boundary ∂X of X is ∂X = X \Xo

• X is called dense in S if X = S

A neighbourhood of x ∈ S is a set Nx ⊂ S such that x ∈ N o
x . Note that a neighbourhood is

not required to be open. A family Nx of subsets of S is a neighbourhood base at x if each

N ∈ Nx is a neighbourhood of x and if for any neighbourhood Mx of x, there is an N ∈ Nx
such that N ⊂Mx.

There are two major classifications of topological spaces. The first one is about how well

open sets separate points. While the classification has five classes denoted T0, . . . , T4, we only

introduce the following, which plays an important role in the discussion of compactness.

Definition I.1.3. A topological space (S, T ) is called Hausdorff, or T2, if for all pairs

x, y ∈ S, x 6= y, ∃Ox, Oy ∈ T with Ox ∩Oy = ∅, such that x ∈ Ox, y ∈ Oy.

The second classification is about countability and it is particularly relevant in discussing

questions of convergence (and consequently its relation to compactness).
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Definition I.1.4. A topological space (S, T ) is called

• separable if it has a countable dense set

• first countable if each x ∈ S has a countable neighbourhood base

• second countable if S has a countable base

Proposition I.1.5. (i) Second countable ⇒ First countable

(ii) Second countable ⇒ Separable

Proof. Let B be a countable base of T .

(i) For any x ∈ S, the family Nx := {N ∈ B : x ∈ N} is a countable neighbourhood base

at x. Indeed, N are all open by definition of a base, hence x ∈ N o and so N ∈ Nx is a

neighbourhood of x. Moreover, if Mx is a neighbourhood of x, then M o
x is an open set and

since B is a base, there are {Nj ∈ B} such that ∪jNj = M o
x . Hence there is j0 such that

x ∈ Nj0 ⊂Mx, and Nj0 ∈ Nx.

(ii) For each B ∈ B, let xB ∈ B. Then the set D := {xB : B ∈ B} is countable. But D
c

is

open by construction it does not include any B ∈ B. It follows from the definition of a base

that D
c

= ∅, namely, D is dense. �

Note that there are separable spaces that are not second countable.

Example 2. Consider Rn equipped with the usual topology. Then the family of all open

balls (any centre, any radius) is a base. For any x ∈ Rn the family {Bp/q(x) : p, q ∈ N} of

closed balls for rational radii is a neighbourhood base. Hence Rn is first countable.

This again generalizes to general metric spaces. A metric space is first countable. Moreover,

a metric space is second countable iff it is separable.

We are now ready to turn to the general notion of convergence.

Definition I.1.6. A sequence (xn)n∈N in a topological space (S, T ) is convergent if there

is x ∈ S such that for every neighbourhood Nx of x, there is n0 such that xn ∈ Nx for all

n ≥ n0.

Here is a first result that is valid only in first countable spaces, namely that the closure of a

subset is given by the set of limit points of sequences.
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Proposition I.1.7. Let (S, T ) be a first countable topological space and X ⊂ S. Then x ∈ X

iff x is the limit of a convergent sequence (xn)n∈N in X.

Proof. Let Nx := {On : n ∈ N} be a countable neighbourhood base of x such that

On ⊂ On−1 for all n ∈ N. If x ∈ X, then for any n ∈ N, On ∩ X 6= ∅ (since otherwise

x /∈ (Oo
n)c would be a closed set containing X, but x ∈ X ⊂ (Oo

n)c is a contradiction) and

we can pick xn ∈ On ∩ X. This is a convergent sequence such that limn→∞ xn = x: For

any neighbourhood M of x, there is n0 ∈ N such that On0 ⊂ M , and hence On ⊂ M for

all n ≥ n0; therefore, xn ∈ M for all n ≥ n0. Reciprocally, assume that x ∈ (X)c. For any

sequence (yn)n∈N in X, the open neighbourhood (X)c contains no point of the sequence, and

hence (yn)n∈N does not converge to x. �

Note that if Mx := {Un : n ∈ N} is any a countable neighbourhood base at x, the sets

Oj = ∩jn=1Uj form a ‘decreasing’ neighbourhood base as used in the proof.

If (S, T ) is not first countable, this criterion is not sufficient. The closure is given by limit

points of nets, which are generalizations of sequences of the form (xα)α∈I where I is not

necessarily countable and only partially ordered.

Proposition I.1.8. Let (S, T ) be a Hausdorff space. Let (xn)n∈N be a convergent sequence

in S. Then the limit x = limn→∞ xn is unique.

Proof. Let x = limn→∞ xn and let y 6= x. There exist disjoint Ox, Oy ∈ T with

x ∈ Ox, y ∈ Oy. But xn → x implies that there is n0 such that xn ∈ Ox for all n ≥ n0, and

in particular xn /∈ Oy, n ≥ n0. It follows that (xn)n∈N does not converge to y. �

2. Compactness

In a topological space (S, T ), an open cover is a family C ⊂ T such that S = ∪O∈CO. A

subcover is a subset of C that is a cover.

Definition I.2.1. A topological space (S, T ) is compact if any open cover has a finite

subcover.

A subset X ⊂ S is a compact set if it is compact in the relative topology. It is called

precompact if its closure is compact. Note that if a family of open sets C = {Oα ∈ T : α ∈ I}

is such that X ⊂ ∪α∈IOα, then CX = {Oα ∩X ∈ T : α ∈ I} is an open cover of X.
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Definition I.2.2. A topological space is locally compact if every x ∈ S has a compact

neighbourhood.

Compactness can also be formulated in terms of closed sets. (S, T ) is said to have the

finite intersection property if any family C of closed set such that ∩nj=1Cj 6= ∅ for any finite

subfamily {C1, . . . Cn} ⊂ F satisfies ∩C∈CC 6= ∅. We then have the following result, the proof

of which is an exercise in Boole-Morgan’s laws: S is compact iff S has the finite intersection

property.

Proposition I.2.3. Let X ⊂ S be a subset of a compact topological space (S, T ). If X is

closed, then it is compact.

Proof. Let C be an open cover of X. By the definition of the relative topology, any

C ∈ C is of the form OC ∩X with OC ∈ T . If O is the set of these OC ’s, then O ∪ {Xc} is

an open cover of S since X is closed. S being compact, there is a finite subcover Õ, which

yields, by intersecting with X, a finite open cover C̃ of X. �

Proposition I.2.4. Let (S, T ) be a Hausdorff space and let K be a compact subset of S.

Then K is closed.

Proof. For any x ∈ Kc, let Ux 3 x be the open set given by the lemma below. Clearly

Kc ⊂ ∪x∈KcUx. Moreover, K ∩ Ux = ∅ for all x ∈ Kc implies that ∪x∈KcUx ⊂ Kc. Hence

Kc = ∪x∈KcUx, which is open, and so K is closed. �

Lemma I.2.5. Let (S, T ) be a Hausdorff space and let K be a compact subset of S. For any

x ∈ Kc, there are disjoint open sets U, V such that x ∈ U , K ⊂ V .

Proof. Let x ∈ Kc, y ∈ K. There are disjoint open Uy, Oy such that x ∈ Uy, y ∈ Oy.

Using the open cover {Oy : y ∈ K}, there are {y1, . . . , yN} in K such that

K ⊂ ∪Nj=1Oyj = V.

Moreover, the set U = ∩Nj=1Uyj contains x and is disjoint from V . �

It is worth pointing out that the Bolzano-Weierstrass theorem of real analysis does not hold

in a general topological space. In fact, one must consider nets instead of sequences in the

general case. However it does in a second countable space:
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Theorem I.2.6. Let (S, T ) be a second countable topological space. Then S is compact iff

every sequence has a convergent subsequence.

We will need the following auxiliary lemma.

Lemma I.2.7. Let (xn)n∈N be a sequence in a first countable topological space (S, T ). A point

x ∈ S is a cluster point of (xn)n∈N iff there is a subsequence (xnk)k∈N that converges to x.

By definition, a cluster point of (xn)n∈N is a x ∈ S such that for every neighbourhood Nx of

x, xn ∈ Nx for infinitely many n.

Proof. Let x be a cluster point, and let Nx be a countable neighbourhood base of x,

such that Nj ⊂ Nj−1. For each j, let xnj ∈ Nj. Then (xnj)j∈N converges to x. Indeed, let Mx

be a neighbourhood of x and let Nk ⊂Mx. Then xnj ∈ Nj ⊂ Nk for all j ≥ k. Reciprocally,

if (xnj)j∈N converges to x, then for any neighbourhood Nx of x, xnj ∈ Nx for all j ≥ j0.

Hence x is a cluster point since {j ≥ j0} is infinite. �

Proof of Theorem I.2.6. Assume that S is compact, let (zn)n∈N be a sequence in

S that does not have a convergent subsequence. Since S is second countable, it is first

countable, so that (zn)n∈N does not have a cluster point. Hence, for any x ∈ S, there is

an open set Ox 3 x such that zn ∈ Ox for only finitely many n’s. In particular, there is

nx ∈ N such that zn /∈ Ox for all n ≥ nx. Extracting a finite cover {Oxi : 1 ≤ i ≤ N} from

{Ox : x ∈ S}, and letting n0 = max{nxi : 1 ≤ i ≤ N}, we have that zn /∈ ∪Ni=1Oxi = S for

all n ≥ n0, a contradiction.

Reciprocally, assume that every sequence has a convergent subsequence. Since S is second

countable, it has a countable open base C = {Oj : j ∈ N}, which is also an open cover.

Assume that there is no finite subcover of C. Then for any n ∈ N, there is xn /∈ ∪nj=1Oj.

Let (xnk)k∈N be a convergent subsequence and let x be its limit. Since C is a cover, there

is j0 such that x ∈ Oj0 , and hence there is k0 such that xnk ∈ Oj0 for all k ≥ k0. This

is contradiction with xnk /∈ ∪nkj=1Oj for any nk > j0. Finally, since U = ∪jUOjU for any

open U , any open cover has a countable subcover, and hence a finite subcover by the above

argument. �
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The property that every sequence has a convergent subsequence is called sequential compact-

ness. The first part of the theorem shows that compactness implies sequential compactness

in a first countable space (a fortiori in a second countable space and in a metric space).

3. Continuity

Definition I.3.1. Let (S1, T1), (S2, T2) be topological spaces. A function f : S1 → S2 is

continuous if f−1(O) ∈ T1 for any O ∈ T2.

In other words, the preimage of any open set is open. This should not be confused with the

following:

Definition I.3.2. Let (S1, T1), (S2, T2) be topological spaces. A function f : S1 → S2 is

open if f(O) ∈ T2 for any O ∈ T1.

An invertible function that is both open and continuous is a homeomorphism.

While continuity is defined in terms of two topologies, one can reciprocally use continuity

to define topologies. Let S1 be a set (not yet equipped with a topology) and let (S2, T2) be

a topological space. Let F be a family of functions from S1 to S2. Then the topology on S1

generated by {f−1(O) : O ∈ T2} is called the F -weak topology. By definition, all functions

f ∈ F are continuous with respect to this topology on S1.

Example 3. Let S1 = C([a, b];R) be the set of continuous functions, and let S2 = R with

the usual metric topology. Let Ex : S1 → S2, Ex(f) = f(x) be the evaluation functions and

let F = {Ex : x ∈ [a, b]}. The F -weak topology on C([a, b];R) is the topology of pointwise

convergence.

Another useful result is that compactness is pushed forward by continuous functions. It in

particular generalizes the well-known fact that a continuous, real-valued function defined on

a compact interval reaches it maximum and minimum values.

Proposition I.3.3. Let (S1, T1), (S2, T2) be topological spaces, and let f : S1 → S2 be a

continuous function. If S1 is compact, then f(S1) ⊂ S2 is compact.

Proof. Let C = {Cα : α ∈ I} be an open cover of f(S1) ⊂ S2 in the relative topology.

There are open sets {Oα : α ∈ I} in S2 such that Cα = Oα ∩ f(S1), and f−1(Oα) is open in
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S1 by continuity. Therefore, {f−1(Oα) : α ∈ I} is an open cover of S1, from which one can

extract a finite subcover {f−1(On) : 1 ≤ n ≤ N}. But then {Cn = On ∩ f(S1) : 1 ≤ n ≤ N}

is a finite subcover of C. �

Theorem I.3.4. Let (S1, T1), (S2, T2) be two compact Hausdorff spaces and let f : S1 → S2

be a continuous bijection. Then f is a homeomorphism.

Proof. Let C ⊂ S1 be closed. As a subset of the compact S1, it is compact by Propo-

sition I.2.3 and so f(C) is compact by Proposition I.3.3. Since S2 is Hausdorff, Proposi-

tion I.2.4 implies that f(C) is closed. Hence, if O is open, then f(Oc) is closed and since

f(Oc) = f(O)c by injectivity, we conclude that f−1 is continuous. �

4. Stone-Weierstrass theorems

First of all, we recall the ‘classical’ Weierstrass theorem:

Proposition I.4.1. If f is a continuous real-valued function on [a, b], then there exists a

sequence of polynomials (Pn)n∈N such that

lim
n→∞

Pn = f

uniformly on [a, b].

In other words, the polynomials are dense in the set CR([a, b]) of continuous real-valued

functions on the compact interval [a, b]. The Stone-Weierstrass theorem generalizes the

result to an arbitrary compact Hausdorff space.

Let X be a compact Hausdorff space. We first note that CR(X), the real-valued continuous

functions on X equipped with the multiplication (fg)(x) = f(x)g(x) is an algebra. It is a

metric space with metric

d∞(f, g) = sup{|f(x)− g(x)| : x ∈ X}.

We say that a subalgebra A of CR(X) separates points if x, y ∈ X such that x 6= y implies

∃f ∈ A such that f(x) 6= f(y).
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Theorem I.4.2. Let X be a compact Hausdorff space. Let A be a closed subalgebra of CR(X)

that separates points. Then either A = CR(X) or ∃x0 ∈ X such that A = {f ∈ CR(X) :

f(x0) = 0}.

In particular, if 1 ∈ A, then the second case is excluded; there is no proper closed unital

subalgebra of CR(X) that separates points. We prove the theorem in this slightly easier case.

Note that if A is not closed, the theorem applies to A in which case it can be stated as: Any

unital subalgebra A that separates points is dense in CR(X) in the uniform topology.

We note that Hausdorffness is not used in the proof. However, it is a necessary condition for

the existence of an algebra separating points. Indeed, if there is f ∈ A such that f(x) 6= f(y),

then f(x), f(y) have disjoint open neihbourhoods (since R is Hausdorff) and their preimages

must be disjoint open neighbourhoods of x, repsectively y.

The proof uses the concept of a lattice: A subset F ⊂ CR(X) is called a lattice if for all

f, g ∈ F , the functions f ∧ g := min{f, g} and f ∨ g := max{f, g} are in F .

Lemma I.4.3. Any closed unital subalgebra A of CR(X) is a lattice.

Proof. Since

f ∨ g =
1

2
|f − g|+ 1

2
(f + g), f ∧ g = −

(
(−f) ∨ (−g)

)
,

it suffices to prove that f ∈ A implies |f | ∈ A. Since there is nothing to prove is f = 0,

we assume that f 6= 0. Since f is continuous on a compact X, it is bounded, namely

‖f‖∞ = supx∈X |f(x)| < ∞. By the classical Weierstrass theorem, there is a sequence of

polynomials such that
∣∣Pn(x)− |x|

∣∣ < n−1 for all x ∈ [−1, 1]. Hence

‖Pn ◦ h− |h|‖∞ <
1

n
,

where h = f/‖f‖∞, namely Pn(h) → |h| uniformly. Since A is a unital algebra, f ∈ A

implies Pn(h) ∈ A, and the convergence just proved concludes the proof by Proposition I.1.7

since A is closed w.r.t. a metric (hence first countable) topology. �

The final part of the proof goes by the name of Kakutani-Krein theorem.

Proposition I.4.4. Let L ⊂ CR(X) be a closed lattice that contains 1 and that separates

points. Then L = CR(X).
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Proof. Let g ∈ CR(X). Let x 6= y and let ε > 0. The map L 3 h 7→ (h(x), h(y)) ∈ R2

is linear, and range contains (1, 1) since 1 ∈ L as well as one element of the form (a, b) with

a 6= b since L separates points. Hence its range is all of R2, so that there is fxy ∈ L such

that fxy(x) = g(x), fxy(y) = g(y).

By continuity of fxy, g, there is a neighbourhood Ny of y such that fxy(z) + ε > g(z) for

all z ∈ Ny. By compactness, there is a finite set {y1, . . . , yn} such that {Nyj : 1 ≤ j ≤ n}

is a subcover of X. The function fx := fxy1 ∨ · · · ∨ fxyn , is such that fx(x) = g(x) and

fx(z) + ε > g(z) for all z ∈ X.

By continuity of fxy, g, there is a neighbourhood Mx 3 x such that fx(z) − ε < g(z) for all

z ∈Mx. Extracting a finite subcover indexed by {x1, . . . , xm} and letting f := fx1∧· · ·∧fxm ,

we conclude that f(z)− ε < g(z) for all z ∈ X. By the previous part f(z)+ ε > g(z), so that

we have constructed f ∈ L such that ‖f − g‖∞ < ε. Since ε is arbitrary, this shows that L

is dense and hence equal to CR(X) because it is closed. �

The Stone-Weierstrass extends is two directions. First of all, it extend to complex-valued

functions, provided the subalgebra A is closed under complex conjugation, namely f ∈ A

implies f̄ ∈ A (and indeed, the result is in general false). Indeed, any f ∈ CC(X) can be

written as f = (f+f̄)/2−i(f−f̄)/2, where both terms are inA∩CR(X). The complex Stone-

Weierstrass theorem follows from an application of the real one to the real and imaginary

parts of f .

Secondly, it extends to locally compact Hausdorff (LCH) spaces. In that case, the relevant

algebra is the set of functions that vanish at infinity, namely those f ∈ CR(S) such that

∀ε > 0, the set {x ∈ S : |f(x)| ≥ ε} is compact. Indeed, it suffices to apply the above to the

one-point compactification X = S ∪ {∞} of S, noting that every continuous function on S

vanishing at infinity has a continuous extension to X.

5. Urysohn’s lemma

We conclude this chapter with Urysohn’s lemma. It is again about separating sets, but now

using continuous functions. Both the lemma and the following proposition upon which its

proof lies can be phrased very explicitly in the context of metric spaces. Here, we present

the proofs for a more general locally compact Hausdorff space. First of all,
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Proposition I.5.1. Let S be a LCH space. Let K ⊂ U ⊂ S, where K is compact and U is

open. There is an open set O with compact closure such that

K ⊂ O ⊂ O ⊂ U.

Proof. Since S is LCH, every point of K has an open neighbourhood with compact

closure. Since K is compact, there is finite subcover of such neighbourhoods. Hence K is

a subset of their union V which has a compact closure (indeed, V is the finite union of the

compact closures of the neighbourhoods). If U = S, then O = V satisfies the conclusion of

the theorem. Otherwise, the complement U c is nonempty. By the Hausdorff property, for

any x ∈ U c ⊂ Kc, there is an open set Ox such that K ⊂ Ox and x /∈ Ox, see Lemma I.2.5.

It follows that ⋂
x∈Uc

U c ∩ V ∩Ox = ∅,

where each U c ∩ V ∩ Ox is a compact subset of V , hence closed. By the finite intersection

property, there are finitely many {x1, . . . , xn} such that

U c ∩ V ∩Ox1 ∩ · · · ∩Oxn = ∅

and the set O = V ∩ Ox1 ∩ · · · ∩ Oxn ⊃ K satisfies the conclusions of the theorem since

O ⊂ V ∩Ox1 ∩ · · · ∩Oxn ⊂ U and O is compact as a closed subset of a compact set. �

We recall that the support of a complex-valued function f is given by

supp(f) = {x ∈ S : f(x) 6= 0}.

We denote by Cc(S) the set of compactly supported continuous functions on S. With these

definitions, we denote

K ≺ f

for a compact set K and a f ∈ Cc(S) such that 0 ≤ f(x) ≤ 1 for all x ∈ S and that f(x) = 1

for all x ∈ K. We further denote

f ≺ U

for an open set U and a f ∈ Cc(S) such that 0 ≤ f(x) ≤ 1 for all x ∈ S and supp(f) ⊂ U .

In these notations, Urysohn’s Lemma reads:
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Lemma I.5.2. Let S be a LCH space, K ⊂ U ⊂ S be respectively compact and open. There

exists a f ∈ Cc(S) such that

K ≺ f ≺ U.

Proof. A inductive application of Proposition I.5.1 yields a family of open set {Or : r ∈

Q ∩ [0, 1]} with compact closures such that

K ⊂ O1, O0 ⊂ U

and

Os ⊂ Or whenever s > r.

Let

fr(x) =

r if x ∈ Or

0 otherwise
gs(x) =

1 if x ∈ Os

s otherwise

namely fr = rχOr and gs = s+ (1− s)χOs , and

f(x) = sup{fr(x) : r ∈ Q ∩ [0, 1]}, g(x) = inf{gs(x) : s ∈ Q ∩ [0, 1]}.

Since fr is proportional to the characteristic function of the open set Or, it is lower semi-

continuous and f being the supremum thereof, it is again lower semicontinuous (namely

{x : f(x) > a} is open for all a ∈ R). Similarly g is upper semicontinuous (namely

{x : g(x) < a} is open for all a ∈ R). Moreover, 0 ≤ f ≤ 1, f(x) = 1 for all x ∈ K ⊂ O1, and

suppf ⊂ O0 ⊂ U . Hence, the proof is complete if we prove continuity by showing that f = g.

