Homework set 7 - Solution

Problem 1. (i) That C is open follows from the openness of $A, B .0 \in C$ since $a_{0} \in A, b_{0} \in B . x_{0} \in C$ iff $a=b$, which is a contradiction with $A \cap B=\emptyset$. Finally, let $x, y \in C$ and $\lambda \in[0,1]$. There are $a_{x}, a_{y} \in A, b_{x}, b_{y} \in B$ such that $x=a_{x}-b_{x}+x_{0}, y=a_{y}-b_{y}+x_{0}$. But then

$$
\lambda x+(1-\lambda) y=\left(\lambda a_{x}+(1-\lambda) a_{y}\right)-\left(\lambda b_{x}+(1-\lambda) b_{y}\right)+x_{0} \in A-B+x_{0}
$$

showing that C is convex whenever A, B are convex.
(ii) Since C is open and $0 \in C$, there is $r>0$ such that $B_{r}(0) \in C$. Moreover, for any $x \in V, x \in B_{2\|x\|}(0)=$ $B_{\lambda r}(0) \subset \lambda C$ for $\lambda=2 r^{-1}\|x\|$. Hence $p(x) \leq 2 r^{-1}\|x\|$. Moreover, $x \in C$ implies $1 \in\{\lambda>0: x \in \lambda C\}$, namely $p(x) \leq 1$. Since C is open, $C \subset\{x \in V: p(x)<1\}$.
(iii) First of all, $p(\alpha x)=\inf \{\lambda>0: \alpha x \in \lambda C\}=\inf \left\{\lambda>0: x \in \lambda \alpha^{-1} C\right\}=\inf \{\alpha \mu>0: x \in \mu C\}=\alpha p(x)$ for any $\alpha>0$. Let $x, y \in V$ and $\lambda \in[0,1]$. Hence there are $\mu>0, \nu>0$ and $x_{0}, y_{0} \in C$ such that $x=\mu x_{0}$ and $y=\nu y_{0}$. Therefore,

$$
p(\lambda x+(1-\lambda) y)=(\lambda \mu+(1-\lambda) \nu) p\left(\frac{\lambda \mu x_{0}+(1-\lambda) \nu y_{0}}{\lambda \mu+(1-\lambda) \nu}\right) \leq \lambda \mu+(1-\lambda) \nu
$$

because the argument of p belongs to C since C is convex. The claim follows by taking the infimum over μ, ν. (iv) Since $x_{0} \notin C$, we have that $p\left(x_{0}\right) \geq 1$. Let f be as in the hint. Then

$$
t \geq 0: f\left(t x_{0}\right)=t \leq t p\left(x_{0}\right)=p\left(t x_{0}\right) \quad t<0: f\left(t x_{0}\right)=t<0 \leq p\left(t x_{0}\right)
$$

By Hahn-Banach, there is a real-linear functional ℓ such that $\ell\left(t x_{0}\right)=f\left(t x_{0}\right)=t$ for all $t \in \mathbb{R}$ and $\ell(x) \leq p(x)$ for all $x \in V$. Moreover,

$$
|\ell(x)|=\max \{\ell(x), \ell(-x)\}=\max \{p(x), p(-x)\} \leq 2 r^{-1}\|x\|
$$

so that $\ell \in V^{*}$. Finally, for any $a \in A, b \in B$,

$$
\ell(a)-\ell(b)=\ell\left(a-b+x_{0}\right)-\ell\left(x_{0}\right)<0
$$

since $\ell\left(x_{0}\right)=1$ and $\ell\left(a-b+x_{0}\right) \leq p\left(a-b+x_{0}\right)<1$ since $a-b+x_{0} \in C$.
(v) By Urysohn's lemma, see HW 3, Problem 2(ii), there is $r>0$ such that $B_{r}(x) \subset V \backslash B$ for all $x \in A$. It remains to apply the result above to the open set $A^{r}=\{x \in V: \operatorname{dist}(x, A)<r\}$ and B to obtain

$$
\max \{\ell(a): a \in A\}<\sup \left\{\ell(x): x \in A^{r}\right\} \leq \inf \{\ell(b): b \in B\}
$$

as we had set to prove.
Problem 2. The identity map $I:\left(V,\|\cdot\|_{2}\right) \rightarrow\left(V,\|\cdot\|_{1}\right)$ given by $I(x)=x$ for all $x \in V$ is bijective and bounded since $\|I(x)\|_{1}=\|x\|_{1} \leq c\|x\|_{2}$. By the open mapping theorem, I^{-1} is bounded, namely $\|x\|_{2}=\left\|I^{-1}(x)\right\|_{2} \leq C\|x\|_{1}$.

