MATH 421/510, 2019WT2

Homework set 8 – Solution

Problem 1. Assume first that $z^n \to z$. Then z^n is bounded. Let δ^j be the sequence defined by $\delta^j_{\ k} = \delta_{j,k}$. Clearly, $\delta^j \in \ell^q$ for all $j \in \mathbb{N}$. Moreover, weak convergence implies that for any $j \in \mathbb{N}$,

$$z_j = \sum_{k=1}^{\infty} \delta^j_{\ k} z_k = \lim_{n \to \infty} \sum_{k=1}^{\infty} \delta^j_{\ k} z_k^n = \lim_{n \to \infty} z_j^n,$$

concluding the proof. Reciprocally, assume that $z_j^n \to z_j$ for all $j \in \mathbb{N}$. Let w be a sequence with a finite number of nonzero components. Then

$$\left|\sum_{j=1}^{N} w_j(z_j^n - z_j)\right| \le \sup\{|z_j^n - z_j| : j \le N\} \sum_{j=1}^{N} |w_j| \to 0 \qquad (n \to \infty),$$

by pointwise convergence. If $(z^n)_{n \in \mathbb{N}}$ is bounded in ℓ^p , this proves weak convergence since the compactly supported sequences are dense in ℓ^q .

Problem 2. Let *H* be the *convex hull* of $\{v_n : n \in \mathbb{N}\}$, namely the set of all finite convex combinations of elements in $\{v_n : n \in \mathbb{N}\}$. It is a convex set. Indeed, let $a = \sum_{j=1}^{N} \alpha_j v_j$ and $b = \sum_{j=1}^{N} \beta_j v_j$, where some of the coefficients in these convex combinations may be zero. Then $\lambda a + (1 - \lambda)b = \sum_{j=1}^{N} (\lambda \alpha_j + (1 - \lambda)\beta_j)v_j$ is an element in *H* since $\sum_{j=1}^{N} (\lambda \alpha_j + (1 - \lambda)\beta_j) = \lambda \sum_{j=1}^{N} \alpha_j + (1 - \lambda) \sum_{j=1}^{N} \beta_j = 1$. Hence $\overline{H}^w = \overline{H}$. By weak convergence, $v \in \overline{H}^w = \overline{H}$. We conclude that there is a $(w_j)_{j \in \mathbb{N}}$ in *H* converging to *v* in the norm topology.

Problem 3. Let $(v_n)_{n \in \mathbb{N}}$ be a sequence in X with $v_n \rightharpoonup v$ and let $F_0 = \liminf_{n \to \infty} F(v_n)$. By definition of the lim inf, there is a subsequence such that $F(v_{n_k}) \rightarrow F_0$ as $k \rightarrow \infty$. Let $(w_j)_{j \in \mathbb{N}}$ be the strongly convergent sequence given by Mazur's theorem, namely $w_j \rightarrow v$ as $j \rightarrow \infty$, where

$$w_j = \sum_{k=1}^j \alpha_k^j v_{n_k}, \qquad \alpha_k^j \ge 0, \ \sum_{k=1}^j \alpha_k^j = 1.$$

Since X is convex, $(w_j)_{j \in \mathbb{N}}$ is a sequence in X. For any $k_0 \in \mathbb{N}$, the above continues to hold for the truncated sequence $(v_{n_k})_{k \in \mathbb{N}, k \geq k_0}$, with X replaced by the closure of the convex hull of $\{v_k : k \geq k_0\}$. Hence, fixing k_0 , we can assume that $\alpha_k^j = 0$ for all $k < k_0$. F being convex,

$$F(w_j) \le \sum_{k=k_0}^{j} \alpha_k^j F(v_{n_k}) \le \sup\{F(v_{n_k}) : k \ge k_0\}.$$

Since F is strongly continuous, this yields $F(v) = \lim_{j\to\infty} F(w_j) \leq \sup\{F(v_{n_k}) : k \geq k_0\}$, and hence $F(v) \leq \limsup_{k\to\infty} F(v_{n_k}) = F_0$ by taking the limit $k_0 \to \infty$.

Problem 4. Clearly, $|T_{\epsilon}f| \leq \sup\{|f(x)|: 0 \leq x \leq \epsilon\} \leq ||f||_{\infty}$ so that $||T_{\epsilon}|| \leq 1$ for any $0 < \epsilon \leq 1$. Let now $(\epsilon_n)_{n \in \mathbb{N}}$ be a sequence converging to 0 and we assume that $T_{\epsilon_n} \stackrel{*}{\rightharpoonup} T$ as $n \to \infty$. By going to a subsequence, we assume that

$$1>\frac{\epsilon_{n+1}}{\epsilon_n}\to 0$$

as $n \to \infty$. Let now $f = \sum_{n=1}^{\infty} (-1)^n \chi_{[\epsilon_{n+1}, \epsilon_n)}(x)$, which is such that $||f||_{\infty} = 1$. But

$$T_{\epsilon_n}f = (-1)^n \frac{\epsilon_n - \epsilon_{n+1}}{\epsilon_n} + \frac{1}{\epsilon_n} \int_0^{\epsilon_{n+1}} f dx$$

namely

$$|T_{\epsilon_n}f - (-1)^n| \le \frac{\epsilon_{n+1}}{\epsilon_n} + \frac{1}{\epsilon_n} \int_0^{\epsilon_{n+1}} |f| dx \le 2\frac{\epsilon_{n+1}}{\epsilon_n} \to 0$$

as $n \to \infty$. Hence $(T_{\epsilon_n} f)_{n \in \mathbb{N}}$ accumulates both at (-1) and 1 and therefore does not converge, which contradicts the assumption. This proves that bounded set $\{T_{\epsilon} : 0 < \epsilon \leq 1\}$ is not weakly-* sequentially compact in $(L^{\infty})^*$. In view of the Banach-Alaoglu theorem, this shows that L^{∞} is not reflexive.

Problem 5. Hanner's inequality with $g = f_n$ yields

$$\limsup_{n \to \infty} \left(\left(\|f + f_n\|_p + \|f - f_n\|_p \right)^p + \|\|f + f_n\|_p - \|f - f_n\|_p \|^p \right) \le 2^{p+1} \|f\|_p^p \tag{1}$$

since $||f_n||_p \to ||f||_p$ as $n \to \infty$. Now, $f_n + f \rightharpoonup 2f$ and by the sequential lower semicontinuity of norms,

$$\liminf_{n \to \infty} \|f_n + f\|_p \ge 2\|f\|_p$$

On the other hand, Minkowski's inequality yields

$$\limsup_{n \to \infty} \|f_n + f\|_p \le \limsup_{n \to \infty} (\|f_n\|_p + \|f\|_p) = 2\|f\|_p.$$

Hence, $\lim_{n\to\infty} ||f_n+f||_p = 2||f||_p$ and the left hand side of (1) is equal to $\lim_{n\to\infty} (J(F+t_n)+J(F-t_n))$, where $J(t) = |t|^p$ and $F = 2||f||_p$, $t_n = ||f - f_n||_p$. Since J is strictly convex for p > 1, we conclude that if $||f - f_n||_p$ does not converge to zero, then for n large enough,

$$2^{p+1} \|f\|_p^p = 2J(F) < \limsup_{n \to \infty} (J(F + t_n) + J(F - t_n)) \le 2^{p+1} \|f\|_p^p$$

which is a contradiction. Hence $\lim_{n\to\infty} ||f - f_n||_p = 0$ indeed.