We first note that fr(x) > gs(x) if r > s and x ∈ Or, x /∈ Os. But r > s implies Or ⊂ Os,

which is a contradiction. Hence fr ≤ gs for all r, s and hence f ≤ g. Finally, assume that

there exists x such that f(x) < g(x). There are r, s ∈ Q such that f(x) < r < s < g(x).

The first inequality implies that x /∈ Or while the third inequality implies that x ∈ Os, and

both together are in contradiction with the second inequality. Hence f = g. �

In a metric space, a Urysohn’s function can be given explicitly as

f(x) =
d(x, U c)

d(x, U c) + d(x,K)

where d(x,E) = inf{d(x, y), y ∈ E} is the distance of the point x to the set E ⊂ S (in fact,

this yields a slightly weaker result since supp(f) = U in the case).
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We conclude with two useful consequences of the lemma.

Proposition I.5.3. Let (S, T ) be a LCH space, let K be compact and let {Oi : 1 ≤ i ≤ n}

be a finite open cover of K. There exists functions {fi ∈ Cc(S) : 1 ≤ i ≤ n} such that

(i)
∑n

i=1 fi(x) = 1 for all x ∈ K

(ii) fi ≺ Oi for all 1 ≤ i ≤ n

The family {fi : 1 ≤ i ≤ n} is called a partition of unity on K that is subordinate to

{Oi : 1 ≤ i ≤ n}.

Proof. Let x ∈ K. By assumptions, there are ix such that x ∈ Oix . Moreover, {x} is

a compact, hence there is a neighbourhood Nx with compact closure such that x ∈ Nx ⊂

Nx ⊂ Oix by Proposition I.5.1. By compactness, there are x1, . . . , xm ∈ K such that

K ⊂
⋃m
j=1 Nxj ⊂

⋃m
j=1Nxj . For 1 ≤ i ≤ n, let Ki =

⋃
j Nxij

where Nxij
⊂ Oi. Then Ki

is compact (as a finite union of compact sets) and Ki ⊂ Oi, so that there is a compactly

supported continuous gi such that Ki ≺ gi ≺ Oi by Urysohn’s lemma. Since K ⊂ ∪ni=1Ki,

we have that
∑n

i=1 gi ≥ 1 on K so it remains to properly normalize the gi’s. The set

W = {x :
∑n

i=1 gi(x) > 0} is open (as the preimage of an open set by a continuous function)

so that by Urysohn’ lemma again, there is f such that K ≺ f ≺ W . Let gn+1 = 1− f . Then

by construction
∑n+1

i=1 gi > 0, so that fi = gi/
∑n+1

j=1 gj is well-defined on S for 1 ≤ i ≤ n.

Clearly, supp(fi) = supp(gi) ⊂ Oi. Finally, gn+1 = 0 on K implies that
∑n

i=1 fi = 1

on K. �

Proposition I.5.4 (Tietze’s extension). Let (S, T ) be a LCH space, let K be compact and

let f ∈ C(K). There exists F ∈ Cc(S) such that F (x) = f(x) for all x ∈ K.

Proof. Since f is continuous on a compact space, it is bounded and we assume without

loss that −1 ≤ f ≤ 1 on K. Let V be as in the proof of Urysohn’s lemma be open with

compact closure and such that K ⊂ V . The sets K± = {x ∈ K : f(x) R 1/3} are disjoint

closed subsets of K and hence compact. Applying Urysohn’s lemma first to K+ and V \K−,

second to K− and V \K+, taking the difference and rescaling, there is a function f1 ∈ Cc(S)

such that f1 = 1/3 on K+, f1 = −1/3 on K−, and −1/3 ≤ f1 ≤ 1/3 and supp(f1) ⊂ V .

Hence−2/3 ≤ f−f1 ≤ 2/3 on K. We repeat this with f−f1 replacing f to obtain f2 ∈ Cc(S)

17



with supp(f2) ⊂ V , such that |f2| ≤ (1/3)(2/3) on S and |f − f1 − f2| ≤ (2/3)2 on K. This

procedure provides a sequence (fn)n∈N in Cc(S) such that |fn| ≤ (1/3)(2/3)n−1 on S and

|f −
∑n

j=1 fj| ≤ (2/3)n on K. This shows that the series F =
∑∞

j=1 fj converges uniformly

on S, hence F is continuous, and it converges to f on K. Moreover, supp(F ) ⊂ V . �
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CHAPTER II

Normed vector spaces

1. Basic definitions and results

Definition II.1.1. A normed linear space (V, ‖·‖) is a vector space V over C (or R) equipped

with a norm ‖ · ‖ : V → [0,∞) such that

(i) ‖v‖ ≥ 0 for all v ∈ V and ‖v‖ = 0⇔ v = 0,

(ii) ‖λv‖ = |λ|‖v‖ for all v ∈ V, λ ∈ C,

(iii) ‖v + w‖ ≤ ‖v‖+ ‖w‖ for all v, w ∈ V (Minkowski’s inequality).

Functional analysis is often interested in mappings between normed linear spaces. An im-

portant and simple class is that of bounded linear transformations.

Definition II.1.2. Let (V1, ‖ · ‖1), (V2, ‖ · ‖2) be two normed linear spaces. A bounded linear

transformation is a function T : V1 → V2 such that

(i) T (λv + w) = λT (v) + T (w) for all v, w ∈ V1, λ ∈ C

(ii) There exists C ≥ 0 such that ‖Tv‖2 ≤ C‖v‖1 for all v ∈ V1

The norm of T is the smallest such constant, namely

‖T‖ = sup

{
‖Tv‖2

‖v‖1

: v ∈ V1, v 6= 0

}
.

The set of all bounded linear transformations is a vector space denoted L(V1, V2), and the

norm just defined is referred to as the operator norm. We briefly check that the triangle

inequality holds:

‖M + T‖ ≤ sup

{
‖Mv‖2 + ‖Tv‖2

‖v‖1

: v ∈ V1, v 6= 0

}
≤ sup

{
‖Mv‖2

‖v‖1

: v ∈ V1, v 6= 0

}
+ sup

{
‖Tv‖2

‖v‖1

: v ∈ V1, v 6= 0

}
= ‖M‖+ ‖T‖,

by the triangle inequality of the norm ‖ · ‖2 and the property of the supremum.
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Any normed linear space (V, ‖ · ‖) is a metric space, with the metric being

d(v, w) = ‖v − w‖.

If not otherwise stated, the topology on a normed linear space is always the one induced by

the norm. In particular, a map T : V1 → V2 between to normed linear spaces is continuous

at v0 if for any ε > 0, there is δ > 0 such that ‖v − v0‖1 < δ implies ‖Tv − Tv0‖2 < ε and T

is continuous if it is continuous at all v0 ∈ V .

Interestingly, linearity implies that boundedness and continuity are equivalent:

Proposition II.1.3. Let T : V1 → V2 be a linear transformation between two normed linear

spaces (V1, ‖ · ‖1), (V2, ‖ · ‖2). The following are equivalent:

(i) T is continuous at v0 ∈ V1

(ii) T is continuous everywhere

(iii) T is bounded

Proof. (ii)⇒(i) is trivial. If (i) holds, there is r > 0 such that ‖v− v0‖1 < 2r−1 implies

‖Tv − Tv0‖2 < 1. For any w ∈ V1, the vector v = w
r‖w‖1 + v0 is such that ‖v − v0‖1 = r−1

and so

‖Tw‖2 = r‖w‖1‖T (v − v0)‖2 = r‖w‖1‖Tv − Tv0‖2 ≤ r‖w‖1,

which is (iii). Finally, assuming (iii), ‖Tv1 − Tv2‖2 = ‖T (v1 − v2)‖2 ≤ r‖v1 − v2‖1, so that

(iii) implies (ii). �

In Rn, the closed unit ball is compact. Interestingly, this fact turns out to be characteristic

of finite-dimensional normed linear spaces:

Theorem II.1.4. Let V be a normed linear space. Then the set B1 = {v ∈ V : ‖v‖ ≤ 1} is

compact if and only if V is finite dimensional.

Proof. If V is finite dimensional, then it is isometrically isomorphic to the Euclidean

space CN for some N ∈ N. The closed unit ball in CN is compact, and hence so is the closed

unit ball in V .

Reciprocally, let V be infinite-dimensional. We construct a sequence (wn)n∈N in B1 recur-

sively as follows. Let w1 ∈ B1 be arbitrary. Given {w1, . . . , wn}, let Wn be their span, which
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is finite-dimensional and hence closed. Since V is infinite-dimensional, V \ Wn 6= ∅. We

claim that there exists wn+1 ∈ V such that

‖wn+1‖ = 1, ‖wn+1 − w‖ >
1

2
(w ∈ Wn).

It follows that ‖wj′ − wj‖ > 1/2 for all j, j′ ∈ N so that the sequence (wn)n∈N in B1 has

no convergent subsequence and hence B1 is not compact (Recall that the norm induces a

metric topology which is first countable, and compactness implies sequential compactness

in first countable spaces). To prove the claim, let x ∈ V \Wn. Since Wn is closed, δ0 =

inf{‖x− w‖ : w ∈ Wn} > 0. In particular, there is w0 ∈ Wn such that ‖x− w0‖ < 2δ0. We

let wn+1 = x−w0

‖x−w0‖ , and note that ‖wn+1‖ = 1 and that

inf
w∈Wn

‖wn+1 − w‖ = inf
w∈Wn

‖x− w0 − w‖
‖x− w0‖

=
infw∈Wn ‖x− w‖
‖x− w0‖

>
1

2
,

where we simply renamed w‖x−w0‖ → w in the first equality and similarly w−w0 → w in

the second, since Wn is a linear space. �

For completeness, we prove that δ0 > 0. By definition of the supremum, there is a sequence

(xj)j∈N in Wn such that limn→∞ ‖v − xj‖ = δ0. The sequence is bounded in the closed set

Wn, hence by compactness there is a convergent subsequence: there is w0 ∈ Wn such that

xjk → w0. We conclude by the continuity of the norm that ‖v−w0‖ = limk→∞ ‖v−xjk‖ = δ0

and hence δ0 > 0 since v 6= w0.

Here is one of the most important definitions of the course:

Definition II.1.5. A Banach space is a complete normed linear space.

Recall that a normed vector space is complete if every Cauchy sequence is convergent.

We start our study of Banach spaces with a equivalent characterization of completeness.

Theorem II.1.6. A normed linear space (V, ‖ · ‖) is complete if and only if every absolutely

convergent series is convergent.

Proof. Let V be complete, let (
∑N

n=1 ‖vn‖)N∈N be convergent and denote SN =
∑N

n=1 vn

for all N ∈ N. Then for any M < N , ‖SN − SM‖ ≤
∑N

n=M+1 ‖vn‖ ≤
∑∞

n=M+1 ‖vn‖, which

converges to 0 as M →∞. Hence (SN)N∈N is Cauchy and therefore convergent. Reciprocally,

let (wn)n∈N be a Cauchy sequence. There are n1 < n2 < . . . such that ‖wn−wm‖ < 2−j for all
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n,m ≥ nj. We define z1 = wn1 and recursively zj = wnj−wnj−1
for j ≥ 2. The corresponding

series is telescopic so that
∑N

j=1 zj = wnN . On the other hand
∑∞

j=1 ‖zj‖ ≤ ‖z1‖+ 1, namely∑
zn is absolutely convergent. By assumption,

∑∞
j=1 zj is convergent so that the subsequence

(wnN )N∈N converges, say to w. It remains to prove that the full sequence is convergent. We

have

‖wn − w‖ ≤ ‖wn − wnN‖+ ‖wnN − w‖.

The first term vanishes because (wn)n∈N is Cauchy by assumption, and the second as well by

the convergence of the subsequence just proved. Hence (wn)n∈N is convergent and (V, ‖ · ‖)

is complete. �

2. Lp spaces

We now start a long example and discuss Lp spaces. Let (Ω,F , µ) be a measure space with

a positive σ-finite measure µ, and let 1 ≤ p <∞ (σ-finite means that Ω is a countable union

of measurable sets with finite measure). Recall that

Lp(Ω, µ) = {[f ] : f : Ω→ C is measurable and |f |p is µ-summable},

where [f ] denotes the equivalence class of functions that are equal to f µ-a.e. We shall from

now on simply write Lp(Ω) since the measure is fixed. Since x 7→ |x|p is convex (a fortiori

midpoint convex) for all p ≥ 1, we have that |x+y|p ≤ 2p−1(|x|p+ |y|p) for any x, y ∈ C, and

hence Lp(Ω) is a vector space. It is a normed linear space when equipped with the norm

‖f‖p =
(∫

Ω

|f(x)|pdµ(x)
) 1
p
.

The first two properties of the norm follow immediately from the properties of the integral

and the definition of the equivalence classes. We shall come back to the triangle inequality

later.

The definition of L∞(Ω) is somewhat different:

L∞(Ω, µ) = {[f ] : f : Ω→ C is measurable and ∃M s.t |f(x)| ≤M,µ-a.e.}.

The corresponding norm, also called the essential supremum of f , is given by

‖f‖∞ = inf{M : |f(x)| ≤M for µ-almost every x ∈ Ω}.
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Of course, this can also be written as ‖f‖∞ = inf{M : µ({|f(x)| > M}) = 0}. In particular,

|f(x)| ≤ ‖f‖∞ for µ-almost every x ∈ Ω.

The central inequality in the analysis of Lp spaces is Jensen’s inequality. Recall that a

function J : R → R is said to be convex if J(λx + (1 − λ)y) ≤ λJ(x) + (1 − λ)J(y). J is

strictly convex at x if J(x) < λJ(y) + (1− λ)J(z) whenever x = λy + (1− λ)z.

Theorem II.2.1. Let J : R → R be convex and f : Ω → R be s.t. f ∈ L1(Ω). Assume that

µ(Ω) <∞. Denote µ(f) = µ(Ω)−1
∫

Ω
fdµ ∈ R. Then

J(µ(f)) ≤ µ(J ◦ f).

If J is strictly convex at µ(f), then equality holds iff f is constant.

Proof. By convexity, there is a ∈ R such that

J(t) ≥ J(µ(f)) + a(t− µ(f)) (2.1)

for all t ∈ R. (t 7→ J(µ(f)) + a(t− µ(f)) is called a support line of J at µ(f)). Substituting

f(x) for t and integrating over Ω yields the first claim. If f is constant, the f(x) = µ(f)

for all x ∈ Ω and equality holds. If J is strictly convex at µ(f), the inequality (2.1) is strict

either for all t > µ(f) or for all t < µ(f). But f(x) − µ(f) takes on both positive and

negative values if f is not constant. �

The following inequality due to Hölder, the importance of which in analysis cannot be over-

stated, is now a simple corollary of Jensen’s.

Theorem II.2.2. Let 1 ≤ p ≤ q ≤ ∞ and q be such that p−1 + q−1 = 1. Let f ∈ Lp(Ω), g ∈

Lq(Ω). Then fg ∈ L1(Ω) and∣∣∣∣∫
Ω

fg dµ

∣∣∣∣ ≤ ∫
Ω

|f ||g| dµ ≤ ‖f‖p‖g‖q.

The indices p, q are called dual when p−1 + q−1 = 1.

Proof. Since
∣∣∫

Ω
fg dµ

∣∣ ≤ ∫
Ω
|f ||g| dµ, we assume w.l.o.g. that f ≥ 0, g ≥ 0. The

cases p = ∞ or q = ∞ are immediate consequences of the properties of the integral. We

now assume 1 < p, q < ∞. Let P = {x ∈ Ω : g(x) > 0}. Then
∫

Ω
gdµ =

∫
P
gdµ and
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similarly
∫

Ω
fgdµ =

∫
P
fgdµ, while

∫
Ω
fdµ =

∫
Ω\P fdµ +

∫
P
fdµ ≥

∫
P
fdµ. The measure

dν(x) = g(x)qdµ(x) is well-defined on P and finite with ν(P ) = ‖g‖qq. Let

F (x) =
f(x)

g(x)q/p
(x ∈ P ).

Now,

ν(F ) =
1

‖g‖qq

∫
P

f(x)g(x)q−q/pdµ(x) =
1

‖g‖qq

∫
P

f(x)g(x)dµ(x)

since p−1 = 1− q−1. Since J(t) = |t|p is convex, we apply Jensen’s inequality to get

‖f‖pp
‖g‖qq

= ν(J ◦ F ) ≥ J(ν(F )) =
1

‖g‖pqq
(

∫
P

f(x)g(x)dµ(x))p

which is the claim since p, q are dual indices. �

A functional analytic point of view on this result is the following: Any function f ∈ Lp(Ω)

defines a bounded linear map

Tf : Lq(Ω)→ C, Tf (g) =

∫
Ω

fg dµ,

since |Tf (g)| ≤ ‖f‖p‖g‖q for all g ∈ Lq(Ω).

We are now equipped to prove a general version of Minkowski’s inquality, which is the missing

element in the proof that ‖ · ‖p are indeed norms.

Theorem II.2.3. Let f be a nonnegative function on Ω × Υ that is µ × ν-measurable, and

let 1 ≤ p <∞. Then(∫
Ω

(∫
Υ

f(x, y)dν(y)

)p
dµ(x)

) 1
p

≤
∫

Υ

(∫
Ω

f(x, y)pdµ(x)

) 1
p

dν(y) (2.2)

In particular, the left hand side is finite whenever the right hand side is finite.

A particularly simple way of expressing the inequality is as follows: If x 7→ f(x, y) is in

Lp(Ω, µ) for ν-almost every y and if y 7→ ‖f(·, y)‖p is in L1(Υ, ν), then y 7→ f(x, y) is in

L1(Υ, ν) for µ-almost every x, the function x 7→
∫

Υ
f(x, y)dν(y) is in Lp(Ω, µ) and∥∥∥∥∫

Υ

f(·, y)dν(y)

∥∥∥∥
p

≤
∫

Υ

‖f(·, y)‖pdν(y).

Corollary II.2.4. For g, h ∈ Lp(Ω),

‖g + h‖p ≤ ‖g‖p + ‖h‖p.
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Proof of the corollary. The identity |g(x) + h(x)| ≤ |g(x)| + |h(x)| immediately

yields the claim for p = 1 or p = ∞. The same inequality shows that it suffices to prove

the claim for non-negative functions. Let 1 < p <∞, we apply the theorem to f defined by

f(x, 1) = |g(x)|, f(x, 2) = |h(x)| on Ω × {1, 2}, where {1, 2} is equipped with the measure

ν({1}) = 1 = ν({2}). �

Proof of Theorem II.2.3. The function

F (x) =

∫
Υ

f(x, y) dν(y)

is measurable by Fubini’s theorem. We assume that
∫

Ω
F pdµ > 0, since otherwise the

inequality is trivially satisfied. Assuming that the left hand side of (2.2) is finite, it reads∫
Ω

F pdµ =

∫
Ω

(∫
Υ

f(x, y) dν(y)

)
F (x)p−1dµ(x)

=

∫
Υ

(∫
Ω

f(x, y)F (x)p−1 dµ(x)

)
dν(y)

≤
∫

Υ

(∫
Ω

f(x, y)pdµ(x)

) 1
p
(∫

Ω

F p dµ

) p−1
p

dν(y)

by Tonelli’s theorem and by Hölder’s inequality with 1/p + (p − 1)/p = 1. But this is the

claim after dividing by (
∫

Ω
F pdµ)

p−1
p . Note that if the left hand side were not finite, the

argument would hold for a suitably truncated version of f , and hence the claim would follow

by monotone convergence. �

So far, we have proved that Lp(Ω) is a normed vector space, and that any element in Lq(Ω),

where p, q are dual indices, defines a bounded linear functional on Lp(Ω). We now prove

that Lp(Ω) are Banach spaces.

Theorem II.2.5. Let 1 ≤ p ≤ ∞. Then Lp(Ω) is complete.

Proof. Case 1 ≤ p < ∞. Let (fj)j∈N be so that
∑

j fj is absolutely convergent in

Lp(Ω), and let B =
∑∞

j=1 ‖fj‖p. The sequence Gn =
∑n

j=1 |fj| is increasing pointwise, and

let G =
∑∞

j=1 |fj| (as usual in this sort of argument, G(x) may be equal to +∞). Moreover,

‖Gn‖p ≤
∑n

j=1 ‖fj‖p ≤ B by Minkowski’s inequality. Hence, monotone convergence applied
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to Gp
n implies that G ∈ Lp(Ω) and∫

Ω

Gpdµ = lim
n→∞

∫
Ω

Gp
ndµ.

In particular, G(x) <∞ for µ-almost every x. Furthermore, the numerical series
∑n

j=1 fj(x)

is convergent for µ-almost every x. Let F (x) be its limit. Since |F (x)| ≤ G(x) and G ∈

Lp(Ω), we have that F ∈ Lp(Ω). Moreover,∣∣∣F (x)−
n∑
j=1

fj(x)
∣∣∣p = lim

m→∞

∣∣∣ m∑
j=n+1

fj(x)
∣∣∣p ≤ lim

m→∞

( m∑
j=n+1

|fj(x)|
)p
≤ G(x)p,

and dominated convergence implies that

lim
n→∞

‖F −
n∑
j=1

fj‖pp =

∫
Ω

lim
n→∞

|F −
n∑
j=1

fj|pdµ = 0,

namely
∑n

j=1 fj → F in the Lp-norm, which concludes the proof with Theorem II.1.6.

