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Homework set 8 – Solution

Problem 1. Assume first that zn ⇀ z. Then zn is bounded. Let δj be the sequence defined by δjk = δj,k.

Clearly, δj ∈ `q for all j ∈ N. Moreover, weak convergence implies that for any j ∈ N,

zj =

∞∑
k=1

δjkzk = lim
n→∞

∞∑
k=1

δjkz
n
k = lim

n→∞
znj ,

concluding the proof. Reciprocally, assume that znj → zj for all j ∈ N. Let w be a sequence with a finite
number of nonzero components. Then

∣∣∣ N∑
j=1

wj(z
n
j − zj)

∣∣∣ ≤ sup{|znj − zj | : j ≤ N}
N∑
j=1

|wj | → 0 (n→∞),

by pointwise convergence. If (zn)n∈N is bounded in `p, this proves weak convergence since the compactly
supported sequences are dense in `q.

Problem 2. Let H be the convex hull of {vn : n ∈ N}, namely the set of all finite convex combinations of

elements in {vn : n ∈ N}. It is a convex set. Indeed, let a =
∑N
j=1 αjvj and b =

∑N
j=1 βjvj , where some of

the coefficients in these convex combinations may be zero. Then λa+ (1−λ)b =
∑N
j=1(λαj + (1−λ)βj)vj is

an element in H since
∑N
j=1(λαj + (1−λ)βj) = λ

∑N
j=1 αj + (1−λ)

∑N
j=1 βj = 1. Hence H

w
= H. By weak

convergence, v ∈ Hw
= H. We conclude that there is a (wj)j∈N in H converging to v in the norm topology.

Problem 3. Let (vn)n∈N be a sequence in X with vn ⇀ v and let F0 = lim infn→∞ F (vn). By definition of
the lim inf, there is a subsequence such that F (vnk

)→ F0 as k →∞. Let (wj)j∈N be the strongly convergent
sequence given by Mazur’s theorem, namely wj → v as j →∞, where

wj =

j∑
k=1

αjkvnk
, αjk ≥ 0,

j∑
k=1

αjk = 1.

Since X is convex, (wj)j∈N is a sequence in X. For any k0 ∈ N, the above continues to hold for the truncated
sequence (vnk

)k∈N,k≥k0 , with X replaced by the closure of the convex hull of {vk : k ≥ k0}. Hence, fixing k0,

we can assume that αjk = 0 for all k < k0. F being convex,

F (wj) ≤
j∑

k=k0

αjkF (vnk
) ≤ sup{F (vnk

) : k ≥ k0}.

Since F is strongly continuous, this yields F (v) = limj→∞ F (wj) ≤ sup{F (vnk
) : k ≥ k0}, and hence

F (v) ≤ lim supk→∞ F (vnk
) = F0 by taking the limit k0 →∞.

Problem 4. Clearly, |Tεf | ≤ sup{|f(x)| : 0 ≤ x ≤ ε} ≤ ‖f‖∞ so that ‖Tε‖ ≤ 1 for any 0 < ε ≤ 1. Let now

(εn)n∈N be a sequence converging to 0 and we assume that Tεn
∗
⇀ T as n→∞. By going to a subsequence,

we assume that
1 >

εn+1

εn
→ 0



as n→∞. Let now f =
∑∞
n=1(−1)nχ[εn+1,εn)(x), which is such that ‖f‖∞ = 1. But

Tεnf = (−1)n
εn − εn+1

εn
+

1

εn

∫ εn+1

0

fdx

namely

|Tεnf − (−1)n| ≤ εn+1

εn
+

1

εn

∫ εn+1

0

|f |dx ≤ 2
εn+1

εn
→ 0

as n → ∞. Hence (Tεnf)n∈N accumulates both at (−1) and 1 and therefore does not converge, which
contradicts the assumption. This proves that bounded set {Tε : 0 < ε ≤ 1} is not weakly-* sequentially
compact in (L∞)∗. In view of the Banach-Alaoglu theorem, this shows that L∞ is not reflexive.

Problem 5. Hanner’s inequality with g = fn yields

lim sup
n→∞

(
(‖f + fn‖p + ‖f − fn‖p)p + |‖f + fn‖p − ‖f − fn‖p|p

)
≤ 2p+1‖f‖pp (1)

since ‖fn‖p → ‖f‖p as n→∞. Now, fn + f ⇀ 2f and by the sequential lower semicontinuity of norms,

lim inf
n→∞

‖fn + f‖p ≥ 2‖f‖p.

On the other hand, Minkowski’s inequality yields

lim sup
n→∞

‖fn + f‖p ≤ lim sup
n→∞

(‖fn‖p + ‖f‖p) = 2‖f‖p.

Hence, limn→∞ ‖fn+f‖p = 2‖f‖p and the left hand side of (1) is equal to lim supn→∞(J(F+tn)+J(F−tn)),
where J(t) = |t|p and F = 2‖f‖p, tn = ‖f − fn‖p. Since J is strictly convex for p > 1, we conclude that if
‖f − fn‖p does not converge to zero, then for n large enough,

2p+1‖f‖pp = 2J(F ) < lim sup
n→∞

(J(F + tn) + J(F − tn)) ≤ 2p+1‖f‖pp

which is a contradiction. Hence limn→∞ ‖f − fn‖p = 0 indeed.


