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Homework set 6 – Solution

Problem 1. (i) Let w ∈ `1. Since any z ∈ C0 is bounded, elementary properties of sequences yield
|
∑∞

n=1 wnzn| ≤ ‖z‖∞‖w‖1, where ‖z‖∞ = sup{|zn| : n ∈ N}, showing that Tw(z) =
∑∞

n=1 wnzn is a
bounded linear functional on C0. We claim that reciprocally, for any λ ∈ C∗0 , there is a sequence w ∈ `1
such that λ(z) = Tw(z). For any m ∈ N, let δm ∈ C0 be the sequence δmn = δm,n. Let w be the sequence
defined by wn = λ(δn), and define

w̃n =

{
wn/|wn| if wn 6= 0

0 otherwise
.

With these definitions,
∑N

n=1 |wn| =
∑N

n=1 wnw̃n =
∑N

n=1 λ(δn)w̃n = λ
(∑N

n=1 w̃nδ
n
)

by the linearity of

λ. For any fixed N ∈ N,
∑N

n=1 w̃nδ
n is a linear combination of elements of C0, hence itself in C0, and as

such each of its components has magnitude at most equal to 1. We conclude that
∑N

n=1 |wn| ≤ ‖λ‖. The
sequence (wn)n∈N is therefore monotone and bounded, hence convergent, namely w ∈ `1. Let Tw ∈ C∗0 be
as in the first part. Clearly Tw(δn) = wn = λ(δn) and so by linearity Tw(z) = λ(z) for any sequence with a
finite number of nonzero components. But this is a dense set in C0. For z ∈ C0, let zn → z. Then

|Tw(z)− λ(z)| ≤ |Tw(z)− Tw(zn)|+ |Tw(zn)− λ(zn)|+ |λ(zn)− λ(z)| ≤ (‖Tw‖ − ‖λ‖)‖zn − z‖∞,

proving that Tw = λ on C0.
(ii) We first note that the functional L(z) = limn→∞ zn is in C∗. Indeed, |L(z)| = | limn→∞ zn| ≤ sup{|zn| :
n ∈ N} = ‖z‖∞. We now claim that λ ∈ C∗ if and only if there is τ ∈ C and w ∈ `1 such that λ(z) =
τL(z) + Tw(z). Let λ ∈ C∗. The sequences δn define in (i) are elements of C, and we let again wn = λ(δn).
As above, w ∈ `1, and Tw defines a bounded linear functional on C∗. Let τ = λ(1) −

∑∞
n=1 zn, where the

series is convergent since it is absolutely convergent and 1 ∈ C denotes the constant sequence 1n = 1 for all
n ∈ N. But

(τL+ Tw)(δn) = wn = λ(δn) and (τL+ Tw)(1) = τ +

∞∑
n=1

wn = λ(1)

by definition of τ . By linearity, (τL + Tw)(z) = λ for any z with finitely many different components, and
since this is a dense subset of C, we conclude as above that τL + Tw = λ on C. Finally, we note that we
proved along the way that τL+ Tw ∈ C∗ for any τ ∈ C and w ∈ `1, concluding the proof.

Problem 2. (i) If F,G ∈ A⊥ and λ ∈ C, then (F +λG)(x) = F (x) +λG(x) = 0 showing that A⊥ is a linear
subspace. Since the norm topology is metric, it is first countable and hence it suffices to prove that the limit
of any convergent sequence (Fn)n∈N in A⊥ belongs to A⊥. But that is immediate since x ∈ A implies that
0 = Fn(x) for all n ∈ N and in turn that F (x) = 0, namely F ∈ A⊥.
(ii) Let F, F ′ both be in [F ], namely there is G ∈ A⊥ such that F ′ = F +G, and hence F ′ �A= F �A +G �A=
F �A so that J is well-defined. Note that J is linear. Now