The case p = ∞. Let (fj)j∈N be a Cauchy sequence in L∞(Ω). For each j, k ∈ N, there is

a set of measure zero Nj,k such that |fj(x) − fk(x)| ≤ ‖fj − fk‖∞ for all x ∈ Ω \ Nj,k. As

a countable union of sets of measure zero, the set N = ∪j,k∈NNj,k has measure zero. For

any x ∈ Ω \N , the sequence (fj(x))j∈N is Cauchy and therefore convergent, say to f(x). It

follows that fj → f uniformly on Ω \N , and further fj → f in the L∞ norm. �

The definition of Lp spaces is really made in order for them to be Banach. The fact that

they are, strictly speaking, not sets of functions but of equivalence classes of functions is

necessary for the norm to be well-defined. One may further wonder whether there could

not be ‘simpler’ spaces of functions that would be complete. One way to see that this is

not possible is the following, which shows that any f ∈ Lp(Ω) can be approximated in the

Lp-norm by a C∞ function. Recall that the convolution of two functions f, g is given by

(f ∗ g)(x) =

∫
Rn
f(x− y)g(y)dy

Proposition II.2.6. Let j ∈ C∞c (Rn) with j ≥ 0 and
∫
Rn j = 1. For any ε > 0, let

jε(x) = ε−nj
(x
ε

)
.

Let Ω ⊂ Rn be open and let f ∈ Lp(Ω) for 1 ≤ p <∞. Let

fε(x) = (jε ∗ f̃)(x) (x ∈ Ω),
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where f̃ is the extension of f by 0 to Rn. Then

(i) fε ∈ Lp(Ω) ∩ C∞(Rn) and

(ii) fε → f in Lp(Ω), as ε→ 0.

This is a consequence of Young’s inequality:

‖f ∗ g‖p ≤ ‖f‖q‖g‖r 1 +
1

p
=

1

q
+

1

r
.

Before coming back to the general theory of Banach spaces, we turn to another example.

Example 4. We equip C1([0, 1]) with the norm

‖f‖W 1,∞ = ‖f‖∞ + ‖f ′‖∞

and claim that it is a Banach space. Recall indeed that if a sequence (fn)n∈N of differentiable

functions converges pointwise to f , and is such that (f ′n)n∈N converges uniformly to g, then

f ∈ C1([0, 1]), with f ′ = g, and fn converges uniformly to f . With this, we note that if

(fn)n∈N is a Cauchy sequence in (C1([0, 1]), ‖ · ‖W 1,∞), then both (fn)n∈N and (f ′n)n∈N are

Cauchy sequences with respect to ‖ · ‖∞ and hence they converge uniformly, to f , resp. g.

The result above implies that g = f ′. By induction the result would extend to Ck([0, 1])

equipped with the norm ‖f‖Wk,∞ =
∑k

j=0 ‖f (j)‖∞.

3. Linear functionals and the Hahn-Banach theorem

Recall that L(V1, V2) is the normed vector space of bounded linear transformations between

two vector spaces V1, V2.

Proposition II.3.1. If V2 is a Banach space, then so is L(V1, V2).

Proof. Let (Tn)n∈N be a Cauchy sequence in L(V1, V2). For each v ∈ V1, the sequence

(Tnv)n∈N is Cauchy in V2 since ‖(Tn− Tm)v‖2 ≤ ‖Tn− Tm‖‖v‖1. Since V2 is complete, there

is w ∈ V2 such that limn→∞ Tnv = w. This defines a map T : V1 → V2 by v 7→ Tv = w. We

check that it is a bounded linear transformation and that ‖Tn−T‖ → 0 as n→∞. Linearity

follows from the linearity of the limit. Next, we note that |‖Tn‖ − ‖Tm‖| ≤ ‖Tn − Tm‖ so

that (‖Tn‖)n∈N is a Cauchy sequence in R. Let C denote its limit. Then,

‖Tv‖2 = lim
n→∞

‖Tnv‖2 ≤ lim
n→∞

‖Tn‖‖v‖1 = C‖v‖1,
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proving the continuity of the limiting T . Finally,

‖T − Tn‖ = sup

{
‖(T − Tn)v‖2

‖v‖1

: 0 6= v ∈ V1

}
but ‖(T−Tn)v‖2 = limm→∞ ‖(Tm−Tn)v‖2 ≤ ‖v‖1 limm→∞ ‖Tm−Tn‖, which yields the claim

since (Tn)n∈N is Cauchy. �

In the case V1 = V2 = V , the Banach space L(V, V ) often denoted L(V ) has an additional

structure, namely an associative product given by composition. Then for any S, T ∈ L(V ),

‖STv‖V ≤ ‖S‖‖Tv‖V ≤ ‖S‖‖T‖‖v‖V

which shows that

‖ST‖ ≤ ‖S‖‖T‖.

The algebra L(V ) has a unit, namely the identity operator v 7→ v. Altogether, L(V ) is a

unital Banach algebra.

Since C is a Banach space, the above shows that the space

V ∗ = L(V,C)

is a Banach space for any normed linear space V , and it is called the dual space of V .

An element of V ∗ is a bounded linear functional on V . V ∗ is naturally equipped with the

operator norm

‖`‖V ∗ = sup

{
|`(v)|
‖v‖V

: 0 6= v ∈ V
}
.

The topology induced by this norm is strong. Although it is useful as it makes V ∗ into a

Banach space, it is often convenient to consider weaker topolgies on V ∗. We will come back

to this later.

Example 5. We have already discussed that Hölder’s inequality implies Lq(Ω) ⊂ Lp(Ω)∗

whenever (p, q) are dual indices. Indeed: for any f ∈ Lq(Ω), the map Tf (g) =
∫

Ω
fgdµ is

a bounded linear functional Lp(Ω) → C with ‖Tf‖ ≤ ‖f‖q. Since f̄ |f |q−2 ∈ Lp(Ω) with

‖f̄ |f |q−2‖p = ‖f‖q/pq = ‖f‖q−1
q , and Tf (f̄ |f |q−2) = ‖f‖qq, we conclude that ‖Tf‖ = ‖f‖q. In

fact, they are all bounded linear functionals, provided p < ∞, which is the claim of the

following theorem of Riesz. The case p = ∞ is different, in the sense that L1(Ω) is a strict

subset of L∞(Ω)∗, while L1(Ω)∗ = L∞(Ω).
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First of all, we note that bounded linear functionals separate points.

Lemma II.3.2. Let 1 ≤ p < ∞. If f ∈ Lp(Ω) is such that `(f) = 0 for all ` ∈ Lp(Ω)∗, then

f = 0.

Of course, this implies that if f 6= g in Lp(Ω), then there is ` ∈ Lp(Ω)∗ such that `(f) 6= `(g).

Proof. Let

g(x) =

|f(x)|p−2f(x) f(x) 6= 0

0 otherwise
.

For 1 < p < ∞, f ∈ Lp(Ω) implies g ∈ Lq(Ω) since q(p − 1) = p. If p = 1, then |g(x)| = 1

whenever f(x) 6= 0 and 0 otherwise so that g ∈ L∞(Ω). Therefore in both cases Tg is a

well-defined linear functional, so that by assumption, 0 = Tg(f) = ‖f‖pp. Hence f = 0

indeed. �

Theorem II.3.3. Let 1 < p < ∞. Then Lq(Ω) is isometrically isomorphic to Lp(Ω)∗. The

same holds for p = 1 provided Ω is σ-finite.

Note that an isomorphism of Banach spaces is an invertible linear map T : V → W such

that both T, T−1 are bounded. It is isometric if ‖Tv‖W = ‖v‖V . Here, the isomorphism is

given by f 7→ Tf , which is isometric.

Proof of the theorem. Case p > 1. Let ` be a non-zero element of Lp(Ω)∗. We

explicitly construct a function λ ∈ Lq(Ω) such that

`(f) =

∫
Ω

λf dµ. (3.1)

Let N` = `−1({0}) be the kernel of `. By continuity, N` is closed. It is also convex: if

f, g ∈ N` then `(λf + (1− λ)g) = 0 by linearity. Therefore, for any function f /∈ N`, there

is h ∈ N` such that

‖f − h‖p = inf{‖f − k‖p : k ∈ N`}.

(this is a fact for closed convex sets that would require a proof, but we will admit this rather

intuitive fact). Let now k ∈ N`, and let k(t) = (1− t)h + tk which is in N` for all t ∈ [0, 1]
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by convexity. By definition of h, the function [0, 1] 3 t 7→ F (t) = ‖f −k(t)‖p has a minimum

at t = 0. Since it is differentiable, we must have that F ′(0) ≥ 0, namely∫
Ω

|f − h|p−2
[
(f − h)(h− k) + (f − h)(h− k)

]
dµ ≥ 0.

for all k ∈ N` (recall that (d/dt)‖f + tg‖p|t=0 = (p/2)
∫

Ω
|f |p−2(f̄ g + fḡ)dµ). Since N` is a

linear space and h ∈ N`, we conclude that

Re

∫
Ω

ϕk̃ dµ ≥ 0 ϕ = |f − h|p−2(f − h)

for all k̃ ∈ N`. For any k ∈ N`, all of ±k,±ik are in N`, so that
∫

Ω
ϕk dµ = 0 for all k ∈ N`.

For any g ∈ Lp(Ω), let

g1 =
`(g)

`(f − h)
(f − h) and g2 = g − g1,

which is well-defined since `(f − h) = `(f) 6= 0. The decomposition is so that g2 ∈ N`, and

hence, by the above,∫
Ω

ϕg dµ =

∫
Ω

ϕg1 dµ = `(g) · I, I =
1

`(f − h)

∫
Ω

ϕ(f − h) dµ,

and we note that
∫

Ω
ϕ(f −h) dµ = ‖f −h‖pp 6= 0. Since f, h ∈ Lp(Ω) implies that ϕ ∈ Lq(Ω),

the choice λ = ϕ/I concludes the proof of the claim. To conclude, we show that λ is the

unique function satisfying (3.1). Indeed, let λ′ ∈ Lq(Ω) be another one. Then∫
Ω

(λ− λ′)g dµ = 0

for all g ∈ Lp(Ω). But the choice g = |λ − λ′|p−2(λ − λ′) yields 0 = ‖λ − λ′‖pp and hence

λ = λ′.

Case p = 1. We first assume that µ is a finite measure: µ(Ω) < +∞. Let ` ∈ L1(Ω)∗. Let

1 ≤ p < +∞; For any f ∈ Lp(Ω), Hölder’s inequality yields that

|`(f)| ≤ C`‖f‖1 ≤ C`(µ(Ω))
1
q ‖f‖p,

namely the restriction of ` to Lp(Ω) is again bounded. By the above, for any p > 1, there is a

unique vp ∈ Lq(Ω) such that ` � Lp(Ω) = Tvp . By Hölder’s inequality again, Lr(Ω) ⊂ Lp(Ω)

whenever r ≥ p since

‖f‖pp ≤ (µ(Ω))1− p
r ‖f‖pr.
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Therefore, the uniqueness of vp implies that vr = vp for all r, p > 1, and we denote it v. We

claim that it is the function we seek. First of all, with f = |v|q−2v̄,

‖v‖qq = `(f) ≤ C`(µ(Ω))
1
q ‖f‖p = C`(µ(Ω))

1
q ‖v‖q−1

q .

Hence ‖v‖q ≤ C`(µ(Ω))
1
q for any 1 < q < +∞. Assume now that µ({x ∈ Ω : |v(x)| >

C` + ε}) = M > 0. Then

‖v‖q ≥
(∫
{x∈Ω:|v(x)|>C`+ε}

|v(x)|q
) 1
q
> (C` + ε)M

1
q

and this is strictly larger than C`(µ(Ω))
1
q for q large enough since limq→∞

M
µ(Ω)

= 1. This

is a contradiction with the previous bound on ‖v‖q. Hence M = 0 for all ε > 0 and we

conclude that v ∈ L∞(Ω) with ‖v‖∞ ≤ C`. For any f ∈ L1(Ω), then |Tv(f)| < +∞. For

any f ∈ L1(Ω), then the functions fn defined for any n ∈ N by fn(x) = f(x) whenever

|f(x)| ≤ n and f(x) = 0 otherwise are all in Lp(Ω) for all 1 < p < +∞. Moreover fn → f

pointwise and |fn(x)| < |f(x)|, so by dominated convergence fn → f in L1(Ω); Similarly,

vfn → vf in L1(Ω). We conclude that

`(f) = lim
n→∞

`(fn) = lim
n→∞

∫
Ω

vfndµ =

∫
Ω

vfdµ

where the first bound is by continuity of ` (w.r.t. the L1(Ω) norm), the second equality is

because fn ∈ Lp(Ω) and the third is by dominated convergence. Hence `(f) = Tv(f) indeed.

For the case of a σ-finite space Ω, the argument can be repeated on every Ωj, where

Ω = ∪∞j=1Ωj, with f =
∑∞

j=1 χjf , where χj is the characteristic function of Ωj. The proof

then proceeds with functions vj and v =
∑∞

j=1 vj and the observation that ‖vj‖∞ ≤ C is

independent of j. �

We note that in the cases 1 < p <∞, the above implies that

Lp(Ω)∗∗ = (Lp(Ω)∗)∗ ' Lp(Ω).

A space that is equal to its bidual is called reflexive.

More precisely, let V be a normed vector space. Then V is embedded in V ∗∗ through

I : V → V ∗∗ given by

I(v)(`) = `(v) (3.2)
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for all ` ∈ V ∗, v ∈ V . As a consequence of the Hahn-Banach theorem to come, I is an

isometry, namely ‖I(v)‖V ∗∗ = ‖v‖V for all v ∈ V . The space V is reflexive if I is surjective.

Note further that since V ∗∗ = (V ∗)∗ is complete, the space V is complete whenever it is

reflexive. Finally, we point out that it is common to identify I(v) with v and in the case of

a reflexive space V with V ∗∗ although this leads to abuse of notations.

We now turn to one of the pillars of functional analysis, the Hahn-Banach theorem. There are

various versions of it, and many rather immediate corollaries that are very useful. Vaguely

put, it allows for the extension of a linear functional defined on a subset of a Banach space

to the whole of the space. It is however non-constructive and it requires the axiom of choice.

We first recall Zorn’s lemma.

A relation on a set S that is reflexive, transitive and antisymmetric is called a partial order.

We denote it by x ≺ y. ‘Partial’ refers here to the fact that a pair x, y of elements of S does

not need to satisfy x ≺ y or y ≺ x. A linearly ordered set is such that for any pair x, y,

either x ≺ y or y ≺ x. An element m ∈ S is a maximal element if m ≺ x implies m = x.

Finally, an element p ∈ S is an upper bound for X ⊂ S if x ≺ p for all x ∈ X.

Zorn’s Lemma. Let S be a nonempty partially ordered set such that every linearly ordered

subset has an upper bound in S. Then each linearly ordered subset has an upper bound that

is also a maximal element of S.

We start with the real version of Hahn-Banach.

Theorem II.3.4. Let X be a real vector space, let p : X → R be a convex function. Let

Y ⊂ X be a subspace, and let λ : Y → R be a real linear functional such that λ(x) ≤ p(x)

for all x ∈ Y . Then there exists a real linear functional ` : X → R such that `(x) = λ(x)

whenever x ∈ Y and

`(x) ≤ p(x)

for all x ∈ X.

Proof. We present the proof in the setting of p being sublinear, namely p(x + y) ≤

p(x) + p(y) and p(ax) = ap(x) for all x, y ∈ X and a > 0.

Step 1. Extending λ along one direction. Let z ∈ X \Y , and let Ỹ = {az+y : a ∈ R, y ∈ Y }.
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We shall construct λ̃(z) and define

λ̃(az + y) = aλ̃(z) + λ(y).

For any y1, y2 ∈ Y , and any a, b > 0,

aλ(y1) + bλ(y2) = (a+ b)λ

(
a

a+ b
y1 +

b

a+ b
y2

)
.

We now bound λ by p, and since the latter is defined everywhere, we can add and subtract

ab/(a+ b)z in its argument. By convexity, we then obtain

aλ(y1) + bλ(y2) ≤ ap(y1 − bz) + bp(y2 + az),

or equivalently

b−1(λ(y1)− p(y1 − bz)) ≤ a−1(p(y2 + az)− λ(y2)).

Hence, there exists a (not necessarily unique) real number c such that

sup
{
b−1(λ(y1)− p(y1 − bz)) : b > 0, y1 ∈ Y

}
≤ c ≤ inf

{
a−1(p(y2 + az)− λ(y2)) : a > 0, y2 ∈ Y

}
and we define λ̃(z) = c. The second inequality implies that λ̃(x) ≤ p(x) for any x = az+y ∈

Ỹ with a > 0,

λ̃(az + y) = a(λ̃(z) + λ(y/a)) ≤ a
(
p(y/a+ z)− λ(y/a) + λ(y/a)

)
= p(y + az),

where we used the positive homogeneity of g, while the first one does in the case a < 0.

Step 2. Extending λ to all of X. The set

S = {(V, `) : V ⊂ X is a subspace, and ` : V → R is linear and `(x) ≤ p(x)}

which is not empty since (Y, λ) ∈ S, is equipped with the partial order

(V, `) ≺ (V ′, `′) iff V ⊂ V ′ and `(x) = `′(x) for all x ∈ V,

namely `′ extends ` from V to V ′. For any SI = {(Vα, `α) : α ∈ I} linearly ordered set in S,

the element (⋃
α∈A

Vα, ˜̀

)
, ˜̀(x) = `α(x) whenever x ∈ Vα,
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is a well-defined upper bound of SI in S. Zorn’s lemma now implies that there exists a

maximal element (X ′, `) of S. In fact, X ′ = X, since otherwise ` could be extended by

Step 1. �

The complex version of Hahn-Banach is now a simple corollary.

Theorem II.3.5. Let X be a complex vector space, let p : X → R be a function such that

p(αx+ βy) ≤ |α|p(x) + |β|p(y) α, β ∈ C, |α|+ |β| = 1.

Let Y ⊂ X be a subspace, and let λ : Y → C be a complex linear functional such that

|λ(x)| ≤ p(x) for all x ∈ Y . Then there exists a complex linear functional ` : X → C such

that `(x) = λ(x) whenever x ∈ Y and

|`(x)| ≤ p(x)

for all x ∈ X.

Proof. Let Λ(x) = Reλ(x), which is real linear. Since

Λ(ix) = Re(iλ(x)) = −Imλ(x),

we have that λ(x) = Λ(x)− iΛ(ix). Now, Λ is bounded by p on Y and p is convex (for real

α, β) so that it has a real linear extension L ≤ p on X (here X and Y are both seen as real

vector spaces). The linear functional `(x) = L(x)− iL(ix) extends λ and it is complex linear

since `(ix) = i`(x). Finally, let x ∈ X and α = `(x)/|`(x)|. Then |`(x)| = ᾱ`(x) = `(ᾱx),

and since this is real, we conclude that

|`(x)| = L(ᾱx) ≤ p(ᾱx) ≤ p(x),

by the assumption on p since |ᾱ| = 1. �

Note that the Hahn-Banach theorem does not require the full structure of a Banach space.

However, if X is a normed vector space, then the norm itself and related functions are good

p-functions. This yields a number of useful corollaries, valid both in the real and complex

case.

Corollary II.3.6. Let X be a normed vector space and let Y be a subspace. Let λ ∈ Y ∗.

There exists ` ∈ X∗ such that λ(x) = `(x) for x ∈ Y and ‖`‖X∗ = ‖λ‖Y ∗.
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Proof. Apply H-B to p(x) = ‖λ‖Y ∗‖x‖X . Since ` is an extension of λ, we have ‖`‖X∗ ≥

‖λ‖Y ∗ . On the other hand by H-B |`(x)| ≤ ‖λ‖Y ∗‖x‖X , namely ‖`‖X∗ ≤ ‖λ‖Y ∗ . �

Corollary II.3.7. Let X be a normed vector space, let x ∈ X and ζ ∈ C. There exists

` ∈ X∗ such that `(x) = ζ‖x‖X and ‖`‖X∗ = |ζ|.

Proof. Follows from the previous corollary with Y = {ax : a ∈ C} and λ(ax) = aζ‖x‖X ,

for which ‖λ‖Y ∗ = |ζ|. �

This implies that bounded linear functionals separate points in X:

Corollary II.3.8. Let X be a normed vector space. For any y1 6= y2 ∈ X, there exists

` ∈ X∗ such that `(y1) 6= `(y2)

Proof. This follows from the previous corollary with ζ = 1, and x = y1−y2 6= 0. Then,

which implies `(y1)− `(y2) = `(x) = ‖x‖ 6= 0. �

Finally, the last result shows that the norm in a normed vector space can be computed using

linear functionals, which is often a very useful tool.

Corollary II.3.9. Let X be a normed vector space. For all x ∈ X,

‖x‖X = sup {|`(x)| : ` ∈ X∗, ‖`‖X∗ = 1} .

Proof. By Corollary II.3.7 with ζ = 1, there is ` ∈ X∗ such that `(x) = ‖x‖X and

‖`‖X∗ = 1 proving ≤ above. The inequality ≥ is by definition of the norm in X∗, since

|`(x)| ≤ ‖`‖X∗‖x‖X . �

4. The Baire category theorem and its corollaries

We now turn to the second pillar of functional analysis and its corollaries, the principle of

uniform boundedness, Corollary II.4.3 and the open mapping theorem, Corollary II.4.4.