Problem 3. Since $\operatorname{Ran}(T)$ is closed, it is complete. Assume by contradiction that there is a sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ in V such that

$$
\left\|x_{n}\right\|_{V}=1, \quad\left\|T x_{n}\right\|_{W}+\left\|x_{n}\right\|<\frac{1}{n}
$$

We apply the open mapping theorem to the surjective $T: V \rightarrow \operatorname{Ran}(T)$, where V is equipped with the norm $\|\cdot\|_{V}$. There is $\delta>0$ such that $B_{\delta}^{Y} \subset T\left(B_{1}^{X}\right)$, and hence $B_{1 / n}^{Y} \subset T\left(B_{1 /(n \delta)}^{X}\right)$ by linearity. Since $\left\|T x_{n}\right\|_{W}<1 / n$, it follows that there exists $\tilde{x}_{n} \in V$ such that

$$
\left\|\tilde{x}_{n}\right\|_{V}<\frac{1}{n \delta}, \quad T x_{n}=T \tilde{x}_{n}
$$

Let $z_{n}=x_{n}-\tilde{x}_{n} \in \operatorname{Ker}(T)$. On the one hand, $\left\|\tilde{x}_{n}\right\|_{V} \rightarrow 0$ as $n \rightarrow \infty$ implies that $\left\|z_{n}\right\|_{V} \rightarrow 1$. On the other hand, $\left\|x_{n}\right\|<1 / n$ implies $\left\|z_{n}\right\|<1 / n+\left\|\tilde{x}_{n}\right\| \leq 1 / n+M\left\|\tilde{x}_{n}\right\|_{V}$ (by the assumption that $\|\cdot\|$ is weaker than $\|\cdot\|_{V}$) which vanishes as $n \rightarrow \infty$. Since $\operatorname{Ker}(T)$ is a finite dimensional vector space, the two norms $\|\cdot\|_{V}$ and $\|\cdot\|$ are equivalent on $\operatorname{Ker}(T)$, and the two claims above are a contradiction.

Problem 4. (i) That $V \neq \ell^{1}$ follows from the fact that $\left(1 / n^{2}\right)_{n \in \mathbb{N}}$ is in ℓ^{1} but not in V. Density follows by truncation. Let $z \in \ell^{1}$. We claim that the sequence $\left(w^{n}\right)_{n \in \mathbb{N}}$ in V given by

$$
\left(w^{n}\right)_{j}= \begin{cases}z_{j} & \text { if } j \leq n \\ 0 & \text { otherwise }\end{cases}
$$

converges to z in the $\|\cdot\|_{1}$ norm. Indeed, for $\epsilon>0$, there is $N \in \mathbb{N}$ such that $\sum_{j=N}^{\infty}\left|z_{j}\right|<\epsilon$, and hence $\left\|w^{n}-z\right\|_{1} \leq \sum_{j=N}^{\infty}\left|z_{j}\right|<\epsilon$ for all $n>N$.
(ii) We consider the sequence $\left(w^{n}\right)_{n \in \mathbb{N}}$ in V given by $\left(w^{n}\right)_{j}=\delta_{n, j}$. Then $\left\|w^{n}\right\|_{1}=1$ for all $n \in \mathbb{N}$ and $\left\|T w^{n}\right\|_{1}=n$, showing that T is unbounded. It is however closed: Let $\left(z^{n}, T z^{n}\right)_{n \in \mathbb{N}}$ be a sequence in $\Gamma(T)$ that converges in $V \times \ell^{1}$ to $(z, w) . z^{n} \rightarrow z$ reads $\lim _{n \rightarrow \infty} \sum_{j=1}^{\infty}\left|z_{j}^{n}-z_{j}\right|=0$, which implies that $z_{j}^{n} \rightarrow z_{j}$ for any $j \in \mathbb{N}$ as $n \rightarrow \infty$. Similarly, $T z^{n} \rightarrow w$ implies that $j z_{j}^{n} \rightarrow w_{j}$ for any $j \in \mathbb{N}$ as $n \rightarrow \infty$. Together, it follows that $j z_{j}=w_{j}$ for any $j \in \mathbb{N}$, namely $w=T z$ indeed.
(iii) The map $S: \ell^{1} \rightarrow V$ given by $(S z)_{n}=z_{n} / n$ is well-defined and bounded since $\|S z\|_{1}=\sum_{j=1}^{\infty}\left|z_{n}\right| / n<$ $\sum_{j=1}^{\infty}\left|z_{n}\right|=\|z\|_{1}$. If $z \in V$, then by definition $z=S T z$ so that S is surjective. It follows that if S were open, then $T=S^{-1}$ would be bounded, but we have just proved the contrary. Hence S is not open.