J([F ]) = 0 ⇔ F �A= 0 ⇔ F ∈ A⊥ ⇔ [F ] = 0

so that J is injective. By Hahn-Banach’s theorem any bounded linear functional f ∈ A∗ has a bounded
linear extension F ∈ X∗, showing that J is surjective. We now recall that ‖[F ]‖ = inf{‖G‖ : G ∈ [F ]} and
that X∗/A⊥ is complete since X∗ is Banach and A is closed. For any G ∈ A⊥, F ∈ X∗,

‖F +G‖X∗ = sup{|F (x) +G(x)|/‖x‖X : 0 6= x ∈ X} ≥ sup{‖F (x)‖/‖x‖X : 0 6= x ∈ A} = ‖F �A ‖A∗ .



showing that ‖[F ]‖X∗/A⊥ ≥ ‖F �A ‖A∗ . Reciprocally, let F ∈ X∗. By Hahn-Banach, its restriction F �A
has an extension G ∈ X∗ such that ‖G‖X∗ = ‖F �A ‖A∗ , and F − G ∈ A⊥ namely [F ] = [G]. Hence,
‖[F ]‖X∗/A⊥ ≤ ‖[G]‖X∗ = ‖F �A ‖A∗ . Hence J is isometric.

Problem 3. (i) Linearity follows from (T×(g+λf))(x) = (g+λf)(T (x)) = g(T (x))+λf(T (x)) = (T×g)(x)+
(T×(λf))(x). In order to prove boundedness, we compute

‖T×‖ = sup
{‖T×g‖V ∗
‖g‖W∗

: 0 6= g ∈W ∗
}

= sup
x∈V

sup
g∈W∗

|(T×g)(x)|
‖x‖V ‖g‖W∗

= sup
x∈V

sup
g∈W∗

|g(T (x))|
‖x‖V ‖g‖W∗

By a corollary of Hahn-Banach, sup{|g(T (x))|/‖g‖W∗ : g ∈W ∗} = ‖T (x)‖V , and further sup{‖T (x)‖V /‖x‖V :
v ∈ V } = ‖T‖ by definition.
(ii) g ∈ Ker(T×) implies g(T (x)) = 0, namely g ∈ Ran(T )⊥, proving Ker(T×) ⊂ Ran(T )⊥. Reciprocally, if
g ∈ Ran(T )⊥, then (T×g)(x) = 0 for all x ∈ V , namely T×g = 0, proving Ker(T×) ⊃ Ran(T )⊥, and hence
the claim.
(iii) x ∈ Ker(T ) implies (T×g)(x) = 0 for all g ∈W ∗, namely x ∈ Ran(T×)⊥ showing Ker(T ) ⊂ Ran(T×)⊥.
Reciprocally, if x ∈ Ker(T×g) for all g ∈ W ∗, then g(T (x)) = 0 for all g ∈ W ∗. Since bounded linear
functionals separate points by Hahn-Banach, this implies that T (x) = 0, namely x ∈ Ker(T ) and hence
Ker(T ) ⊃ Ran(T×)⊥.
(iv) Immediate from ((ST )×g)(x) = g(ST (x)) = (S×g)(T (x)) = (T×S×g)(x). Using this with S = T−1

proves the second claim.

Problem 4. We apply Hahn-Banach for vector spaces to the subspace X = {αv + w : α ∈ C, w ∈ W}
and the functional λ(αv + w) = αd. This is a well-defined functional since a vector in X has a unique
decomposition in αv + w. It is linear and bounded. Indeed, if α 6= 0, then

λ(v + w/α) = d = dist(v,W ) ≤ ‖v − (−w/α)‖,

proving that ‖λ‖X∗ ≤ 1. Hence there is ` ∈ V ∗ such that ‖`‖V ∗ = ‖λ‖X∗ ≤ 1, as well as `(w) = λ(w) = 0
for all w ∈W ⊂ X and `(v) = λ(v) = d since {αx : α ∈ C} ⊂ X.