A subset S of a metric space M is nowhere dense if (S)o = ∅. Since, for any set (Xo)c = Xc,

we conclude that (S)c = ((S)o)c = M , namely, (S)c is dense. For example, Z is nowhere

dense in R; so is the Cantor set.

Recall further that D ⊂ M is dense if D = M , and recall that D is the set of x ∈ M such

that Nx ∩D 6= ∅ for any open neighbourhood Nx of x.
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Lemma II.4.1. D ⊂M is dense if and only if D ∩O 6= ∅ for every non-empty open set O.

Proof. If D is dense and O is open and not empty, then for any x ∈ O, we have

that x ∈ D. Hence, every open neighbourhood of x intersects D, in particular O itself.

Reciprocally, assume that D ∩ O 6= ∅ for every non-empty open set O. For any x ∈ M , let

Nx be an open neighbourhood of x (in particular Nx is not empty) and hence Nx ∩D 6= ∅.

It follows that x ∈ D. �

Theorem II.4.2. Let M be a complete metric space.

(i) If (Un)n∈N is a sequence of open, dense sets in M , then ∩n∈NUn is dense in M .

(ii) M is not a countable union of nowhere dense sets.

Proof. Let S ⊂ M be a nonempty open set. Since U1 is dense, U1 ∩ S is open and

non-empty, so there is an open metric ball Br1(x1) ⊂ U1∩S with r1 < 1/2. Inductively, there

are balls Brn(xn) with rn < 1/2n such that Brn(xn) ⊂ Un ∩ Brn−1(xn−1). By construction,

the sequence (xn)n∈N is Cauchy since for any n,m > N , xn, xm ∈ BrN (xN). Hence it is

convergent and let x be its limit. For any N ∈ N,

x ∈ BrN (xN) ⊂ UN ∩Br1(x1) ⊂ UN ∩ S,

so that S ∩ (∩n∈NUn) 6= ∅. Since S was arbitrary, (i) is proved by Lemma II.4.1.

(ii) Let now (Vn)n∈N be a sequence of nowhere dense sets. Then ((Vn)c)n∈N is a sequence of

open, dense sets, and so their intersection is dense in M , in particular nonempty. Hence,

∪n∈NVn ⊂ ∪n∈NVn = (∩n∈NVn
c
)c 6= M,

concluding the proof. �

In other words, if M = ∪n∈NUn, then at least one of Un must have a nonempty interior.

The name of the theorem comes from the following: A set is called meager or of the first

category if it is a countable union of nowhere dense sets; otherwise it is of the second

category. Baire’s theorem shows that a complete metric space is of the second category. In

the corollaries below, we could replace the assumption of spaces being Banach by the spaces

being of the second category.

We now turn to the Principle of Uniform Boundedness.
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Corollary II.4.3. Let X be a Banach space, Y a normed linear space, and let F be a family

of bounded linear transformations from X to Y . If, for each x ∈ X, the set {‖Tx‖Y : T ∈ F}

is bounded, then the set {‖T‖ : T ∈ F} is bounded.

In other words, if there is a bound on ‖Tx‖Y that is uniform in x, pointwise in T (that is

just the boundedness of T ) and a bound on ‖Tx‖Y that is uniform in T , pointwise in x, then

there is a bound that is uniform in (x, T ), hence the name of the theorem.

Proof. For n ∈ N, let En = {x : ‖Tx‖ ≤ n,∀T ∈ F}, which is a closed set. By

assumption, for each x ∈ X, there is nx such that x ∈ En for all n ≥ nx, namely X = ∪n∈NEn.

The Baire category theorem implies that there is n0 such that En0 has nonempty interior.

Let Br(x0) ⊂ Eo
n0

. If x ∈ Br(0), then x+ x0 ∈ Br(x0) and hence

‖Tx‖ ≤ ‖T (x+ x0)‖+ ‖Tx0‖ ≤ 2n0,

namely Br(0) ⊂ E2n0 . In other words, ‖x‖ ≤ r implies ‖Tx‖ ≤ 2n0, hence ‖T‖ ≤ 2n0

r
. �

This implies for example that if X, Y are both Banach spaces and b : X × Y → C is bilinear

and separately continuous, then b is jointly continuous. It suffices to prove continuity at

(0, 0). Let (xn, yn)→ (0, 0) as n→∞ and let Tn(y) = b(xn, y). Since b(xn, ·) is continuous,

{Tn : n ∈ N} is a family of bounded linear functionals. Since xn → 0, and b(·, y) is continuous,

{|Tn(y)| : n ∈ N} is bounded for each y ∈ Y . The principle of uniform boundedness implies

that there exists C such that

|Tn(y)| ≤ C‖y‖

uniformly in n and hence

|b(xn, yn)| = |Tn(yn)| ≤ C‖yn‖ → 0,

as n→ 0.

This is of course a property that arises from linearity, as it is well-known not to hold for

example for functions f : R2 → R.

Corollary II.4.4. Let X, Y be Banach spaces, and let T ∈ L(X, Y ) be surjective. For any

open set S ⊂ X, T (S) is open in Y .

In other words, a surjective bounded linear map between Banach spaces is an open map.
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Proof. Let BX
0 be the open unit ball. We first claim that T (BX

0 ) contains an open ball

around 0 ∈ Y . Let BX
1 be the open ball of radius 1/2 around 0 ∈ X. Since X = ∪n∈NnBX

1

(here λA = {λx : x ∈ A}) and T is surjective and linear

Y = T (X) =
⋃
n∈N

nT (BX
1 ).

By Baire’s theorem, we conclude that there is n0 such that n0T (BX
1 )

o
is nonempty. In

particular, it contains an open ball and so does T (BX
1 ), namely there is ε > 0, y0 ∈ Y such

that

BY
ε (y0) ⊂ T (BX

1 ), (4.1)

or equivalently BY
ε ⊂ T (BX

1 )− y0. Let now y ∈ T (BX
1 )− y0, namely y+ y0 ∈ T (BX

1 ) as well

as y0 ∈ T (BX
1 ). There are sequences (x′j)j∈N and (x′′j )j∈N in BX

1 such that

Tx′j → y0, Tx′′j → y0 + y (j →∞).

We have that xj = x′′j − x′j ∈ BX
0 , and of course Txj → y as j → ∞. It follows that

y ∈ T (BX
0 ). Since this holds for all such y, we conclude that T (BX

1 ) − y0 ⊂ T (BX
0 ), and

furthermore BY
ε (0) ⊂ T (BX

0 ), see (4.1). If BX
n denotes the ball of radius 2−n, linearity

implies that T (BX
n ) = 2−nT (BX

0 ), and hence

BY
2−nε ⊂ T (BX

n ). (4.2)

We finally show that BY
ε/2 ⊂ T (BX

0 ) (no closure!). Let y ∈ BY
ε/2. By the above, BY

ε/2 ⊂ T (BX
1 ).

In particular, there is x1 ∈ BX
1 such that

‖y − Tx1‖ < ε/4.

We now assume inductively that there are x1, . . . , xn−1 such that xj ∈ BX
j and∥∥∥y − n−1∑

j=1

Txj

∥∥∥ < 2−nε, (4.3)

namely, the left hand side belongs to BY
2−nε. By (4.2), there is xn ∈ Bn such that ‖(y −∑n−1

j=1 Txj) − Txn‖ < 2−(n+1)ε. With this, the sequence Sn =
∑n

j=1 xj is Cauchy, hence

convergent, say to x. In fact, ‖x‖ ≤
∑∞

j=1 ‖xj‖ <
∑∞

j=1 2−j = 1, namely x ∈ B0. Moreover,

TSn → Tx since T is continuous, and (4.3) shows that y = Tx indeed.
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Let now O ⊂ X be open and let y ∈ T (O), namely y = Tx for x ∈ O. There is r > 0

such that BX
r (x) ⊂ O, or equivalently x + BX

r (0) ⊂ O. By linearity, this implies that

y + T (BX
r (0)) ⊂ T (O). By the above, there is δ > 0 such that BY

δ (0) ⊂ T (BX
r (0)), and

hence BY
δ (y) = y +BY

δ (0) ⊂ T (O). Since y is arbitrary, this proves that T (O) is open. �

As discussed earlier, a bijective map being open is equivalent to its inverse being continuous.

We therefore immediately get the following inverse mapping theorem.

Corollary II.4.5. Let V,W be Banach spaces and T ∈ L(V,W ) be bijective. Then T−1 ∈

L(W,V ).

Finally, we discuss the closed graph theorem, which is the last important corollary of the

Baire category theorem. For any two normed linear spaces V,W and any mapping T : V →

W , the graph of T is the set

Γ(T ) = {(v, w) ∈ V ×W : w = Tv}.

We equip V ×W with the norm ‖(v, w)‖ = ‖v‖+ ‖w‖.

Corollary II.4.6. Let V,W be Banach spaces and T : V → W be a linear map. Then T

is bounded if and only if Γ(T ) is closed.

Note that T is implicitly assumed to be defined on all of V .

Proof. Assume first that Γ(T ) is closed. Since T is linear, Γ(T ) is a subspace of V ×W ,

and since it is closed it is complete. The projections π1(v, Tv) = v and π2(v, Tv) = Tv are

continuous since

‖π1(v, Tv)‖ = ‖v‖ ≤ ‖v‖+ ‖Tv‖, ‖π2(v, Tv)‖ = ‖Tv‖ ≤ ‖v‖+ ‖Tv‖,

and π1 is a bijection. Hence its inverse is bounded. But then T = π2 ◦ π−1
1 is bounded.

Reciprocally, let T ∈ L(V,W ) and let (vn, wn)n∈N be a sequence of elements of Γ(T ) that is

convergent, with (v, w) = limn→∞(vn, wn). By continuity w = limn→∞wn = limn→∞ Tvn =

Tv, and hence (v, w) ∈ Γ(T ). Hence Γ(T ) is closed. �
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In principle, continuity of T requires that vn → v implies Tvn → w and w = Tv. With the

closed graph theorem, it suffices to show that vn → v and Tvn → w imply w = Tv, which is

a simpler task.

Let us briefly make an excursion into unbounded linear operators. A linear operator T

between two normed vector spaces is closed if Γ(T ) is closed. The above theorem shows that

if T is closed and unbounded, then it cannot be defined on all of V . Such operators are in

fact very common. Let us consider V = C0([0, 1];R) equipped with ‖ · ‖∞, and T = d/dx

defined on D(T ) = C1([0, 1];R). Let (fn)n∈N be the sequence fn(x) = xn. Then ‖fn‖∞ = 1

for all n ∈ N but

‖Tfn‖∞ = n‖fn−1‖∞ = n,

proving that sup{‖Tf‖∞/‖f‖∞ : f ∈ D(T )} = ∞, namely T is unbounded. However, let

(fn, T fn) be a convergent sequence in D(T ) × V , and let (f, g) be its limit. Then g = Tf ,

namely Γ(T ) is closed indeed.

We can now extend Corollary II.4.5 to unbounded operators.

Theorem II.4.7. Let T : D(T ) ⊂ V → W be a linear, closed and bijective map. There

exists S ∈ L(W,V ) such that

TS = 1W , ST = 1 �D(T ) .

Proof. As in the proof of Corollary II.4.6 with the projections being defined on Γ(T ).

In particular, π1 : Γ(T ) → D(T ) and π2 : Γ(T ) → W and both are again bounded and

bijective. It follows that π−1
2 is bounded and we let S = π1 ◦ π−1

2 . �

We conclude the example of T = d/dx. We consider a slightly limited domain

D̃(T ) = {f ∈ C1([0, 1];R) : f(0) = 0},

on which T remains closed, but T : D̃(T )→ C0([0, 1];R) now injective. It is also surjective:

if g ∈ C0([0, 1];R), then
∫ x

0
g(y)dy ∈ D̃(T ) and g(x) = T

∫ x
0
g(y)dy. This also shows that its

inverse is given by

(Sg)(x) =

∫ x

0

g(y)dy.

It is easy to check that S is bounded indeed since

‖Sg‖∞ ≤ sup{x sup{|g(y)| : y ∈ [0, x]} : x ∈ [0, 1]} ≤ sup{|g(x)| : x ∈ [0, 1]}. = ‖g‖∞.
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5. Weak topologies, the Banach-Alaoglu theorem and corollaries

We turn to one of the main reasons to discuss non-metric topologies in the first part, namely

weak topologies on Banach spaces and the Banach-Alaoglu theorem.

Definition II.5.1. Let V be a Banach space. The V ∗-weak topology on V is usually

referred to as weak topology, and it is the weakest topology on V such that every bounded

linear functional ` : V → C is continuous.

Note that by definition of V ∗, every element is continuous with respect to the metric topology

induced by the norm. The weak topology is the weakest topology on V with respect to which

this still holds. It is generated by sets of the form `−1(Bε(z)), with ` ∈ V ∗ and z ∈ C, ε > 0.

A neighbourhood base at v0 is given by sets

Nv0(`1, . . . , `n, ε) = {v ∈ V : |`j(v)− `j(v0)| < ε; 1 ≤ j ≤ n}, `1, . . . , `n ∈ V ∗, ε > 0.

Importantly, a sequence (vn)n∈N converges weakly if and only if

`(vn)→ `(v) (n→∞)

for any ` ∈ V ∗. Weak convergence is usually denoted vn ⇀ v. As per (iv) below, weak limits

are unique.

Proposition II.5.2. (i) If V is infinite dimensional, the weak topology is not metrizable.

(ii) The weak topology is weaker than the norm topology.

(iii) Weakly convergent sequences are norm bounded.

(iv) The weak topology is Hausdorff.

Proof. We only prove (ii-iv). (i) follows from the fact that the weak topology is first

countable if and only if V is finite dimensional. (ii) follows by definition, since any ` ∈ V ∗ is

contiuous in the norm topology.

(iii) Let (vn)n∈N be a weakly convergent sequence. Let Vn ∈ V ∗∗ be defined by

Vn(`) = `(vn).

By assumption, the set {|Vn(`)| : n ∈ N} is bounded for any ` ∈ V ∗. By the principle of

uniform boundedness, the set {‖Vn‖V ∗∗ : n ∈ N} is bounded, which concludes the proof since
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‖Vn‖V ∗∗ = sup{|`(vn)| : ` ∈ V ∗, ‖`‖V ∗ = 1} = ‖vn‖V by Hahn-Banach.

(iv) Since linear functionals separate, for any v 6= w in V , there is ` ∈ V ∗ such that

`(v) 6= `(w). Hence there is ε > 0 such that Bε(`(v)) ∩ Bε(`(w)) = ∅. The preimages

under ` of these discs are open in V , disjoint and contain v, respectively w. �

Remark II.5.3. (i) If V is infinite dimensional, then the weak topology is strictly weaker

that the norm topology. For example, the weak closure of the unit sphere is in this case the

whole unit ball.

(ii) Let (vn)n∈N be a weakly convergent sequence and let v be its limit. Then by Corol-

lary II.3.7, there is ` ∈ V ∗ such that ‖`‖ = 1 and `(v) = ‖v‖ so that

‖v‖ = |`(v)| = lim inf
n→∞

|`(vn)| ≤ lim inf
n→∞

‖vn‖. (5.1)

(iii) It is sometimes easier to establish `(vn) → `(v) only on a dense subset D of V ∗. We

claim that it is sufficient to prove weak convergence, provided {‖vn‖ : n ∈ N} is bounded.

Indeed, let ` ∈ V ∗ and (`n)n∈N be a sequence in D converging to `. Then

|`(vn)− `(v)| ≤ |`(vn)− `j(vn)|+ |`j(v)− `(v)|+ |`j(vn)− `j(v)|.

The first two terms are bounded by sup{‖v‖+‖vn‖ : n ∈ N}‖`−`j‖ and the last one vanishes

as n→∞ by the above so that

lim sup
n→∞

|`(vn)− `(v)| ≤ C‖`− `j‖

which converges to zero as j →∞.

(iv) Some comments on weak convergence in Lp-spaces.

Let g ∈ C∞c (R) and let fn(x) = g(x+ n). Then ‖fn‖p = ‖g‖p for all n ∈ N and in particular

(fn)n∈N does not converge to zero in the norm topology. Moreover, for any h ∈ C∞c (R),

we see that
∫
R hfn = 0 for n large enough since the supports are eventually disjoint. Since

C∞c (R) is dense in Lq(R), we conclude that fn ⇀ 0 by the above remark. This ‘escape to

infinity’ is the first type of possible mechanisms by which (fn)n∈N converges weakly but not

strongly. We briefly discuss the other two. The second mechanism is related to ‘oscillation to

infinity’, and we use a priori knowledge of Fourier analysis. Any function f ∈ L2((−π, π);R)
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has a Fourier representation as

‖f‖2
2 = 2π

+∞∑
n=−∞

(s2
n + c2

n), sn =
1

2π

∫ π

−π
f(x) sin(nx)dx, cn =

1

2π

∫ π

−π
f(x) cos(nx)dx.

In particular, limn→∞ sn → 0. Since L2 is its own dual, this shows that the sequence

(sin(nx))n∈N converges weakly to 0. However,
∫ π
−π sin2(nx)dx = π, showing again that the

sequence does not converge to zero in the norm topology. Note that the same holds in

any Lp space, 1 < p < ∞. The third general type of weak but not strong convergence is

concentration. Let g ∈ C∞c (R) and let fn(x) = n1/pg(nx). Then ‖fn‖p = ‖g‖p so that fn

does not converge strongly to zero. However, for any h ∈ C∞c (R),∫
R
h(x)fn(x)dx = n

1
p

∫
R
h(x)g(nx)dx = n

1
p
−1

∫
R
h(y/n)g(y)dy → 0.

Indeed, the integral converges to h(0)
∫
R g by dominated convergence, and 1/p−1 = −1/q <

0. Again, this shows that fn ⇀ 0 by density of C∞c (R) in Lq(R).

A similar construction provides a topology on V ∗. Indeed any v ∈ V is a linear functional

on V ∗ through ` 7→ `(v). This family of functionals provides the weak-* topology.

Definition II.5.4. Let V be a Banach space. The weak-* topology is the weakest topology

on V ∗ such that every map ` 7→ `(v), v ∈ V is continuous.

Convergence in the weak-* topology is denoted `n
∗
⇀ `.

Let us quickly comment on terminology. We shall see later that the dual of C0(X), the space

of continuous functions vanishing at infinity on a LCH space X, is isomorphic to the space

M(X) of complex Radon measures. If we equip M(X) with the weak-* topology, a sequence

of measures (µn)n∈N converges if and only if
∫
X
fdµn →

∫
X
fdµ for any f ∈ C0(X). In

probability, this topology is sometimes referred to as the vague topology. One further speaks

of ‘weak convergence’ of measures, which is really the ‘weak-* convergence’ of measures.

One of the reasons of introducing the weak-* topology is the following Banach-Alaoglu

theorem. It shows that while the unit ball is not compact in the norm topology, see The-

orem II.1.4, it is in the weak-* topology. The proof relies on Tychonoff’s theorem, which

itself is about compactness. Let {Sα : α ∈ I} be a family of sets, and let S =×α∈I Sα. Let
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πα : S → Sα be the canonical projection, and let Π = {πα : α ∈ I}. The product topology on

S is Π-weak topology, making all canonical projections continuous.

Theorem II.5.5. Let {Xα : α ∈ I} be a collection of compact sets. Then×α∈I Xα is compact

in the product topology.

With this,

Theorem II.5.6. Let V be a normed vector space. The unit ball in V ∗ is weakly-* compact.

The product topology is the natural topology to study functionals in V ∗. Indeed, if for

v ∈ V , we set Bv = {λ ∈ C : |λ| ≤ ‖v‖}, then each Bv is compact and so is×v∈V Bv

in the product topology. But an element of×v∈V Bv is nothing else than a bounded map

b : V → C such that |b(v)| ≤ ‖v‖. To prove the theorem, one needs to show (i) that the

relative topology on the unit ball in V ∗ (which is a subset of×v∈V Bv) is indeed the weak-*

topology, and (ii) that the unit ball is closed.

Since this uses both Tychonoff’s theorem (unproved in this course) and nets, we rather prove

the sequential compactness version of Banach-Alaoglu.

Theorem II.5.7. Let V be a separable normed vector space, and let (`n)n∈N be a bounded

sequence in V ∗. There is ` ∈ V ∗ and a subsequence (`nk)k∈N such that `nk
∗
⇀ ` as k →∞.

Proof. Let (vj)j∈N be dense in V . The sequence (`n(v1))n∈N is bounded in C, hence

there is a subsequence n1
k converging to z1. Repeating this inductively with v2, v3, . . ., we

obtain subsequences njk such that nj is a subsequence of nj−1 for any j ∈ N and `njk
(vj)→ zj

as k → ∞. Define `(vj) = zj and let mj be the diagonal sequence, namely mj = njj. Then

`mj(vj)→ zj as j →∞ since by construction `mj(vj) is a subsequence of `njk
(vj). Now, ` is

linear on the span L of {vn : n ∈ N} and it is bounded

|`(v)| = lim
j→∞
|`mj(v)| ≤ lim sup

n→∞
‖`n‖V ∗‖v‖V

for any v ∈ L. Since L is dense, there is a bounded linear extension of ` to all of V = L.

