MATH 421/510, 2019WT2

Homework set 9 – Solution

Problem 1. Assume that f is analytic at z_0 . Then

$$\left|\frac{\ell(f(z)) - \ell(f(z_0))}{z - z_0} - \ell(f'(z_0))\right| \le \|\ell\| \left\|\frac{f(z) - f(z_0)}{z - z_0} - f'(z_0)\right\|$$

vanishes as $z \to z_0$, proving weak analyticity. Reciprocally, assume that f is weakly analytic. Let $\ell \in V^*$. The Cauchy integral formula for F_{ℓ} yields

$$\ell\left(\frac{f(z) - f(z_0)}{z - z_0} - \frac{f(w) - f(z_0)}{w - z_0}\right) = \frac{F_\ell(z) - F_\ell(z_0)}{z - z_0} - \frac{F_\ell(w) - F_\ell(z_0)}{w - z_0}$$
$$= \frac{1}{2\pi i} \oint_{\gamma} \left(\frac{1}{z - z_0} (\frac{1}{\zeta - z} - \frac{1}{\zeta - z_0}) - \frac{1}{w - z_0} (\frac{1}{\zeta - w} - \frac{1}{\zeta - z_0})\right) \ell(f(\zeta)) d\zeta$$
$$= \frac{1}{2\pi i} \oint_{\gamma} \frac{z - w}{(\zeta - z)(\zeta - z_0)(\zeta - w)} \ell(f(\zeta)) d\zeta$$

where γ is the circle or radius r around z_0 oriented positively containing both z, w. Since $\ell(f(\zeta))$ is continuous on the compact γ , it is bounded, namely $|\ell(f(\zeta))| < C_{\ell}$. Let $\mathcal{F} = \{\mathcal{I}(f(\zeta)) : \zeta \in \gamma\}$ be a family of bounded linear functionals on V^{**} , where \mathcal{I} is the canonical isomorphism $V \to V^{**}$. By the above, $\{|\ell(f(\zeta))| : \zeta \in \gamma\}$ is bounded for any $\ell \in V^*$. Buy the principle of uniform boundedness, $\sup\{||\mathcal{I}(f(\zeta))||_{V^{**}} : \zeta \in \gamma\}$ is finite, namely there is C such that

$$\sup\{\ell(\mathcal{I}(f(\zeta))):\zeta\in\gamma\}\leq C\|\ell\|$$

Hence, for $|z - z_0|, |w - z_0| < r/2$

$$\left| \ell \left(\frac{f(z) - f(z_0)}{z - z_0} - \frac{f(w) - f(z_0)}{w - z_0} \right) \right| \le \frac{2\pi r}{2\pi} \frac{|z - w|}{r^3/4} C \|\ell\| = \frac{4C \|\ell\|}{r^2} |z - w|$$

and hence

$$\left\|\frac{f(z) - f(z_0)}{z - z_0} - \frac{f(w) - f(z_0)}{w - z_0}\right\| \le \frac{4C}{r^2} |z - w|$$

Let now $(z_n)_{n \in \mathbb{N}}$ be a sequence converging to z_0 . Plugging $z_n = z, z_m = w$ above shows that quotient forms a Cauchy sequence and it therefore convergent in V.

(ii) If f is analytic in Ω , then for any $\ell \in V^*$, $F_\ell(z)$ is analytic in Ω hence bounded on the compact $K \subset \Omega$. It follows that $||f(z)|| = \sup\{|F_\ell(z)|/||\ell|| : \ell \in V^*\} < \infty$ by the principle of uniform boundedness. (iii) For any $\ell \in V^*$, the Cauchy integral formula yields

$$\ell(f(z)) = F_{\ell}(w) = \frac{1}{2\pi i} \oint_{\gamma} \frac{\ell(f(z))}{z - w} dz = \frac{1}{2\pi i} \ell\left(\oint_{\gamma} \frac{f(z)}{z - w} dz\right)$$

which yields the claim since linear functionals separate.

