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Homework set 9 — Solution

Problem 1. Assume that f is analytic at zp. Then
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vanishes as z — zg, proving weak analyticity. Reciprocally, assume that f is weakly analytic. Let £ € V*.
The Cauchy integral formula for Fy yields
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where + is the circle or radius r around zp oriented positively containing both z,w. Since £(f(¢)) is continuous
on the compact v, it is bounded, namely |¢(f(())| < C¢. Let F = {Z(f(C)) : ¢ € v} be a family of bounded
linear functionals on V**, where Z is the canonical isomorphism V' — V**. By the above, {|¢(f(¢))] : ¢ € v}
is bounded for any ¢ € V*. Buy the principle of uniform boundedness, sup{||Z(f(¢))||v+ : ¢ € v} is finite,
namely there is C such that

sup{(Z(f(€))) : ¢ € v} < CJ¢]l.

Hence, for |z — 2o, |w — 20| < /2
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Let now (z,)nen be a sequence converging to zo. Plugging z,, = z, z,, = w above shows that quotient forms
a Cauchy sequence and it therefore convergent in V.

(ii) If f is analytic in €, then for any ¢ € V*, Fy(z) is analytic in Q hence bounded on the compact K C .
It follows that || f(2)|| = sup{|Fe(2)|/||¢|| : £ € V*} < 0o by the principle of uniform boundedness.

(iii) For any ¢ € V*, the Cauchy integral formula yields

(f(2)) = Fo(w) = 1%““2%2 _ ;mz( W f(z)dz)
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which yields the claim since linear functlonals separate.
(iv) The claim follows from f(z) = 27” 35 7 ~d( as in ordinary complex analysis by picking a circle v of radius
r > 0 centred at zg contalnlng z in its 1nter10r and using
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commutes with the integral and yields
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Problem 2. (i) Follows from the fact that the set of invertible operators is open, since ||(A1=T)—(u1—T)||
A= ul.

(ii) If A € p(T), then (A1 — T) is invertible with bounded inverse. Then so is (A — u)1 — T for |y|
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proving that A — Al — T has a convergent power series expansion around any A € p(T).

(iii) Let A € p(T). From the above, we conclude that |u| < ||[(A1 =T)~1||~! implies (A — p) € p(T) and hence
(A= p) € o(T) implies |u~" < ||\ — T) 1|

(iv) The spectrum is closed as the complement of the resolvent set which is open. Moreover, \1 — T =
A(1 = X7'T) is invertible whenever |A~!|||T'|| < 1, proving that o(T) C By (0). Moreover, if |A| > ||T|

A

M —T Zm net (1)

is the Laurent series of A — A1 —7T around oo, and the coefficient of A™! is 1. Hence — §(21—T)"'dz = 27i 1
(as an operator equality). On the other hand, if the spectrum was empty, then A — A1 —T would be analytic
in all of C, in which case the integral above would vanish. Contradiction.

(v) Recall that 7(T) = lim,, o |T7|*/™ and let R(T) = max{|A| : A € o(T)} < ||T||. From (1),
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where as above, the contour is a large circle of 7 = R(T) + 6 for some § > 0. (¢1 —T)~! being uniformly
bounded, we conclude that | T%|| < C(R(T) + 6)**! and hence

limsup ||T%(|Y/* < limsup CY*(R(T) + 6)* /% = R(T) + 6
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Since ¢ is arbitrary, we conclude that r(7) = limsup,_,.. [|7%(|'/* < R(T). Finally, we note that in this
calculation, ||| could be replaced by max{|\| : A € o(T)}. Reciprocally, let k € N be fixed and let
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and the series is convergent for | T%|| < |A|*. Hence, |A| > ||T%||*/* implies A € p(T). Hence, R(T) < ||T*||*/*
for any k and in particular R(T) < inf{||T*||*/* : k € N} = r(T).