It remains to check the weak-* convergence. Let v ∈ V ; by density of (vj)j∈N, there is a

subsequence such that limj→∞, vnj = v. For any k, j ∈ N,

|`mk(v)− `(v)| ≤ |`mk(v)− `mk(vnj)|+ |`(vnj)− `(v)|+ |`mk(vnj)− `(vnj)|.
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The first two terms are bounded by sup{‖`m‖X∗ + ‖`‖X∗ : m ∈ N}‖v − vnj‖ while the last

one vanishes as k → ∞ by definition of ` so that lim supk→∞ |`mk(v) − `(v)| ≤ C‖v − vnj‖

which converges to zero as j →∞. �

We now turn to an application to the calculus of variations. First of all, the compactness

just proved yields a weak Bolzano-Weierstrass theorem, namely that bounded sets are weakly

sequentially compact. We shall use the fact that in a reflexive space, the weak and weak-*

topologies are equivalent.

Proposition II.5.8. Let V be a reflexive Banach space, and let (vn)n∈N be a bounded se-

quence in V . Then (vn)n∈N has a weakly convergent subsequence.

Proof. The set L = span{vn : n ∈ N} is separable and reflexive. Then L∗ is separable.

We consider the bounded sequence (I(vn))n∈N in L∗∗ (see (3.2)). By Banach-Alaoglu, there

is a weakly-* convergent subsequence, namely a v ∈ L (by reflexivity) such that for any

` ∈ L∗,

I(vnk)(`)→ I(v)(`), namely `(vnk)→ `(v)

as k → ∞. Let now ` ∈ V ∗. Then ` �L∈ L∗. Since (vn)n∈N, v ∈ L, we conclude that

`(vnk)→ `(v) as k →∞ for any ` ∈ V ∗, namely vnk ⇀ v. �

In the proof above, we used the following fact: If a normed vector space X is such that

X∗ is separable, then so is X. This implies that if L is reflexive and separable, then L∗ is

separable. We prove the claim. Let (`n)n∈N be a dense sequence in X∗, and let (xn)n∈N be a

sequence in X so that

‖xn‖ = 1, `n(xn) + 1/n ≥ ‖`n‖ (n ∈ N). (5.2)

Then S = span{xn : n ∈ N} ⊂ X is separable, and we claim that S = X. Assume by

contradiction that there is x0 ∈ X \S. By Hahn-Banach, there is ` ∈ X∗ such that `(x0) = 1

and ` � S = 0. By assumption, there is a convergent subsequence such that `nk → ` as

k →∞. Then,

0 6= ‖`‖ = lim
k→∞
‖`nk‖ ≤ lim sup

k→∞
`nk(xnk)

by (5.2). However, |`nk(xnk)| = |(`nk − `)(xnk)| ≤ ‖`nk − `‖ converges to zero, which is a

contradiction.
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Example 6. Let (fn)n∈N be a bounded sequence in Lp(Ω) for 1 < p < ∞. Since Lp spaces

are separable, there is a subsequence (fnk)k∈N and a f ∈ Lp(Ω) such that∫
Ω

fngdµ→
∫

Ω

fgdµ

for any g ∈ Lq(Ω).

We now prove the existence of a closest point to a closed convex set, a fact that was used

in the proof of Theorem II.3.3. First of all, the need that the weak and norm closures of a

convex set are equal.

Lemma II.5.9. Let V be a real normed vector space and S ⊂ V . Denote S, respectively S
w

the closure of S with respect to the norm, respectively weak topology. Then,

(i) S ⊂ S
w

,

(ii) if S is convex, then S = S
w

.

Proof. (i) Since the weak topology is weaker than the strong topology, it has fewer

open sets and therefore also fewer closed sets. The inclusion follows from the definition of

the closure as the smallest closet set containing S.

(ii) If S 6= S
w

, there is v0 ∈ S
w \ S. Applying the hyperplane separation theorem to the

compact A = {v0} and the closed set S, there is ` ∈ V ∗ such that

`(v0) < inf{`(v) : v ∈ S} ≤ inf{`(v) : v ∈ S}.

Hence v0 /∈ S
w

which is a contradiction. Hence S = S
w

. �

Theorem II.5.10. Let V be a reflexive real Banach space, and let S ⊂ V be a nonempty

convex and closed subset. Let v0 ∈ V \ S. There exists s0 ∈ S such that

‖v0 − s0‖ = inf{‖v0 − s‖ : s ∈ S}

Proof. By definition of the infimum, there is a minimizing sequence (sn)n∈N in S such

that ‖v0 − sn‖ → inf{‖v0 − s‖ : s ∈ S}. Since it is bounded, it has a weakly convergent

subsequence snk → s0 as k → ∞, and s0 ∈ S
w

. Since S is convex, its weak closure is equal

to its norm closure, hence s0 ∈ S = S. But then

‖v0 − s0‖ ≤ lim inf
n→∞

‖v0 − sn‖ = inf{‖v0 − s‖ : s ∈ S}
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by (5.1), concluding the proof. �

Let now S ⊂ V and F : S → R. The function F is weakly sequentially lower semicontinuous

at v0 ∈ S if

F (v0) ≤ lim inf
n→∞

F (vn)

for every sequence (vn)n∈N in S that converges weakly to v. It is moreover called coercive

on S with respect to ‖ · ‖ whenever F (v) → +∞ as ‖v‖ → ∞. By (5.1), norms are weakly

sequentially lower semicontinuous.

A consequence of the weak Bolzano-Weierstrass theorem is the following principle of the

calculus of variations.

Theorem II.5.11. Let V be a reflexive Banach space and let S ⊂ V be non empty and

weakly closed. Let F : S → R be coercive and weakly sequentially lower semicontinuous.

There exists v0 ∈ S such that F (v0) = inf{F (v) : v ∈ S}. If, moreover, S is convex and F

is strictly convex, v0 is the unique minimizer of F .

Proof. We consider a minizing sequence (vn)n∈N in S, namely F (vn)→ f = inf{F (v) :

v ∈ S}. Since F is coercive, the sequence (vn)n∈N is bounded and has a weakly convergent

subsequence (vnk)k∈N by Proposition II.5.8. Since S is weakly sequentially closed, the limit

v0 belongs to S, in particular F (v0) ≥ f . But

F (v0) ≤ lim inf
k→∞

F (vnk) = f,

by weak sequential lower semicontinuity. This shows existence. For uniqueness, let v0, v1 be

two minimizers, namely F (v0) = f = F (v1). Let vt = (1 − t)v0 + tv1 for t ∈ [0, 1], which is

in S by assumption. But then,

F (vt) < (1− t)F (v0) + tF (v1) = f = inf{F (v) : v ∈ S},

a contradiction. �

6. Linear operators between Banach spaces

First of all, we recall that L(V,W ) is a Banach space whenever W is complete. In this case,

if (Tn)n∈N is a sequence in L(V,W ) such that
∑∞

j=1 ‖Tj‖ is convergent in L(V,W ), then so
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is the series
∑∞

j=1 Tj. For example if T ∈ L(V ) where V is Banach, then

exp(T ) = 1 +
∞∑
j=1

T n

n!

is a well-defined operator in L(V ). This follows from

1 +
∞∑
j=1

‖T j‖
n!
≤ exp(‖T‖)

since ‖T j‖ ≤ ‖T‖j.

Example 7. Let V be a Banach space and let T ∈ L(V ) be such that ‖T‖ < 1. Then 1−T

is invertible and

(1− T )−1 =
∞∑
j=0

T j.

The convergence of the series follows, similarly to above, from the convergence of the geo-

metric series. Let Sn =
∑n

j=0 Tj. Then

(1− T )Sn = Sn(1− T ) = Sn − (Sn+1 − 1) = 1− T n+1.

Letting n→∞ yields the claim. The series for the inverse is called the Neumann series.

Proposition II.6.1. Let V be a Banach space and let T ∈ L(V ). Then the following limit

exists

rT = lim
n→∞

‖T n‖1/n = inf{‖T n‖1/n : n ∈ N} ≤ ‖T‖.

In the setting of the theorem, rT is called the spectral radius.

Proof. Let ε > 0. There is k ∈ N such that

‖T k‖1/k ≤ inf{‖T n‖1/n : n ∈ N}+ ε.

For any n ∈ N, let n = kl + m with m < k. Then, ‖T n‖1/n ≤ ‖T kl‖1/n‖Tm‖1/n ≤

‖T k‖l/n‖T‖m/n, which converges to ‖T k‖1/k as n → ∞, since l/n → 1/k,m/n → 0. To-

gether with the initial estimate, we conclude

lim sup
n→∞

‖T n‖1/n ≤ inf{‖T n‖1/n : n ∈ N}+ ε ≤ lim inf
n→∞

‖T n‖1/n + ε.

Since this holds for all ε > 0, we have that lim supn→∞ ‖T n‖1/n ≤ lim infn→∞ ‖T n‖1/n so that

the limit exists. The last bound is immediate. �
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Finally, we denote the set of invertible operators in a Banach space V by

Gl(V ) = {T ∈ L(V ) : T is invertible}.

Note that by the open mapping theorem, T−1 ∈ L(V ). We then have:

Theorem II.6.2. Let V be a Banach space. Then Gl(V ) is an open subspace of L(V ).

Proof. Let T0 ∈ Gl(V ) and let T ∈ L(V ) be such that

‖T − T0‖ < ‖T−1
0 ‖−1.

Then T = T0(1−T−1
0 (T0−T )) and since ‖T−1

0 (T −T0)‖ < 1, we conclude that (1−T−1
0 (T0−

T )) ∈ Gl(V ), which yields the claim since T0 in invertible. �

Definition II.6.3. Let V be a Banach space and T ∈ L(V ). The resolvent set ρ(T ) of T is

the set of z ∈ C such that z · 1− T ∈ Gl(V ). The spectrum of T is the set σ(T ) = C \ ρ(T ).

In the following, we will prefer the notation z−T . The operator Rz(T ) = (z−T )−1 is called

the resolvent of T at z. The name follows from the fact that the operator provides a solution

of the linear system Tv − zv = w, namely v = −Rz(T )w.

Proposition II.6.4. Let V be a Banach space and T ∈ L(V ). Then,

(i) σ(T ) is closed,

(ii) the function z 7→ Rz(T ) defined on ρ(T ) is analytic.

Proof. (i) Let z0 ∈ ρ(T ). Then ‖(z − T ) − (z0 − T )‖ = |z − z0|. It follows from

Theorem II.6.2 that z−T is invertible for |z−z0| small enough. Hence ρ(T ) is open, namely

σ(T ) is closed.

(ii) As in the proof of Theorem II.6.2, (z−T ) = (z0−T )(1 + (z− z0)(z0−T )−1) is invertible

whenever |z − z0| < ‖(z0 − T )−1‖−1. Its inverse is given by the Neumann series, namely

(z − T )−1 =

[
1 +

∞∑
j=1

(z − z0)j(T − z0)−j

]
(z0 − T )−1 =

∞∑
j=0

(z0 − T )−(j+1)(z − z0)j (6.1)

namely Rz(T ) can be expanded in a power series around each point z0 of ρ(T ). �
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We note that the convergence of (6.1) implies that the distance d(z0) to the spectrum is at

least ‖(z0 − T )−1‖−1, or equivalently

‖Rz0(T )‖ ≥ 1

d(z0)
.

Theorem II.6.5. Let V be a Banach space and T ∈ L(V ). Then

(i) σ(T ) is a nonempty, bounded and closed subset of C,

(ii) rT = max{|z| : z ∈ σ(T )}.

Note that (ii) justifies the name spectral radius given to the limit in Proposition II.6.1.

Proof. (i) Since (z − T ) = z(1− z−1T ), the Neumann series

(z − T )−1 =
∞∑
j=0

T jz−j−1 (6.2)

ensures that Rz(T ) exists if ‖z−1T‖ < 1, namely if |z| > ‖T‖. In particular, σ(T ) ⊂ B‖T‖(0).

It remains to prove that the spectrum is not empty. If T = 0, then {0} ⊂ σ(T ). Otherwise,

‖T‖ > 0. We assume by contradiction that σ(T ) = ∅ and so ρ(T ) = C. Then the function

C 3 z 7→ Rz(T ) ∈ L(V ) is entire. If |z| ≥ 2‖T‖, then

‖Rz(T )‖ ≤ 1

‖T‖

where we used the Neumann series to get

‖(z − T )−1‖ ≤ 1

|z|

∞∑
j=0

1

|z|

j

‖T‖j =
1

|z| − ‖T‖
.

Moreover, z 7→ Rz(T ) is bounded on the compact disc |z| ≤ 2‖T‖ since it is continuous.

Hence it is an entire and bounded function, therefore it is a constant function by Liouville’s

theorem. Therefore z 7→ (z − T ) is a constant function, which is a contradiction.

(ii) Let n, k ∈ N. There are 0 ≤ r < k and q ∈ N such that n = kq+r, and so T n = (T k)qT r,

which yields ∥∥∥∥∥
∞∑
n=0

T nz−n+1

∥∥∥∥∥ ≤
k−1∑
r=0

‖T‖r|z|−r+1

∞∑
q=0

(‖T k‖|z|−k)q.

It follows that the series is convergent if ‖T k‖|z|−k < 1, namely |z| > ‖T k‖ 1
k . Hence z ∈ σ(T )

implies |z| < ‖T k‖ 1
k , and hence |σ(T )| ≤ rT , where we use the notation |σ(T )| = max{|z| :

z ∈ σ(T )}.
50



Let δ > 0 and let Γδ be the contour in C winding once around σ(T ) given by |z| = |σ(T )|+δ.

For any z ∈ Γδ, (6.2) yields for any n ∈ N ∪ {0} that

1

2πi

∮
Γδ

(z − T )−1zndz =
∞∑
j=0

T j
1

2πi

∮
Γδ

zn−j−1dz = T n, (6.3)

from which we obtain that

‖T n‖ ≤ (|σ(T )|+ δ)n+1 sup{‖(z − T )−1‖ : z ∈ Γδ}.

Taking the nth root and the limit n→∞ now yields rT ≤ |σ(T )|+δ and therefore rT ≤ |σ(T )|

since δ > 0 is arbitrary. �

In a finite dimensional setting, the spectrum is made of eigenvalues, namely z ∈ C for which

there is v ∈ V, v 6= 0, such that Tv = zv. Indeed, the existence of a non-zero solution of the

equation implies that z−T has a non-trivial kernel and is therefore not invertible. The next

example illustrates that in general the spectrum contains more than just eigenvalues.

Example 8. We consider a measure space (X,µ) with finite measure, a function g ∈

L∞(X,µ) and the linear operator Mg on L2(X,µ) defined by

(Mgψ)(x) = g(x)ψ(x)

It is well defined and bounded since ‖Mgψ‖2
2 ≤ ‖g‖∞‖2ψ‖2

2. In fact, if Mg maps L2(X,µ) to

itself, then g ∈ L∞(X,µ). Indeed, if ψn → ψ and Mgψn → φ in L2(X,µ), then by the Riesz-

Fischer theorem, there is a convergent subsequence (ψnj)j∈N along which both convergences

hold pointwise almost everywhere. But then the function gψnj converge pointwise a.e. to

both gψ and φ, hence gψ = φ in L2(X,µ). Therefore, Mg is closed and so it is bounded

by the closed graph theorem, namely there is C ≥ 0 such that ‖Mgψ‖2 ≤ C‖ψ‖2 for all

ψ ∈ L2(X,µ). Let ` > 0 and let χ` be the characteristic function of the superlevel set

X` = {x ∈ X : |g(x)| ≥ `}. Then

`2µ(X`) ≤
∫
X

|χ`(x)|2|g(x)|2dµ(x) ≤ C2

∫
X

|χ`(x)|2dµ(x) = C2µ(X`).

It follows that `2 > C2 implies µ(X`) = 0, namely ‖g‖∞ ≤ ` indeed.

We can now characterize the resolvent set of Mg. z ∈ ρ(Mg) if and only if (z − Mg) is

invertible, or equivalently if and only if (z − g)−1ψ is in L2(X,µ) for all ψ ∈ L2(X,µ). In
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other words, the operator M(z−g)−1 ∈ L(L2(X,µ)), which we have just shown to hold if and

only if (z − g)−1 ∈ L∞(X,µ). Hence z ∈ ρ(Mg) if and only if there is c ≥ 0 such that

µ{x ∈ X : |(z − g(x))−1| > c} = 0 or equivalently

µ{x ∈ X : |(z − g(x))| < c−1} = 0

We conclude that z ∈ σ(Mg) if and only if µ{x ∈ X : |(z − g(x))| ≤ ε} > 0 for any ε > 0,

namely z is in the essential range of the function g (which coincides with the closure of its

range if g is continuous).

Concretely, if (X,µ) is [0, 1] with the Lebesgue measure and g(x) = x, we have that σ(Mg) =

[0, 1]. However, z ∈ [0, 1] is not an eigenvalue since the equation xψ(x) = zψ(x) for all

x ∈ [0, 1] implies ψ = 0 almost everywhere, namely, there is no eigenvector for the spectral

value z.

We now turn to a cornerstone of operator theory, here in a limited framework. If T ∈ L(V ),

then

P (T ) =
N∑
n=0

anT
n (6.4)

is well-defined in L(V ) for any polynomial P (z) =
∑N

n=0 anz
n. The goal is to extend the

mapping P → P (T ) to more general functions, thereby defining a functional calculus. Let f

be a function that is analytic in a domain Ω containing σ(T ). Let Γ be a simple contour in

Ω ∪ ρ(T ) winding once around σ(T ). Let

f(T ) =
1

2πi

∮
Γ

(z − T )−1f(z)dz. (6.5)

Note that both the set of analytic functions and L(V ) are unital algebras.

Theorem II.6.6. (i) If f is a polynomial, then (6.5) and (6.4) are the same operator.

(ii) The map f 7→ f(T ) is a homomorphism of unital algebras.

(iii) σ(f(T )) = f(σ(T )).

Note that one could further prove that (f ◦ g)(T ) = f(g(T )).

Proof. (i) If f is a polynomial, then (6.3) used in (6.5) yields (6.4).

(ii) The mapping f 7→ f(T ) is linear. The fact that units are mapped onto each other is (i)
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in the case of the constant polynomial. In order to prove that (fg)(T ) = f(T )g(T ), we first

note the following resolvent identity

(z − T )−1 − (w − T )−1 = (w − z)(z − T )−1(w − T )−1

which follows from (w − T ) − (z − T ) = (w − z) after multiplication by (w − T )−1 from

the right and by (z − T )−1 from the left. Let Θ,Γ be two contours as above such that Θ is

completely in the interior of Γ. Then

f(T )g(T ) =

∮
Θ

∮
Γ

(θ − T )−1(γ − T )−1f(θ)g(γ)dγdθ

=

∮
Θ

∮
Γ

(
(γ − T )−1 − (θ − T )−1

) f(θ)g(γ)

θ − γ
dγdθ

by the resolvent identity, where we denote dθ = (2πi)−1dθ. The first term vanishes since∮
Θ
f(θ)
θ−γdθ = 0 because Γ lies outside of the interior of Θ. The second term reduces to

f(T )g(T ) = −
∮

Θ

(∮
Γ

g(γ)

θ − γ
dγ

)
(θ − T )−1f(θ)dθ = −

∮
Θ

(θ − T )−1f(θ)g(θ)dθ = (fg)(T ).

(iii) Let µ ∈ f(σ(T )), namely µ = f(λ) for some λ ∈ σ(T ). Since f is analytic, the function

F (ζ) = (ζ−λ)−1(f(ζ)−f(λ)) is analytic in Ω so that F (T ) is a well-defined element of L(V ).

By (ii) applied to (ζ − λ)F (ζ), we conclude that (T − λ)F (T ) = f(T ) − µ. But λ ∈ σ(T )

implies that the left hand side is not invertible, and hence f(T )−µ is not invertible, namely

µ ∈ σ(f(T )). Hence f(σ(T )) ⊂ σ(f(T )). Let now µ /∈ f(σ(T )), namely f(λ) − µ 6= 0 for

all λ ∈ σ(T ). Then g(λ) = (f(λ) − µ)−1 is analytic in an open neighbourhood of σ(T ),

and hence g(T ) is well-defined in L(V ). But then (f(λ) − µ)g(λ) = 1 implies by (ii) that

(f(T ) − µ)g(T ) = 1, proving that g(T ) is the inverse of f(T ) − µ, and hence µ /∈ σ(f(T )).

This shows that σ(f(T )) ⊂ f(σ(T )) and concludes the proof. �

Definition II.6.7. Let V,W be Banach spaces and T ∈ L(V,W ). The adjoint of T is the

operator T ′ ∈ L(W ∗, V ∗) defined by

(T ′`)(v) = `(Tv)

for any ` ∈ W ∗, v ∈ V .

Proposition II.6.8. The map T 7→ T ′ is an isometric isomorphism between L(V,W ) and

L(W ∗, V ∗).

53



Proof. Linearity is immediate. We note that

‖T‖L(V,W ) = sup{‖Tv‖W : ‖v‖ = 1} = sup
{

sup{|`(Tv)| : ‖`‖W ∗ = 1} : ‖v‖V = 1
}

by Corollary II.3.9. Replacing `(Tv) by (T ′`)(v) and taking the supremum over v first, we

obtain

‖T‖L(V,W ) = sup{‖T ′`‖V ∗ : ‖`‖W ∗ = 1} = ‖T ′‖L(W ∗,V ∗)

indeed. �

A set K in a Banach space V is called precompact if its closure is compact. Equivalently, K

is precompact if every sequence in K has a subsequence that is convergent in V .