Problem 5. Let $x \in V$. There is a sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ in D such that $x_{n} \rightarrow x$. Let $\epsilon>0$. Since $\left(x_{n}\right)_{n \in \mathbb{N}}$ is Cauchy, there is $N \in \mathbb{N}$ such that $\left\|x_{n}-x_{m}\right\|<\epsilon /\|T\|$ for all $n, m \geq N$ and hence $\left\|T x_{n}-T x_{m}\right\| \leq \epsilon$ proving that $\left(T x_{n}\right)_{n \in \mathbb{N}}$ is a Cauchy sequence in W. Let y be its limit, and we define $y=\tilde{T} x$. Clearly, $\tilde{T} x=T x$ for $x \in D$ by continuity. \tilde{T} is linear by the linearity of the limit. Moreover, the definition is independent of the sequence: if $\tilde{x}_{n} \rightarrow x$, the alternating sequence ($x_{1}, \tilde{x}_{1}, x_{2}, \tilde{x}_{2}, \ldots$) also converges to x, and the above argument yields a limiting \tilde{y}. But then $y=\tilde{y}$ by uniqueness of the limit since $\left(x_{n}\right)_{n \in \mathbb{N}},\left(\tilde{x}_{n}\right)_{n \in \mathbb{N}}$ are subsequences. $T x_{n} \rightarrow \tilde{T} x$ implies that $\|T x\|=\lim _{n \rightarrow \infty}\left\|T x_{n}\right\| \leq \lim _{n \rightarrow \infty}\|T\|\left\|x_{n}\right\|=\|T\|\|x\|$, proving that \tilde{T} is bounded. Finally, if T^{\prime} is another continuous extension of T to V, then $T^{\prime} x=\lim _{n \rightarrow \infty} T x_{n}$ for any $x_{n} \rightarrow x$ by continuity, proving that $T^{\prime}=\tilde{T}$, again by uniqueness of the limit.

Problem 6. (i) Assume by contradiction that for any nonzero $v \in V$, there is $j \in\{1, \ldots, n\}$ such that $\ell_{j}(v) \neq 0$. Then the map $L: V \rightarrow \mathbb{C}^{n}$ defined by $L(v)_{j}=\ell_{j}(v)$ is injective so that $\operatorname{dim}(V)=\operatorname{dim}(\operatorname{Ran}(L)) \leq$ n, which is a contradition with the assumption that V is infinite dimensional.
(ii) We denote the unit sphere S and the closed unit ball B. Let $v \in V,\|v\|<1$ and let $N=N_{v}\left(\ell_{1}, \cdots \ell_{n}, \epsilon\right)=$ $\left\{x \in V:\left|\ell_{j}(x)-\ell_{j}(v)\right|<\epsilon \forall j=1, \ldots, n\right\}$ be a weakly open neighbourhood of v. Let now v_{0} be as in (i). Then for any $t \in \mathbb{R}, \ell_{j}\left(v+t v_{0}\right)=\ell_{j}(v)$ so that $v+t v_{0} \in N$. The function $f(t)=\left\|v+t v_{0}\right\|$ is continuous from $[0, \infty) \rightarrow[0, \infty)$ with $f(0)=\|v\|<1$ and $\lim _{t \rightarrow \infty} f(t)=\infty$. Hence there is $t_{0} \in(0, \infty)$ such that $f\left(t_{0}\right)=1$, namely $v+t_{0} v_{0} \in S \cap N$. In other words, $N \cap S \neq \emptyset$, which implies that $v \in \bar{S}$ and hence $S \subset B \subset \bar{S}$. Since \bar{S} is the smallest closed set containing S, the proof is complete if we show that B is weakly closed. But Hahn-Banach yields that $v \in B$ if and only if $\sup \left\{|\ell(v)|: \ell \in V^{*},\|\ell\| \leq 1\right\} \leq 1$ so that

$$
B=\bigcap_{\ell \in V^{*}:\|\ell\| \leq 1}\{v \in V:|\ell(v)| \leq 1\}=\left(\bigcup_{\ell \in V^{*}:\|\ell\| \leq 1}\{v \in V:|\ell(v)|>1\}\right)^{c}
$$

By definition of the weak topology, all sets on the right are weakly open, so that B is weakly closed indeed. (iii) If the open unit ball b is weakly open, then b^{c} is weakly closed, and so is $S=B \cap b^{c}$, which contradicts (ii).