(iv) The claim follows from $f(z) = \frac{1}{2\pi i} \oint \frac{f(\zeta)}{\zeta - z} d\zeta$ as in ordinary complex analysis by picking a circle γ of radius r > 0 centred at z_0 containing z in its interior and using

$$\frac{1}{\zeta - z} = \frac{1}{\zeta - z_0} \left(1 - \frac{z - z_0}{\zeta - z_0} \right)^{-1} = \frac{1}{\zeta - z_0} \sum_{j=0}^{\infty} \left(\frac{z - z_0}{\zeta - z_0} \right)^j.$$

The series $\sum_{j=0}^{\infty} \frac{f(\zeta)}{\zeta - z_0} \left(\frac{z - z_0}{\zeta - z_0}\right)^j$ converges in norm, uniformly in ζ since $\left|\frac{z - z_0}{\zeta - z_0}\right| = \frac{|z - z_0|}{r} < 1$. Hence it commutes with the integral and yields

$$A_j = \frac{1}{2\pi i} \oint_{\gamma} \frac{f(\zeta)}{(\zeta - z_0)^{j+1}} d\zeta.$$

Problem 2. (i) Follows from the fact that the set of invertible operators is open, since $\|(\lambda 1-T)-(\mu 1-T)\| = |\lambda - \mu|$. (ii) If $\lambda \in \rho(T)$, then $(\lambda 1 - T)$ is invertible with bounded inverse. Then so is $(\lambda - \mu)1 - T$ for $|\mu| < 1$

 $\|(\lambda 1 - T)^{-1}\|^{-1}$, and

$$((\lambda - \mu)1 - T)^{-1} = \sum_{j=0}^{\infty} ((\lambda 1 - T)^{-1}\mu)^j (\lambda 1 - T)^{-1} = \sum_{j=0}^{\infty} (\lambda 1 - T)^{-j-1}\mu^j$$

proving that $\lambda \mapsto \lambda 1 - T$ has a convergent power series expansion around any $\lambda \in \rho(T)$. (iii) Let $\lambda \in \rho(T)$. From the above, we conclude that $|\mu| < ||(\lambda 1 - T)^{-1}||^{-1}$ implies $(\lambda - \mu) \in \rho(T)$ and hence $(\lambda - \mu) \in \sigma(T)$ implies $|\mu|^{-1} \le ||(\lambda 1 - T)^{-1}||$.

(iv) The spectrum is closed as the complement of the resolvent set which is open. Moreover, $\lambda 1 - T = \lambda(1 - \lambda^{-1}T)$ is invertible whenever $|\lambda^{-1}| ||T|| < 1$, proving that $\sigma(T) \subset \overline{B_{||T||}(0)}$. Moreover, if $|\lambda| > ||T||$

$$(\lambda 1 - T)^{-1} = \sum_{n=0}^{\infty} T^n \lambda^{-n-1}$$
 (1)

is the Laurent series of $\lambda \mapsto \lambda 1 - T$ around ∞ , and the coefficient of λ^{-1} is 1. Hence $-\oint (z1-T)^{-1}dz = 2\pi i 1$ (as an operator equality). On the other hand, if the spectrum was empty, then $\lambda \mapsto \lambda 1 - T$ would be analytic in all of \mathbb{C} , in which case the integral above would vanish. Contradiction.

(v) Recall that $r(T) = \lim_{n \to \infty} \|T^n\|^{1/n}$ and let $R(T) = \max\{|\lambda| : \lambda \in \sigma(T)\} \le \|T\|$. From (1),

$$\frac{1}{2\pi i} \oint \zeta^k (\zeta 1 - T)^{-1} d\zeta = \sum_{n=0}^{\infty} T^n \frac{1}{2\pi i} \oint \zeta^{-n+k-1} d\zeta = T^k$$
(2)

where as above, the contour is a large circle of $r = R(T) + \delta$ for some $\delta > 0$. $(\zeta 1 - T)^{-1}$ being uniformly bounded, we conclude that $||T^k|| \leq C(R(T) + \delta)^{k+1}$ and hence

$$\limsup_{k \to \infty} \|T^k\|^{1/k} \le \limsup_{k \to \infty} C^{1/k} (R(T) + \delta)^{1+1/k} = R(T) + \delta$$

Since δ is arbitrary, we conclude that $r(T) = \limsup_{k \to \infty} ||T^k||^{1/k} \leq R(T)$. Finally, we note that in this calculation, ||T|| could be replaced by $\max\{|\lambda| : \lambda \in \sigma(T)\}$. Reciprocally, let $k \in \mathbb{N}$ be fixed and let n = kl + m. Then

$$\left|\sum_{n=0}^{\infty} \frac{T^n}{\lambda^{n+1}}\right| \leq \sum_{m=0}^{k-1} \frac{|T^m|}{|\lambda|^{m+1}} \sum_{l=0}^{\infty} \left(\frac{||T^k||}{|\lambda|^k}\right)^l,$$

and the series is convergent for $||T^k|| < |\lambda|^k$. Hence, $|\lambda| > ||T^k||^{1/k}$ implies $\lambda \in \rho(T)$. Hence, $R(T) \le ||T^k||^{1/k}$ for any k and in particular $R(T) \le \inf\{||T^k||^{1/k} : k \in \mathbb{N}\} = r(T)$.