Definition II.6.9. Let V,W be Banach spaces. An operator T ∈ L(V,W ) is called compact

if T maps bounded sets of V into precompact sets of W .

Example 9. Let T be such that its range is finite dimensional. Then T is compact. Indeed,

any w = Tv can be written as w =
∑N

j=1 τj(v)ej for a linearly independent set {ej : j =

1, . . . , N} in W and τj(v) ∈ C. If {vn} is a bounded sequence in V , then {τ1(vn) : n ∈ N} is

a bounded set in C since T is bounded, and it has a convergent subsequence. Repeating this

recursively for j = 2, . . . , N , we obtain a subsequence {nk} such that {τj(vnk)} is convergent

for all j. Together, these define a convergent subsequence of {Tvn}.

Theorem II.6.10. Let V,W be Banach spaces.

(i) The set of compact operators is a vector subspace of L(V,W ).

(ii) Let X be a Banach space and let T ∈ L(W,X). If S ∈ L(V,W ) is compact, then TS is

compact.

(iii) Let U be a Banach space and let T ∈ L(U, V ). If S ∈ L(V,W ) is compact, then ST is

compact.

(iv) Let {Tn} be a sequence of compact operators in L(V,W ) such that Tn → T in the uniform

topology. Then T is compact.

Proof. (i) is a simple exercise.

(ii) follows from the fact that the image of a precompact set under a bounded linear map is

precompact.
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(iii) follows from the fact that a bounded set is mapped to a bounded set by a bounded

linear map.

(iv) Let ε > 0. There is N ∈ N such that n ≥ N implies ‖Tn− T‖ < ε
2
. Let B be a bounded

subset of V . Since Tn is compact, the set TnB can be covered by a finite number of balls of

radius ε
2
. Hence the set TB is covered by a finite number of balls of radius ε (with the same

centers), and hence it is precompact. It follows that T is compact. �

Here is an important mapping property of compact operators

Theorem II.6.11. A compact operator maps weakly convergent sequences into norm conver-

gent sequences.

Proof. Let vn
w
⇀ v. By Proposition II.5.2, the set {‖vn‖V : n ∈ N} is bounded,

compactness the set {wn = Tvn : n ∈ N} is precompact since T is a compact operator. Let

also w = Tv. Then for any ` ∈ W ∗,

`(wn)− `(w) = (T ′`)(wn)− (T ′`)(w) −→ 0

as n → ∞, namely wn converges weakly to w. Since {wn} has a norm convergent subse-

quence, we conclude that it converges in norm to w. �

We will continue the study of compact operators in the setting of Hilbert spaces.

To conclude, we get back to possibly unbounded operators. Let V,W be normed vector

spaces and let Γ ⊂ V ×W be a linear subspace. Γ is called a linear graph if

(
(v, w1) ∈ Γ, (v, w2) ∈ Γ

)
⇒ w1 = w2,

or equivalently (0, w) ∈ Γ implies w = 0. Clearly, the graph Γ(T ) of a linear operator

T : D(T ) ⊂ V → W is a linear graph. Reciprocally, a linear graph Γ defines a unique linear

operator T : D(T ) ⊂ V → W such that Γ(T ) = Γ through

D(T ) = π1(Γ), T v = π2(({v} ×W ) ∩ Γ) for v ∈ D(T ).

Definition II.6.12. Let T : D(T ) ⊂ V → W and S : D(S) ⊂ V → W be linear operators

with graphs Γ(T ),Γ(S). S is an extension of T , denoted T ⊂ S, if Γ(T ) ⊂ Γ(S).
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Equivalently,

D(T ) ⊂ D(S) S �D(T )= T.

Definition II.6.13. A linear operator T : D(T ) ⊂ V → W is closable if Γ(T ) is a linear

graph. The corresponding operator T ⊃ T with Γ(T ) = Γ(T ) is called the closure of T .

Note that

D(T ) = {v ∈ V : ∃(vn)n∈N in D(T ), w ∈ W : (vn, T vn)→ (v, w) as n→∞}.

In particular, D(T ) ⊂ D(T ) and the inclusion D(T ) ⊂ D(T ) is in general strict.

Proposition II.6.14. An operator T : D(T ) ⊂ V → W is closable if and only if for any

sequence (vn, wn) ∈ Γ(T ), the convergence vn → 0, wn = Tvn → w implies w = 0.

Proof. T is closable if and only if Γ(T ) is a linear graph, namely (0, w) ∈ Γ(T ) implies

w = 0. �

In particular, if T : D(T ) ⊂ V → W is a bounded linear operator, then it is closable. Indeed,

(vn, T vn)→ (0, w) implies

‖w‖ = lim
n→∞

‖Tvn‖ ≤ lim
n→∞

‖T‖‖vn‖ = 0.

Example 10. (i) Let V = L2(R;R),W = R and let

D(T ) = {f ∈ L2(R;R) : supp(f) is compact},

and

Tf =

∫ ∞
−∞

f(x)dx

Then the sequence (fn)n∈N in D(T ) given by fn(x) = n−1χ[0,n](x) converges to zero since

‖fn‖2
2 = n−1. However

Tfn =

∫ ∞
−∞

fn(x)dx = 1

for all n ∈ N. Hence T is not closable by the lemma.

(ii) Let Ω ⊂ Rn be open and V = L2(Ω) = W . Let D(∆) = C∞c (Ω). We claim that the
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Laplacian ∆ : D(∆)→ L2(Ω) is closable. Indeed, let (fn, gn)n∈N be a sequence in Γ(∆) such

that fn → 0, gn → g as n→∞. For any ϕ ∈ C∞c (Ω),∫
Ω

gnϕdx =

∫
Ω

∆fnϕdx =

∫
Ω

fn∆ϕdx

by Gauss-Green’s theorem and the compact support of the functions. Letting n → ∞, we

obtain
∫

Ω
gϕdx = 0 for any ϕ ∈ C∞c (Ω). But C∞c (Ω) is a dense subset of L2(Ω)∗ ' L2(Ω) so

that
∫

Ω
ghdx = 0 for all h ∈ L2(Ω) and hence g = 0 since linear functionals separate. With

Proposition II.6.14, it follows that ∆ is closable. The determination of ∆ and D(∆) is a

separate issue. In the present case, it can be explicitly characterized, namely

D(∆) = {f ∈ L2(Ω) : Dαf ∈ L2(Ω),∀α ∈ Nn
0 : |α| ≤ 2}.

This space is usually denoted H2(Ω), or W 2,2(Ω) and is one of the Sobolev spaces.
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CHAPTER III

Hilbert spaces

1. Definitions and elementary results

Hilbert spaces are complete linear spaces, that are equipped with a metric and have a

geometric structure.

Definition III.1.1. Let V be a complex vector space. An inner product on V is a function

〈·, ·〉 : V × V → C such that

(i) 〈v, v〉 ≥ 0 with equality iff v = 0 (positivity)

(ii) 〈v, w1 + αw2〉 = 〈v, w1〉+ α〈v, w2〉 (physicists’ linearity)

(iii) 〈w, v〉 = 〈v, w〉 (symmetry)

Of course, this implies that 〈v1 + βv2, w〉 = 〈v1, w〉 + β〈v2, w〉. A complex vector space V

equipped with an inner product is called an inner product space.

Example 11. The space V = C([0, 1]) of continuous complex-valued functions on [0, 1] is

an inner product space with

〈f, g〉 =

∫ 1

0

f(x)g(x)dx.

We say that v, w ∈ V are orthogonal if 〈v, w〉 = 0, and a family {vα : α ∈ I} is orthonormal

if 〈vα, vβ〉 = δα,β. We first prove what Pythagoras already knew.

Theorem III.1.2. Let V be an inner product space and let {vn}Nn=1 be an orthonormal set.

Then for any v ∈ V ,

‖v‖2 =
N∑
n=1

|〈vn, v〉|2 + ‖v −
N∑
n=1

〈vn, v〉vn‖2

where we denoted ‖v‖2 = 〈v, v〉.

Proof. Trivially,

v =
N∑
n=1

〈vn, v〉vn + (v −
N∑
n=1

〈vn, v〉vn)
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and the two terms are orthogonal to each other. Hence, the cross terms in 〈v, v〉 vanish,

proving the claim since ‖vn‖2 = 1. �

A simple but useful consequence of this is

‖v‖2 ≥
N∑
n=1

|〈vn, v〉|2 (1.1)

for any orthonormal set {vn}Nn=1, which is sometimes referred to as Bessel’s inequality. The

following inequality of Schwarz is crucial:

Corollary III.1.3. Let V be an inner product space. For any v, w ∈ V ,

|〈v, w〉| ≤ ‖v‖‖w‖

Proof. The case w = 0 trivially holds. And if w 6= 0, the claim is precisely Bessel’s

inequality applied to the orthonormal set {w/‖w‖}. �

We now justify the notations used:

Proposition III.1.4. Let V be an inner product space. Then V is a normed linear space

with norm ‖v‖ = 〈v, v〉1/2.

Proof. By definition,

‖v + w‖2 = ‖v‖2 + ‖w‖2 + 2Re〈v, w〉.

Since Re〈v, w〉 ≤ |〈v, w〉|, the triangle inequality follows by Schwarz’ inequality:

‖v + w‖2 ≤ ‖v‖2 + ‖w‖2 + 2‖v‖‖w‖ = (‖v‖+ ‖w‖)2.

This proves the triangle inequality. All other properties of the norm follow immediately from

those of the inner product. �

Hence, an inner product is naturally endowed with a metric

d(v, w) = 〈v − w, v − w〉
1
2 .

We also note the following parallelogram identity

‖v + w‖2 + ‖v − w‖2 = 2‖v‖2 + 2‖w‖2,
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as well as the polarization identity

4〈v, w〉 = ‖v + w‖2 − ‖v − w‖2 − i‖v + iw‖2 + i‖v − iw‖2. (1.2)

Note that the parallelogram identity is specific of a norm arising from an inner product. In

fact, if a norm satisfies the parallelogram identity, then it can be used to define an inner

product through (1.2).

Definition III.1.5. A Hilbert space is a complete inner product space.

We recall that a surjective linear map U : V1 → V2 between to inner product spaces is called

unitary if for all v, w ∈ V1,

〈Uv, Uw〉V2 = 〈v, w〉V1 .

In particular, ‖Uv‖2 = ‖v‖1, which also shows that U is necessarily injective. Two Hilbert

spaces H1,H2 are called isomorphic if there is a unitary operator U : H1 → H2.

Example 12. Let (Ω, µ) be a finite measure space. While C(Ω) is an inner product space,

it is not a Hilbert space. However, Hölder’s inequality yields that f, g ∈ L2(Ω, µ) implies

fg ∈ L1(Ω, µ) so that

〈f, g〉 =

∫
Ω

f(x)g(x)dµ(x)

is a well-defined inner product on L2(Ω, µ). Since L2(Ω, µ) is complete, it is a Hilbert space.

In fact, it is the completion of C(Ω) in the L2-norm.

2. Projections in Hilbert space; the Riesz lemma

In a Hilbert space, Theorem II.5.10 can be proved by elementary means without using the

Banach-Alaoglu theorem.

Proposition III.2.1. Let K be a closed convex subset of H. Then there is a unique v0 ∈ K

of minimal norm.

Proof. Let v, w ∈ K. Applying the parallelogram identity to v/2, w/2, we obtain

1

4
‖v − w‖2 =

1

2
‖v‖2 +

1

2
‖w‖2 − ‖(v + w)/2‖2
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If δ = inf{‖v‖ : v ∈ K}, the fact that (v + w)/2 ∈ K by convexity implies that

‖v − w‖2 ≤ 2‖v‖2 + 2‖w‖2 − 4δ2. (2.1)

If ‖v‖ = ‖w‖ = δ, the right hand side vanishes and hence v = w, proving uniqueness of

the minimizer. To prove existence, we consider a minimizing sequence (vn)n∈N in K, namely

such that ‖vn‖ → δ as n → ∞. Then (2.1) for v = vn and w = vm implies that (vn)n∈N is

Cauchy and hence converges in H. Since K is closed, v̄ = limn→∞ vn ∈ K, and by continuity

of the norm, ‖v̄‖ = limn→∞ ‖vn‖ = δ. �

Here is a natural application: Let K be a closed subspace and let v ∈ H. The proposition

applied to the closed convex set K − v yields a k0 ∈ K such that

‖k0 − v‖ = inf{‖k − v‖ : k ∈ K}

namely, k0 is the unique element in K closest to v.

With this, many ‘intuitive’ properties known from planar geometry hold in a general Hilbert

space. If K is a subspace of H,

K⊥ = {v ∈ H : 〈w, v〉 = 0 for all w ∈ K}

Theorem III.2.2. Let K be a closed subspace of H. Any v ∈ H has a unique decomposition

v = k + k⊥ k ∈ K, k⊥ ∈ K⊥

Moreover, k is the point in K, and k⊥ the point in K⊥, closest to v.

In particular, if K 6= H, then K⊥ is not just {0}.

Proof. Since K is convex, so is the translated set v + K. Hence there is a element

k⊥ ∈ v + K of smallest norm, and let k = v − k⊥. Clearly k ∈ K. Since the norm of k⊥ is

minimal and since k⊥ − λw ∈ v +K for all λ ∈ C and all w ∈ K with ‖w‖ = 1,

‖k⊥‖2 ≤ ‖k⊥ − λw‖2.

Hence,

0 ≤ −λ〈k⊥, w〉 − λ̄〈w, k⊥〉+ |λ|2.
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The choice λ = 〈w, k⊥〉 yields 0 ≤ −|〈w, k⊥〉|2, namely 〈w, k⊥〉 = 0 and therefore k⊥ ∈ K⊥.

It remains to prove that ‖v − k‖ is minimal. For any w ∈ K,

‖v − w‖2 = ‖k⊥ + k − w‖2 = ‖k⊥‖2 + ‖k − w‖2

which is minimal if w = k. �

With this, we define the bounded linear maps P, P⊥ ∈ L(H) by

v 7→ Pv = k, v 7→ P⊥v = k⊥.

Since 〈Pv, P⊥v〉 = 0 by construction, we have that

‖v‖2 = ‖Pv‖2 + ‖P⊥v‖2,

and so ‖P‖ = 1 = ‖P⊥‖ provided K 6= ∅ and K 6= H. Moreover, P 2 = P and similarly for

P⊥. P , resp. P⊥ are the orthogonal projections of H onto K, resp. K⊥.

We have already shown that the dual space of L2(Ω) is itself, namely any bounded linear

functional on L2(Ω) is of the form

f 7→
∫

Ω

ḡfdµ

for some g ∈ L2(Ω). In a general Hilbert space, the Cauchy-Schwarz inequality implies

that any element v ∈ H defines a bounded linear functional through w 7→ 〈v, w〉. That all

bounded linear functionals are of this form is usually referred to as Riesz’ lemma:

Proposition III.2.3. For any ` ∈ H∗, there is v ∈ H such that

`(w) = 〈v, w〉,

and ‖`‖H∗ = ‖v‖H.

Proof. If ` = 0, choose v = 0. Otherwise the subspace K = Ker(`) is closed by

continuity of `, and K⊥ 6= {0}. Let ṽ ∈ K⊥ with ‖ṽ‖ = 1. Then by linearity

`(`(w)ṽ − `(ṽ)w) = 0,

namely `(w)ṽ − `(ṽ)w ∈ K and so 〈ṽ, (`(w)ṽ − `(ṽ)w)〉 = 0, or equivalently

`(w) = `(ṽ)〈ṽ, w〉.

The choice v = `(ṽ) ṽ concludes the proof. �
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An important consequence of the representation theorem is the following result of Lax-

Milgram.

Theorem III.2.4. Let t : H×H → C be sesquilinear (antilinear in the first variable, linear

in the second one), bounded namely there is K > 0 such that

|t(x, y)| ≤ K‖x‖‖y‖

for all x, y ∈ H, and there is k > 0 such that

|t(x, x)| ≥ k‖x‖2

for all x ∈ H. Then there is a unique T ∈ Gl(H) such that

t(x, y) = 〈Tx, y〉

for all x, y ∈ H. Moreover, ‖T‖ ≤ K and ‖T−1‖ ≤ k−1.

Proof. For any x ∈ H, the map `x : H → R given by `x(y) = t(x, y) is linear and

bounded with ‖`x‖H∗ = sup{|t(x, y)|/‖y‖ : 0 6= y ∈ H} ≤ K‖x‖. Hence there is vx ∈ H such

that t(x, y) = `x(y) = 〈vx, y〉 for all y ∈ H. Define Tx = vx, which is linear by antilinearity

of t in the first variable. It is moreover bounded since

‖Tx‖ = ‖vx‖ = ‖`x‖H∗ ≤ K‖x‖.

Now, for any x ∈ H,

‖Tx‖‖x‖ ≥ |〈Tx, x〉| = |t(x, x)| ≥ k‖x‖2

showing that x 6= 0 implies Tx 6= 0, namely T is injective. We denote R = Ran(T ), which

is a closed subspace. Indeed, let (xn)n∈N be a sequence such that (Txn)n∈N converges. Then

by the above

k‖xn − xm‖2 ≤ ‖Txn − Txm‖‖xn − xm‖,

namely k‖xn−xm‖ ≤ ‖Txn−Txm‖, which converges to 0 when n,m→∞. If x is the limit

of the Cauchy sequence (xn)n∈N, then by continuity limn→∞ Txn = Tx ∈ R, proving that R

is closed. If T is not surjective, let v0 ∈ H \ R. Then by Theorem III.2.2, v0 = r + r⊥ with

r⊥ 6= 0 and

0 < k‖r⊥‖2 ≤ t(r⊥, r⊥) = 〈Tr⊥, r⊥〉 = 0
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since r⊥ ∈ R⊥. Since this is a contradiction, we conclude that T is surjective and hence has

a bounded inverse by the open mapping theorem. To estimate its norm, let z = T−1x for

which we have that

k‖z‖2 ≤ |〈Tz, z〉| ≤ ‖x‖‖z‖,

namely ‖T−1x‖ ≤ k−1‖x‖ upon division by ‖z‖. �

Corollary III.2.5. Let t be as above and let ` ∈ H∗. There is a unique x` ∈ H such that

t(x`, y) = `(y) for all y ∈ H. Moreover, ` 7→ x` is continuous.

Proof. With T ∈ Gl(H) be given by Theorem III.2.4, we have 〈Tx, y〉 = t(x, y) for all

x, y ∈ H. On the other hand, the Riesz representation yields that there is x0 ∈ H such that

`(y) = 〈x0, y〉 for all y ∈ H. The choice x` = T−1x0 yields the first claim. Moreover, the

second part of Riesz’ lemma yields that ‖x`‖ ≤ ‖T−1‖‖x0‖ ≤ k−1‖`‖H∗ . �

We note that the Riesz lemma and its corollaries do not use the fact that H is a complex

Hilbert space, and would also hold in a real Hilbert space. In that case, the sesquilinear

form of Lax-Milgram is a bilinear form. We shall use this in the following example.

Example 13. Lax-Milgram is a very useful theorem to obtain existence of (weak) solutions

to PDEs such as −u
′′(x) + (2 + sin(x))u(x) = f(x) x ∈ (−1, 1)

u(−1) = 0 = u(1)
(2.2)

where f ∈ L2((−1, 1)). Note that if f is not continuous, then the equation cannot have a

solution u ∈ C2((−1, 1)). Formally, (2.2) is equivalent to u solving∫ 1

−1

(
u′(x)φ′(x) + (2 + sin(x))u(x)φ(x)

)
dx =

∫ 1

−1

f(x)φ(x)dx

for all φ ∈ C∞c ((−1, 1)). This form of the equation makes sense as soon as u, u′ ∈ L2((−1, 1)).

This formulation does not encode the boundary condition. In order to do so, we pick the

inner product space C∞c ((−1, 1)) equipped with the inner product

〈ψ, φ〉H1 := 〈ψ, φ〉L2 + 〈ψ′, φ′〉L2 ,
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and complete it to obtain a Hilbert space, denoted H1
0 ((−1, 1)); the lower index is a reminder

of the boundary conditions and the upper index tells of the number of derivatives that are

required to be square integrable. Hölder’s inequality then insures that

t(u, v) =

∫ 1

−1

(
u′(x)v′(x) + (2 + sin(x))u(x)v(x)

)
dx

is a well-defined bounded bilinear form on H1
0 ((−1, 1)) such that

|t(u, v)| ≤ ‖u′‖L2‖v′‖L2 + 3‖u‖L2‖v‖L2 ≤ 3‖u‖H1‖v‖H1 .

It is moreover coercive with |t(u, u)| ≥ ‖u‖2
H1 . Finally, let ` ∈ H∗ be given by

`(v) =

∫ 1

−1

f(x)v(x)dx

for which |`(v)| ≤ ‖f‖L2‖v‖L2 ≤ ‖f‖L2‖v‖H1 . Corollary III.2.5 now yields a unique u ∈ H1
0

such that t(u, v) = `(v), namely∫ 1

−1

(
u′(x)v′(x) + (2 + sin(x))u(x)v(x)

)
dx =

∫ 1

−1

f(x)v(x)dx

for all v ∈ H1
0 . Such a solution is called a weak solution of (2.2) and it is given ‘for free’ by

Lax-Milgram.

3. Orthonormal bases

Definition III.3.1. An orthonormal basis of H is a maximal orthonormal set S, namely an

orthonormal set such that no other orthonormal set contains S as a proper subset.

Since orthonormal sets can be partially ordered by inclusion and the union of ordered or-

thonormal sets is an upper bound, the following theorem is a consequence of Zorn’s lemma.

Theorem III.3.2. Every Hilbert space has an orthonormal basis.

Let now A be an arbitrary nonempty set, and let µc be the counting measure on (A,P(A)),

namely

µc(B) =

|B| if B is finite

+∞ otherwise
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for any B ∈ P(A). The space L2(A, µc) is usually denoted l2(A) and for any function

f ∈ L1(A, µc), the integral
∫
A
f(α)dµc(α) is denoted

∑
α∈A f(α). With these definitions,

l2(A) is a Hilbert space with inner product

〈f, g〉l2(A) =
∑
α∈A

f(α)g(α)

which is well-defined since fg ∈ L1(A, µc) provided f, g ∈ L2(A, µc). With these definitions,

we can state the following result, which allows for a use of orthonormal bases in the spirit

of finite-dimensional inner product spaces.

Theorem III.3.3. Let H be a Hilbert space and S = {vα : α ∈ A} be an orthonormal basis.

For any w ∈ H,

w =
∑
α∈A

〈vα, w〉vα

and

‖w‖2 =
∑
α∈A

|〈vα, w〉|2. (3.1)

Note that the proof shows that for any given w ∈ H, there are only countably many non-zero

terms in the sums, and that the first series converges with respect to the topology of the

Hilbert space norm.

Proof. We first prove that the set Aw = {α ∈ A : 〈vα, w〉 6= 0} is at most countable.

Indeed,

Aw =
∞⋃
n=1

Aw(n) Aw(n) = {α ∈ A : |〈vα, w〉| ≥
1

n
}

By Bessel’s inequality, |Aw(n)| ≤ n2‖w‖2, so that Aw is a countable union of finite, possibly

empty, sets. Leaving the case of a finite Aw as an exercise, we label Aw = (αn)n∈N. We

further note that the sequence (ΣN)N∈N given by

ΣN =
N∑
n=1

|〈vαn , w〉|2

is monotone increasing and bounded above by ‖w‖2, hence it is convergent. Let (wN)N∈N be

the sequence in H defined by

wN =
N∑
n=1

〈vαn , w〉vαn .
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It is Cauchy by the above since

‖wM − wN‖2 =
M∑

n=N+1

|〈vαn , w〉|2.

Let w̃ be its limit. On the one hand,

〈w − w̃, vαn〉 = lim
N→∞

〈w −
N∑
j=1

〈vαj , w〉vαj , vαn〉 = 0 (3.2)

by orthonormality, while for any α /∈ Aw, both 〈w, vα〉 = 0 by definition of Aw and 〈vαn , vα〉 =

0 for all n ∈ N by orthogonality. Hence w− w̃ is orthogonal to all v ∈ S and hence w− w̃ = 0

by maximality of S, proving the first claim of the proposition. The second follows easily from

this:

‖w‖2 −
∑
α∈A

|〈vα, w〉|2 = lim
N→∞

(
‖w‖2 −

N∑
j=1

|〈vαj , w〉|2
)

= lim
N→∞

∥∥∥w − N∑
j=1

〈vαj , w〉vαj‖2 = 0,

where the second equality follows from (3.2). �

The coefficients

ŵ(α) = 〈vα, w〉

are called Fourier coefficients of w with respect to the set {vα : α ∈ A}, and (3.1) is referred

to as Parseval’s identity. In a (complex) Hilbert space, it is equivalently (by the polarization

identity) formulated as

〈v, w〉 =
∑
α∈A

v̂(α)ŵ(α).

In case that there are countably many elements in S and the index set A can be taken as N,

we write l2(N) = l2. We conclude with

Corollary III.3.4. A (complex) Hilbert space H is separable if and only if it has a countable

basis S. If |S| = N <∞, then H is isomorphic to CN . Otherwise, H is isomorphic to l2.

Proof. Let {vn : n ∈ N} be a countable dense set. We construct recursively a set ṽn

as follows. Let ṽ1 = v1. Let n0 = min{n ∈ N : vn /∈ span{ṽ1, . . . , ṽn−1}}, and let ṽn = vn0 .

By construction, {ṽn : n ∈ N} is a linearly independent set and its span is the same as the
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span of {vn : n ∈ N}, namely dense in H. The Gram-Schmidt orthogonalization applied

to {ṽn : n ∈ N} yields a countable orthonormal basis of H. Conversely, given a countable

orthonormal basis {un : n ∈ N} ofH, Theorem (III.3.3) and its proof show that the countable

set of finite linear combinations, with coefficients in a countable dense set of C, of un’s is

dense in H. Hence H is separable.

Let now H be separable, and let {vn : n ∈ N} be a orthonormal basis. The map

U : H → l2, v 7→ (〈vn, v〉)n∈N

is a well-defined isometry by (3.1) and it is onto: Indeed, if f ∈ l2, then v =
∑

n∈N fnvn is

a well-defined vector in H by Theorem (III.3.3) such that Uv = f . The finite-dimensional

case is similar and elementary. �

We conclude this chapter with some remarks about Fourier series. First of all, we note that

the set of functions

un(t) = eint (n ∈ Z)

is an orthonormal set in L2(T), namely the set of 2π-periodic functions such that

‖f‖2
2 =

1

2π

∫ π

−π
|f(t)|2dt

is finite. It further holds (see exercises) that the set of finite linear combinations of un’s is

dense in L2(T). Hence the set {un : n ∈ N} is an orthonormal basis of the Hilbert space

L2(T). Then, Theorem III.3.3 shows that any f ∈ L2(T) has a representation as

f(t) =
∑
n∈Z

f̂neint, where f̂n = 〈un, f〉2 =
1

2π

∫ π

−π
e−intf(t)dt,

and reciprocally that given a square integrable double sequence a ∈ l2(Z), the series
∑

n∈Z aneint

is finite and defines a function in L2(T). Parseval’s identity reads

1

2π

∫ π

−π
f(t)g(t)dt =

∑
n∈Z

f̂nĝn.

This shows the power of the abstract approach. However, it also exhibits its restriction in

that the only notion of convergence available here is that of the Hilbert space topology, so

that questions such as pointwise convergence of Fourier series are out of reach.
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4. Spectral theory of self-adjoint compact operators

We first consider the notion of the adjoint of an operator, defined for general Banach spaces

in Definition II.6.7, in the case T ∈ L(H), namely T ′ ∈ L(H∗). By Riesz’ lemma, the map

C : H → H∗ given by ψ 7→ 〈ψ, ·〉 is a surjective isometry. We define

T ∗ = C−1T ′C.

With this, T ∗ satisfies the following identity: For any ψ, φ ∈ H,

〈ψ, Tφ〉 = (Cψ)(Tφ) = (T ′Cψ)(φ) = 〈C−1T ′Cψ, φ〉 = 〈T ∗ψ, φ〉. (4.1)

The operator T ∗ is the Hilbert space adjoint of T . Its basic propoerties are summarized in

the following proposition.

Proposition III.4.1. (i) T 7→ T ∗ is an antilinear automorsphism of L(H)

(ii) (TS)∗ = S∗T ∗

(iii) (T ∗)∗ = T

(iv) ‖T ∗T‖ = ‖T‖2

Proof. (i) follows from Proposition II.6.8 and the fact that C is antilinear. (ii,iii) are

immediate calculations. For (iv), we first note that ‖T ∗T‖ ≤ ‖T ∗‖‖T‖ = ‖T‖2 by (i).

Reciprocally,

‖T ∗T‖ ≥ sup{|〈ψ, T ∗Tψ〉| : ‖ψ‖ = 1} = sup{‖Tψ‖2 : ‖ψ‖ = 1} = ‖T‖2

concluding the proof. �

Definition III.4.2. An operator T ∈ L(H) is called self-adjoint if T = T ∗.

Example 14. The operator (Tψ)(x) = f(x)ψ(x) defined on L2(R), where f is a real-valued

function in L∞(R) is bounded and self-adjoint. It is bounded since ‖Tψ‖ ≤ ‖f‖∞‖ψ‖. It is

self-adjoint since

〈ψ, Tφ〉 =

∫
R
ψ(x)f(x)φ(x)dx =

∫
R
f(x)ψ(x)φ(x)dx = 〈Tψ, φ〉.

for any ψ, φ ∈ L2(R).
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We immediately note that eigenvalues of bounded self-adjoint operators are real since Tψ =

zψ implies that z〈ψ, ψ〉 = 〈ψ, Tψ〉 = 〈Tψ, ψ〉 = z〈ψ, ψ〉. Moreover, if ψ, φ are eigenvectors

of a self-adjoint T for different (real) eigenvalues z, w, then

z〈ψ, φ〉 = 〈Tψ, φ〉 = 〈ψ, Tφ〉 = w〈ψ, φ〉

namely 〈ψ, φ〉 = 0: eigenspaces for different eigenvalues are orthogonal.

We now come back to compact operators.

Proposition III.4.3. The identity is compact on H if and only if H is finite dimensional.

Proof. If H is finite dimensional, then the identity is a finite rank operator, hence

compact. Reciprocally, assume that H is not finite dimensional. Then the closed unit ball in

H, which is a bounded set, is mapped to itself, which is not compact by Theorem II.1.4. �

The first result is a very useful approximation statement.

Theorem III.4.4. Let H be a separable Hilbert space and let T ∈ L(H). Then T is compact

if and only if T is the uniform limit of a sequence of finite rank operators.

Proof. Let {φn : n ∈ N} be an orthonormal basis of H, and let

zn = sup{‖Tψ‖ : ‖ψ‖ = 1, 〈φj, ψ〉 = 0 ∀j = 1, . . . , n}

The non-negative sequence {zn} is decreasing, hence it has a limit z ≥ 0. By definition of

zn, there is ψn, orthogonal to {φ1, . . . , φn}, such that ‖ψn‖ = 1 and ‖Tψn‖ ≥ z/2 for n large

enough. By Theorem III.3.3 and Cauchy-Schwarz, |〈φ, ψn〉| =
∣∣∣∑∞j=n+1〈φj, ψn〉〈φ, φj〉

∣∣∣ ≤
(
∑∞

j=n+1 |〈φ, φj〉|2)
1
2 which converges to zero. Hence ψn converges weakly to 0, therefore

Tψn → 0 in norm by Theorem II.6.11 and hence z = 0.

Now for any ψ ∈ H,

Tψ = T
∞∑
j=1

〈φj, ψ〉φj =
∞∑
j=1

〈φj, ψ〉Tφj

because T is bounded. Hence zn = ‖T −
∑n

j=1〈φj, ·〉Tφj‖. We conclude that

n∑
j=1

〈φj, ·〉Tφj −→ T
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in norm. This concludes the proof since the right hand side has finite rank. The other

implication holds in a general Banach space, see Theorem II.6.10. �

We now turn to the problem of solving equations.

Theorem III.4.5. Let Ω be an open connected subset of C and let f : Ω → L(H) be an

analytic function such that f(z) is a compact operator for all z ∈ Ω. Then either

(i) (1− f(z))−1 exists for no z ∈ Ω or

(ii) (1 − f(z))−1 exists for all z ∈ Ω \ S where S is a discrete subset of Ω. For z ∈ S, the

equation f(z)ψ = ψ has a nonzero solution in H.

Proof. Let z0 ∈ Ω. By continuity, there is r > 0 such that ‖f(z0) − f(z)‖ < 1
2

for all

|z−z0| < r. By Theorem III.4.4, there is a finite rank operator F such that ‖F −f(z0)‖ < 1
2
.

Hence, for all z ∈ Br(z0), ‖f(z)−F‖ < 1. The Neumann series then ensures that 1−f(z)+F

is invertible and that z 7→ (1− f(z) + F )−1 is analytic.

Since F is finite rank, there are φ1, . . . , φN and linearly independent vectors ψ1, . . . , ψN such

that F =
∑N

j=1〈φj, ·〉ψj. Let

g(z) = F (1− f(z) + F )−1.

We see that F = g(z)(1− f(z) + F ) and so

(1− f(z)) = (1− g(z))(1− f(z) + F ).

It follows that, for any z ∈ Br(z0), the operator 1−f(z) is invertible if and only if 1−g(z) is

invertible and that f(z)ψ = ψ has a nonzero solution if and only if g(z)φ = φ has a nonzero

solution (with φ = (1− f(z) + F )ψ).

Now, g(z) is a finite rank operator explicitly given by

g(z)ξ =
N∑
j=1

〈φj, (1− f(z) + F )−1ξ〉ψj =
N∑
j=1

〈ζj(z), ξ〉ψj

where ζj(z) = ((1− f(z) + F )−1)∗φj. If g(z)φ = φ has a solution (in particular, 1− g(z) is

not invertible), then φ is in the range of g(z) and therefore φ =
∑N

j=1 βjψj and the βj’s solve

βj =
N∑
k=1

〈ζj(z), ψk〉βk (4.2)
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Reciprocally, if β1, . . . , βN solve this equation, then φ =
∑N

j=1 βjψj is a solution of g(z)φ = φ.

But (4.2) is a simple matrix equation, which has a nonzero solution if and only if the

determinant d(z) of (δjk − 〈ζj(z), ψk〉) equals zero. Since z 7→ ζj(z) is analytic in Br(z0), so

is d(z), and so either Sr(z0) = {z ∈ Br(z0) : d(z) = 0} is a discrete set in Br(z0) with no

limit point, or Sr(z0) = Br(z0).

If z /∈ Sr(z0), namely d(z) 6= 0, then for any ψ, the equation (1−g(z))φ = ψ has the solution

φ = ψ +
∑N

j=1 αjψj, provided the αj’s solve

αj − 〈ζj(z), ψ〉 −
N∑
k=1

αk〈ζj(z), ψk〉 = 0.

This matrix equation has a unique solution since d(z) 6= 0, which proves that z /∈ Sr(z0)

implies that 1− g(z) is invertible.

This proves the theorem locally. It global version is obtained using the connectedness of Ω

and we skip the details here. �

The Fredholm alternative, Theorem III.4.5 has important consequences:

Corollary III.4.6. If T is a compact operator on H, then either (1−T )−1 exists or Tψ = ψ

has a non-zero solution.

Proof. Consider f(z) = zT and use the Fredholm alternative at z = 1. �

We note that while the result above is true for finite-dimensional matrices, it is not true in

general. Indeed, the operator T on H = L2([0, 1]) defined by (Tψ)(x) = 2xψ(x) is so that

Tψ = ψ has no nonzero solution in H and (1 − T )−1 does not exist as a bounded operator

on H, see also Example 8.

The second corollary is about the spectrum of a compact operator

Theorem III.4.7. Let T be a compact operator on H. Then σ(T ) is a set having no limit

point except possibly at z = 0. Moreover, any nonzero z ∈ σ(T ) is an eigenvalue of finite

multiplicity.

Proof. Consider again f(z) = zT . By the Fredholm alternative with Ω = C, the set

S = {z : zTψ = ψ has a nonzero solution} is discrete: Indeed, (i) of the alternative is
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excluded since (1− zT )−1 exists at z = 0. Now, the identity

(z − T )−1 = z−1(1− z−1T )−1

valid for all z ∈ C \ {0} shows that z ∈ ρ(T ) if and only if 1 − z−1T is invertible, namely

z−1 /∈ S. Equivalently z ∈ σ(T ) if and only if z−1 ∈ S, showing that σ(T ) is a discrete set,

except possibly at {0}. Moreover, if z ∈ σ(T ) \ {0}, then Tψ = zψ has a nonzero solution,

and hence z is an eigenvalue. If the corresponding eigenspace Hz was infinite dimensional,

then z−1T � Hz = 1Hz which is not compact, a contradiction. Hence all eigenspaces are

finite dimensional. �

Theorem III.4.8. Let T be a self-adjoint compact operator on an infinite dimensional Hilbert

space H. Then there is an orthonormal basis {ψn : n ∈ N} such that Tψn = znψn and

limn→∞ zn = 0.

Proof. For each eigenvalue of T , we pick an orthonormal basis of the corresponding

finite-dimensional eigenspace. The collection {ψn} of these vectors is an orthonormal set

since eigenvectors for different eigenvalues of a self-adjoint operator are orthogonal. We

prove that it is a complete set. Let K be the closure of their span. Then TK ⊂ K. Moreover,

if φ ∈ K⊥, then 〈ψ, Tφ〉 = 〈Tψ, φ〉 = 0 for all ψ ∈ K, namely TK⊥ ⊂ K⊥. Let T̃ = T � (K⊥).

Then T̃ is self-adjoint and compact. If z 6= 0 is in σ(T̃ ), then it is an eigenvalue of T̃ , and

therefore an eigenvalue of T . Hence the spectral radius of T̃ is zero since any corresponding

eigenvector belongs to K. But ‖T̃‖2 = ‖T̃ 2‖ since T̃ is self-adjoint and so ‖T̃‖2n = ‖T̃ 2n‖,

which implies that

rT̃ = ‖T̃‖.

Hence T̃ = 0. If φ ∈ K⊥ is non-zero, then T̃ φ = 0, namely φ ∈ K a contradiction. Hence

K⊥ = {0}, and therefore K = H.

Since H is infinite dimensional and each eigenspace is finite dimensional, the set {zn} must

be infinite. It is bounded since it is a subset of the spectrum of T , hence {zn : n ∈ N} has a

limit point. Theorem III.4.7 implies that it must be 0. �
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By Parseval’s identity, Tφ =
∑∞

n=1〈ψn, Tφ〉ψn =
∑∞

n=1 zn〈ψn, φ〉ψn, and so

T =
∞∑
n=1

zn〈ψn, ·〉ψn

for any compact self-adjoint operator T ∈ L(H) on a separable Hilbert space. This is the gen-

eralization of the spectral theorem for self-adjoint matrices on CN . A similar representation

holds for a not necessarily self-adjoint compact operator.

Theorem III.4.9. Let T be a compact operator. Then there are orthonormal bases {ψn :

n ∈ N} and {φn : n ∈ N} and non-negative real numbers tn such that

T =
∞∑
n=1

tn〈φn, ·〉ψn

where the sum is convergent in norm.

The tn’s are called the singular values of the operator T .

Proof. The operator TT ∗ is compact and self-adjoint because T is compact and T ∗ is

bounded. Hence Theorem III.4.8 imples the existence of an ONB {ψn : n ∈ N} and real

numbers zn such that zn → 0 and TT ∗ψn = znψn. Note that 0 ≤ ‖T ∗ψn‖2 = zn, namely

zn are non-negative, so we let tn =
√
zn. Assuming first that they are all positive (and so

T ∗ψn 6= 0), we let tnφn = T ∗ψn and check that 〈φm, φn〉 = 1
tntm
〈ψm, TT ∗ψn〉 = zn

tntm
δn,m =

δn,m, namely {ψn : n ∈ N} is an orthonormal set. For any ξ ∈ H,

∞∑
n=1

tn〈φn, ξ〉ψn =
∞∑
n=1

〈T ∗ψn, ξ〉ψn =
∞∑
n=1

〈ψn, T ξ〉ψn = Tξ

by Parseval’s identity. If Ker(T ) is non-trivial, namely there are n such that zn = 0, the

argument above applies to Ker(T )⊥, and it is complemented by picking an arbitrary ONB

of Ker(T ). �

Theorem III.4.8 further allows one to define a functional calculus for self-adjoint compact

operators. Let {ψn : n ∈ N} be the orthonormal basis exhibited in the theorem with

eigenvalues {zn : n ∈ N}, and let f be a complex-valued bounded function defined on σ(T ).

We define an operator f(T ) by letting, for any φ ∈ H,

φ =
∞∑
j=1

αjψj, f(T )φ =
∞∑
j=1

f(zj)αjψj. (4.3)
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We have:

Theorem III.4.10. Let T be a self-adjoint compact operator. For any complex-valued bounded

function f defined on σ(T ), let f(T ) be defined in (4.3). Then

(i) The operator associated with the constant function 1 is the identity.

(ii) The operator associated with the function f(z) = z is T itself.

(iii) The map f 7→ f(T ) is an isometric *-isomorphism of the algebra of bounded functions

on σ(T ) into the algebra L(H); in particular,

‖f(T )‖ = sup{|f(z)| : z ∈ σ(T )}.

and f̄(T ) = (f(T ))∗.

(iv) If f is real-valued, then f(T ) is self-adjoint.

Proof. (i,ii) are immediate. For (iii), we see that

f(T )g(T )φ =
∞∑
n=1

f(zn)〈ψn, g(T )φ〉 =
∞∑

n,m=1

f(zn)g(zm)〈ψn, ψm, 〉〈ψm, φ〉

=
∞∑
n=1

(fg)(zn)〈ψn, φ〉 = (fg)(T ).

The isometric property follows from

‖f(T )‖2 = sup

{
∞∑
j=1

|f(zj)|2|αj|2 :
∞∑
j=1

|αj|2 = 1

}
= sup

{
|f(zj)|2 : j ∈ N

}
.

Here, we used Theorem III.3.3 in the first equality, and the fact that expression obtained is

a convex combination of {|f(zj)|2}. Moreover,

〈f(T )φ, ψ〉 =
∞∑
n=1

f(zn)〈ψn, φ〉〈ψn, ψ〉 = 〈φ,
∞∑
n=1

f(zn)〈ψn, ψ〉ψn〉 = 〈φ, f(T )ψ〉.

Finally, (iv) follows from the last part of (iii). �

5. The Hellinger-Toeplitz theorem

In operator theory, one encounters many unbounded linear operators T that are a priori

defined only on dense subsets of a Hilbert space H. For example −i d
dx

on the dense subset

C∞c (R) of L2(R). In this case, the domain is part of the definition of an operator, and the

definitions and results above, such as (4.1) must be handled with care. Let T be a linear
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map with dense domain D(T ). Its adjoint is defined as follows. A vector φ ∈ H is in D(T ∗)

is the linear functional

D(T ) 3 ψ 7→ 〈φ, Tψ〉 ∈ C

is bounded. In that case, the Riesz lemma yields a vector ζφ ∈ H such that

〈φ, Tψ〉 = 〈ζφ, ψ〉

for all ψ ∈ D(T ). One then defines T ∗φ = ζφ for any φ ∈ D(T ∗). In other words,

〈T ∗φ, ψ〉 = 〈φ, Tψ〉 (φ ∈ D(T ∗), ψ ∈ D(T )).

An operator T with domain D(T ) is self-adjoint if T = T ∗, in particular D(T ) = D(T ∗). It

is called symmetric if 〈Tφ, ψ〉 = 〈φ, Tψ〉 holds for all φ, ψ ∈ D(T ). In the latter case, we

write T ⊂ T ∗, which means that D(T ) ⊂ D(T ∗) and Tψ = T ∗ψ for all ψ ∈ D(T ), and T ∗ is

an extension of T .

Here is a brief example, without the technical details. We consider −i d
dx

on various domains

in L2([0, 1]). The maximal domain is D(T̃ ) = {ψ ∈ L2([0, 1]) : ψ′ ∈ L2([0, 1])} where the

derivative must be understood in the sense of distributions. We check that T̃ is unbounded

but not self-adjoint. Indeed, for any z ∈ C, the equation −iψ′ = zψ has a non-zero solution,

namely ψ(x) = eizx, and both ψ, ψ′ are square integrable so that ψ ∈ D(T̃ ). Hence σ(T̃ ) = C

and every z ∈ σ(T̃ ) is an eigenvalue. Let us now consider D(T0) = {ψ ∈ L2([0, 1]) : ψ(0) =

ψ(1) = 0}, so that T0 ⊂ T̃ . We note that the existence of a distributional derivative in

L2([0, 1]) implies, in one dimension, that ψ is in fact continuous, so that the pointwise

boundary condition makes sense. T0 is a symmetric operator since∫ 1

0

φ(x)iψ′(x)dx =

∫ 1

0

iφ′(x)ψ(x)dx

for all φ, ψ ∈ D(T0) by integration by parts. It is however not self-adjoint, and one can verify

that (T0)∗ = T̃ . Moreover, T0 has no eigenvalues. Finally, we consider the one-parameter

family of operator Tθ labelled by θ ∈ [0, 2π) given by D(Tθ) = {ψ ∈ L2([0, 1]) : ψ(1) =

eiθψ(0)}. One checks that they are all self-adjoint, namely

T0 ⊂ Tθ = (Tθ)
∗ ⊂ T̃ = (T0)∗.
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Here, the set of eigenvalues is discrete {θ + 2πn : n ∈ N} for the eigenfunctions ψn(x) =

ei(θ+2πn)x.

That the subtlety between symmetry and self-adjointness arises only in the case of unbounded

operators follows from the following Hellinger-Toeplitz theorem.

Theorem III.5.1. Let T be an everywhere defined linear operator on a Hilbert space H such

that 〈φ, Tψ〉 = 〈Tφ, ψ〉 for all φ, ψ ∈ H. Then T is bounded.

Proof. By the closed graph theorem, it suffices to prove that Γ(T ) is closed. Let

(ψn, Tψn)→ (ψ, φ) in H×H. For any ξ ∈ H,

〈ξ, φ〉 = lim
n→∞
〈ξ, Tψn〉 = lim

n→∞
〈Tξ, ψn〉 = 〈Tξ, ψ〉 = 〈ξ, Tψ〉.

Since linear functionals separate, φ = Tψ. �
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CHAPTER IV

The Riesz-Markov theorem

1. Facts from measure theory

• A σ-algebra on a set S is a collectionA of subsets of S that is closed under countable

unions and complements. It follows that ∅, S ∈ A. In a topological space, the Borel

σ-algebra BS is generated by the open sets, namely it is the smallest σ-algebra

containing all open sets.

• If S is a set and A is a σ-algebra on S, a measure on (S,A) is a countably additive

set function µ : A → [0,∞] such that µ(∅) = 0, namely µ(∪∞i=1Mi) =
∑∞

i=1 µ(Mi)

for any family of disjoint sets Mi ∈ A. In particular, a measure is monotonous

and countably subadditive for any family of sets Mi ∈ A. A measure is complete

is all subsets of null sets are measurable, and any measure can be completed to a

complete measure.

• An outer measure on a set S is a monotonous, countably subadditive set function

µ∗ : P(S) → [0,∞] such that µ∗(∅) = 0, namely X ⊂ Y ⇒ µ∗(X) ≤ µ∗(Y ) and

µ∗(∪∞i=1Mi) ≤
∑∞

i=1 µ
∗(Mi) for any family of sets Mi ∈ P(S). The µ∗-measurable

sets are the X ∈ P(S) such that µ∗(Y ) = µ∗(Y ∩X)+µ∗(Y ∩Xc) for all Y ∈ P(S).

• Construction Lemma: Let E ⊂ P(S), and let ρ : E → [0,∞] be such that ∅ ∈

E , S ∈ E and ρ(∅) = 0. For any M ∈ P(S), let

µ∗(M) = inf
{ ∞∑

i=1

ρ(Ei) : Ei ∈ E and M ⊂
∞⋃
i=1

Ei

}
.

Then µ∗ is an outermeasure.

• Carathéodory’s theorem: Let µ∗ be an outer measure and let A be the set of µ∗-

measurable sets. Then A is a σ-algebra and µ∗ � A is a complete measure.

From here on, X is a locally compact Hausdorff space, and it is always understood to be

equipped with its Borel σ-algebra BX .
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A measure µ is outer regular on A ∈ BX if

µ(A) = inf{µ(O) : O open and A ⊂ O},

inner regular on A ∈ BX if

µ(A) = sup{µ(K) : K compact and K ⊂ A},

and regular if it is both inner and outer regular on all Borel sets. Finally, a Radon measure

on X is a Borel measure that is

(i) inner regular on all open sets

(ii) outer regular on all Borel sets

(iii) finite on all compact sets

We immediately point out that by (ii), a Radon measure is completely determined by its

value on open sets.

2. The representation theorem

We have already seen the Riesz representation theorem, Theorem II.3.3, in the context of

Lp-spaces: There is a one-to-one correspondence between bounded linear functional on Lp

and functions in Lq, where p, q are dual indices. In a similar fashion, we now turn to linear

functional over Cc(X), the set of continuous functions over S with compact support. A linear

functional I on Cc(X) is called positive if

f ≥ 0 ⇒ I(f) ≥ 0.

Let now µ be a Radon measure. Since µ(K) < ∞ for any compact K, we have that

Cc(X) ⊂ L1(X,µ), which can be rephrased as: The map Iµ : Cc(X)→ C defined by

Iµ(f) =

∫
X

fdµ

is a positive linear functional. Just as in the Lp case, it turns out that every positive linear

functional on Cc(X) is of the above form for a unique Radon measure.

First of all, we note that a positive linear functional is locally bounded.
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Proposition IV.2.1. Let I be a positive linear functional on Cc(X). For any compact

K ⊂ X, there is a constant CK such that |I(f)| ≤ CK‖f‖∞ for all f ∈ Cc(X) supported in

K.

Proof. Without loss of generality, we assume that f is real-valued. By Urysohn’s

Lemma, there exists φ ∈ Cc(X) such that K ≺ φ, and supp(f) ⊂ K implies that |f | ≤

‖f‖∞φ. It follows that both ‖f‖∞φ±f are positive functions and hence |I(f)| ≤ I(φ)‖f‖∞,

by the linearity and positivity of I. �

We are now ready to state and prove a first version of the Riesz-Markov representation

theorem.

Theorem IV.2.2. Let I be a positive linear functional on Cc(X). There is a unique Radon

measure µ such that

I(f) =

∫
X

fdµ (2.1)

for all f ∈ Cc(X).

Note that the proof will establish the following properties:

µ(O) = sup{I(f) : f ∈ Cc(X), f ≺ O}

for any open set O (this is in fact how the measure will be defined), and

µ(K) = inf{I(f) : f ∈ Cc(X), K ≺ f} (2.2)

for any compact set K.

Proof. For any open set O, let

µ(O) = sup{I(f) : f ∈ Cc(X), f ≺ O} (2.3)

and let

µ∗(M) = inf{µ(O) : O open and M ⊂ O} (2.4)

for any set M ∈ P(X). Since, by the definition of µ, O1 ⊂ O2 implies µ(O1) ≤ µ(O2), we

conclude that the infimum in the definition of µ∗(O) is reached at O, namely µ∗(O) = µ(O)

for any open set O. We will use this repeatedly below.
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We first establish that µ∗ is an outer measure, using the construction lemma. Let O = ∪∞i=1Oi

be a countable union of open sets. Let f ∈ Cc(X) be such that f ≺ O, with suppf = K. By

compactness, K ⊂ ∪ni=1Oi so that Proposition I.5.3 yields a partition of unity {gi ∈ Cc(X) :

1 ≤ i ≤ n} on K such that gi ≺ Oi. In particular, f =
∑n

i=1 fgi and fgi ≺ Oi, so that by

definition (2.3) of µ,

I(f) =
n∑
i=1

I(fgi) ≤
n∑
i=1

µ(Oi) ≤
∞∑
i=1

µ(Oi).

Taking the supremum of all such f , we conclude that µ(O) ≤
∑∞

i=1 µ(Oi). For any M ∈

P(X), we therefore have by (2.4) that

µ∗(M) = inf
{ ∞∑

i=1

µ(Oi) : Oi open and M ⊂
∞⋃
i=1

Oi

}
.

This proves the claim since the construction lemma ensures that the expression on the right

hand side defined an outer measure.

The next step is to show that every open set in µ∗-measurable. Let O be open and let M

be such that µ∗(M) < ∞. Then by subadditivity, µ∗(M) ≤ µ∗(M ∩ O) + µ∗(M \ O) so it

suffices to prove the opposite bound. If M is open, so is O ∩M , so for any ε > 0, there

is by (2.3) an f ∈ Cc(X) such that f ≺ O ∩M and I(f) > µ(O ∩M) − ε. By the same

argument applied to the open set M \ suppf , there is a g ∈ Cc(X) such that g ≺M \ suppf

and I(g) > µ(M \ suppf)− ε. Since f + g ≺M and M \ suppf ⊃M \O,

µ∗(M) = µ(M) ≥ I(f) + I(g) > µ∗(O ∩M) + µ∗(M \O)− 2ε,

which yields the desired inequality since ε is arbitrary. If M is arbitrary, the definition of µ∗

implies that for any ε > 0, there is an open set U ⊃M such that µ(U) < µ∗(M) + ε and we

conclude by the above that

µ∗(M) + ε > µ(U) ≥ µ∗(U ∩O) + µ∗(U \O) ≥ µ∗(M ∩O) + µ∗(M \O),

which yields the claim for a general set M .

By Carathéodory’s theorem and since BX is the smallest σ-algebra containing all open sets,

every Borel set is µ∗-measurable and µ = µ∗ � BX is a Borel measure (note that the µ

here is an extension of µ defined in (2.3)). By construction, it is furthermore outer regular.

Let K be compact and let f ∈ Cc(X) be such that K ≺ f . For any ε > 0, the set
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Oε = {x : f(x) > 1 − ε} ⊃ K is open by continuity. For any g ≺ Oε, we have that

(1 − ε)−1f − g is a positive function, so that I(g) ≤ (1 − ε)−1I(f). Taking the supremum

over such g yields by (2.3)

µ(K) ≤ µ(Oε) ≤ (1− ε)−1I(f)

for any compact set K and hence µ(K) ≤ I(f) since ε is arbitrary. For any open O ⊃ K,

Urysohn’s lemma provides a f ∈ Cc(X) such that K ≺ f ≺ O. Hence I(f) ≤ µ(O) and we

conclude that (2.2) holds since µ is outer regular on K.

With (2.2), we conclude by Proposition IV.2.1 that µ(K) <∞ for any compact set.

Equation (2.2) further implies inner regularity on open sets. Let O be open and let ε > 0.

By (2.3), there is f ∈ Cc(X) such that f ≺ O and I(f) > µ(O)− ε. Let K = suppf and let

K ≺ g. Then g − f is positive and hence I(g) ≥ I(f) ≤ µ(O)− ε. Since this holds for any

such g, we conclude that µ(K) ≥ µ(O)− ε and hence µ is inner regular on O.

We have now constructed a Borel measure µ and established that it is indeed a Radon

measure. It remains to prove the identity (2.8). First of all, it suffices by linearity to prove

it for functions 0 ≤ f ≤ 1. Let K0 = suppf , let N ∈ N and for any 1 ≤ j ≤ N , let

Kj = {x ∈ X : f(x) ≥ jN−1}

for which Kj ⊂ Kj−1, (1 ≤ j ≤ N), and let

fj(x) =


0 if x /∈ Kj−1

f(x)− (j − 1)N−1 if x ∈ Kj−1 \Kj

N−1 if x ∈ Kj

Clearly, f =
∑N

j=1 fj and N−1χKj ≤ fj ≤ N−1χKj−1
and hence

N−1µ(Kj) ≤
∫
X

fjdµ ≤ N−1µ(Kj−1). (2.5)

Summing over j yields

N−1

N∑
j=1

µ(Kj) ≤
∫
X

fdµ ≤ N−1

N−1∑
j=0

µ(Kj). (2.6)
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Let now O be an open set containing Kj−1. Then Kj ≺ Nfj ≺ O. By (2.2) µ(Kj) ≤ NI(fj),

while by definition (2.3) of µ, NI(fj) ≤ µ(O). By outer regularity, we conclude that

N−1µ(Kj) ≤ I(fj) ≤ N−1µ(Kj−1),

which yields upon summation over j the same bound as (2.6) but for I(f). Together, these

inequalities imply that∣∣∣∣I(f)−
∫
X

fdµ

∣∣∣∣ ≤ µ(K0)− µ(KN)

N
≤ µ(suppf)

N
.

This concludes the proof of (2.8) since suppf is finite and N arbitrary.

To conclude the proof of the theorem, it remains to show uniqueness. Let ν be a Radon

measure such that I(f) =
∫
X
fdν. Let O be open and K ⊂ O compact. By Urysohn’s

lemma, there is K ≺ f ≺ O, which implies that ν(K) ≤
∫
X
fdν = I(f) ≤ ν(O) by the

properties of the integral and the fact that 0 ≤ f ≤ 1. By inner regularity on open sets, we

conclude that ν satisfies (2.3). Hence, it is equal to µ on open sets, and further on all sets

by outer regularity. �

Our last goal is to discuss an extension of the above theorem to the dual of C0(X), the

space of continuous functions vanishing at infinity on a LCH space X. The first step is the

following result, showing that functions vanishing at infinity are exactly the uniform limits

of compactly supported functions.

Lemma IV.2.3. Let X be a LCH space. Then Cc(X) = C0(X), where the closure is in the

uniform topology.

Proof. Since the uniform topology is a metric topology, it suffices to consider sequences.

Let (fn)n∈N be a sequence in Cc(X) that converges to f uniformly. Let ε > 0 and n0 ∈ N such

that sup{|fn0(x)−f(x)| : x ∈ X} < ε. It follows that |f(x)| < ε for x outside of the compact

support of fn0 . This shows that f ∈ C0(X), namely Cc(X) ⊂ C0(X). Reciprocally, let

f ∈ C0(X) and let n ∈ N. There is a compact Kn such that |f(x)| < 1/n for all x ∈ X \Kn.

By Urysohn’s lemma, there is gn ∈ Cc(X) such that Kn ≺ gn. Then (gnf)n∈N is a sequence

in Cc(X) such that

sup{|gn(x)f(x)− f(x)| : x ∈ X} = sup{|1− gn(x)||f(x)| : x ∈ X \Kn} < 1/n
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namely gnf → f uniformly. Hence Cc(X) ⊃ C0(X), concluding the proof. �

It immediately follows that any positive linear functional I on Cc(X) extends uniquely to

a bounded positive linear functional on C0(X), if and only if it is globally bounded with

respect to the uniform topology. But the Riesz representation, in particular (2.3), implies

µ(X) = sup{I(f) : f ∈ Cc(X), 0 ≤ f ≤ 1} (2.7)

showing that I is bounded if and only if µ(X) < ∞, in which case ‖I‖ = µ(X). We have

just proved:

Proposition IV.2.4. Let X be a LCH space. Let I be a bounded positive linear functional

on C0(X). There is a unique finite Radon measure µ such that

I(f) =

∫
X

fdµ (2.8)

for all f ∈ C0(X).

It remains to remove the positivity condition. Analogously to the Jordan decomposition

of measures, general real-valued bounded linear functionals decompose into a positive and

negative part, and complex-valued functionals decompose real and imaginary parts, which

in turn decompose into positive and negative parts, to which the proposition above can be

applied.

Lemma IV.2.5. Let I : C0(X;R)→ R be a real-valued bounded linear functional on C0(X;R).

There exist positive bounded linear functionals I± ∈ C0(X;R)∗ such that I = I+ − I−.

Proof. Let f be a non-negative continuous function vanishing at infinity and let

I+(f) = sup{I(g) : g ∈ C0(X;R), 0 ≤ g ≤ f}.

In particular, I(f) ≤ I+(f). Since I(0) = 0, we conclude that I+(f) ≥ 0. Taking the

supremum of |I(g)| ≤ ‖I‖‖g‖∞ over 0 ≤ g ≤ f yields

0 ≤ I+(f) ≤ ‖I‖‖f‖∞.
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By linearity of I, I+(rf) = rI+(f) for r ≥ 0. Moreover,

I+(f1 + f2) = sup{I(g) : g ∈ C0(X;R), 0 ≤ g ≤ f1 + f2}

≥ sup{I(g1 + g2) : g1,2 ∈ C0(X;R), 0 ≤ g1 ≤ f1, 0 ≤ g2 ≤ f2}

= I+(f1) + I+(f2).

On the other hand, let 0 ≤ g ≤ f1 +f2. If g1 = min{f1, g} then 0 ≤ g1 ≤ f1, while g2 = g−g1

satisfies 0 ≤ g2 ≤ f2. Since I is linear,

I(g) = I(g1) + I(g2) ≤ I+(f1) + I+(f2),

which implies I+(f1 + f2) ≤ I+(f1) + I+(f2) by taking the supremum. Altogether, I+ is a

positive, bounded, linear, functional on the set of non-negative functions. For an arbitrary

f ∈ C0(X;R), let f = f+ − f− be its decomposition into positive and negative parts, and

let I+(f) = I+(f+) − I+(f−). On C0(X;R), this is linear and bounded since |I+(f)| ≤

‖I‖max{‖f+‖∞, ‖f−‖∞} = ‖I‖‖f‖∞, namely ‖I+‖ ≤ ‖I‖. It remains to define I− =

I+ − I ∈ C0(X;R)∗, which is a positive functional. �

Let now I ∈ C0(X)∗ be a bounded complex-linear functional over the complex-valued con-

tinuous functions vanishing at infinity. For any f ∈ C0(X), we write f = u + iv, where

u, v ∈ C0(X;R), so that I(f) = J(u) + iJ(v) is completely determined by its real-linear

restriction J = I � C0(X;R). By Lemma IV.2.5, J = J+ +J− and hence there are two finite

Radon measures µ+, µ− such that

I(f) =

∫
X

(u+ + iv+)dµ+ −
∫
X

(u− + iv−)dµ− (f = u+ iv)

by Proposition 2.8.

We have reached the final form of the Riesz-Markov theorem. We denote M(X) the space

of all complex Radon measures, namely of set of complex Borel measure such that the real

and imaginary parts are finite, signed Radon measures. Given µ ∈M(X), we let

Iµ(f) =

∫
X

fdµ.

which is a bounded linear functional on C0(X). Note that M(x) is a Banach space when

equipped with the norm of total variation ‖µ‖ = |µ|(X).
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Theorem IV.2.6. Let X be a LCH space. Then C0(X)∗ is isometrically isomorphic to M(X).

Proof. For any µ ∈M(X),∣∣∣∣∫
X

fdµ

∣∣∣∣ ≤ ∫
X

|f |d|µ ≤ ‖f‖∞‖µ‖

showing that Iµ ∈ C0(X)∗. We have just proved that the map µ → Iµ is surjective with

‖Iµ‖ ≤ ‖µ‖. By the open mapping theorem, it is invertible with bounded inverse. We skip

the argument showing that ‖µ‖ ≤ ‖Iµ‖. �

If X is compact, then C0(X) = C(X) so that

Corollary IV.2.7. Let X be a compact Hausdorff space. Then C(X)∗ is isometrically

isomorphic to M(X).
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