Homework set 6 - Solution

Problem 1. (i) Let $w \in \ell^{1}$. Since any $z \in C_{0}$ is bounded, elementary properties of sequences yield $\left|\sum_{n=1}^{\infty} w_{n} z_{n}\right| \leq\|z\|_{\infty}\|w\|_{1}$, where $\|z\|_{\infty}=\sup \left\{\left|z_{n}\right|: n \in \mathbb{N}\right\}$, showing that $T_{w}(z)=\sum_{n=1}^{\infty} w_{n} z_{n}$ is a bounded linear functional on C_{0}. We claim that reciprocally, for any $\lambda \in C_{0}^{*}$, there is a sequence $w \in \ell^{1}$ such that $\lambda(z)=T_{w}(z)$. For any $m \in \mathbb{N}$, let $\delta^{m} \in C_{0}$ be the sequence $\delta_{n}^{m}=\delta_{m, n}$. Let w be the sequence defined by $w_{n}=\lambda\left(\delta^{n}\right)$, and define

$$
\tilde{w}_{n}=\left\{\begin{array}{ll}
\overline{w_{n}} /\left|w_{n}\right| & \text { if } w_{n} \neq 0 \\
0 & \text { otherwise }
\end{array} .\right.
$$

With these definitions, $\sum_{n=1}^{N}\left|w_{n}\right|=\sum_{n=1}^{N} w_{n} \tilde{w}_{n}=\sum_{n=1}^{N} \lambda\left(\delta^{n}\right) \tilde{w}_{n}=\lambda\left(\sum_{n=1}^{N} \tilde{w}_{n} \delta^{n}\right)$ by the linearity of λ. For any fixed $N \in \mathbb{N}, \sum_{n=1}^{N} \tilde{w}_{n} \delta^{n}$ is a linear combination of elements of C_{0}, hence itself in C_{0}, and as such each of its components has magnitude at most equal to 1 . We conclude that $\sum_{n=1}^{N}\left|w_{n}\right| \leq\|\lambda\|$. The sequence $\left(w_{n}\right)_{n \in \mathbb{N}}$ is therefore monotone and bounded, hence convergent, namely $w \in \ell^{1}$. Let $T_{w} \in C_{0}^{*}$ be as in the first part. Clearly $T_{w}\left(\delta^{n}\right)=w_{n}=\lambda\left(\delta^{n}\right)$ and so by linearity $T_{w}(z)=\lambda(z)$ for any sequence with a finite number of nonzero components. But this is a dense set in C_{0}. For $z \in C_{0}$, let $z^{n} \rightarrow z$. Then

$$
\left|T_{w}(z)-\lambda(z)\right| \leq\left|T_{w}(z)-T_{w}\left(z^{n}\right)\right|+\left|T_{w}\left(z^{n}\right)-\lambda\left(z^{n}\right)\right|+\left|\lambda\left(z^{n}\right)-\lambda(z)\right| \leq\left(\left\|T_{w}\right\|-\|\lambda\|\right)\left\|z^{n}-z\right\|_{\infty}
$$

proving that $T_{w}=\lambda$ on C_{0}.
(ii) We first note that the functional $L(z)=\lim _{n \rightarrow \infty} z_{n}$ is in C^{*}. Indeed, $|L(z)|=\left|\lim _{n \rightarrow \infty} z_{n}\right| \leq \sup \left\{\left|z_{n}\right|\right.$: $n \in \mathbb{N}\}=\|z\|_{\infty}$. We now claim that $\lambda \in C^{*}$ if and only if there is $\tau \in \mathbb{C}$ and $w \in \ell^{1}$ such that $\lambda(z)=$ $\tau L(z)+T_{w}(z)$. Let $\lambda \in C^{*}$. The sequences δ^{n} define in (i) are elements of C, and we let again $w_{n}=\lambda\left(\delta^{n}\right)$. As above, $w \in \ell^{1}$, and T_{w} defines a bounded linear functional on C^{*}. Let $\tau=\lambda(1)-\sum_{n=1}^{\infty} z_{n}$, where the series is convergent since it is absolutely convergent and $1 \in C$ denotes the constant sequence $1_{n}=1$ for all $n \in \mathbb{N}$. But

$$
\left(\tau L+T_{w}\right)\left(\delta^{n}\right)=w_{n}=\lambda\left(\delta^{n}\right) \quad \text { and } \quad\left(\tau L+T_{w}\right)(1)=\tau+\sum_{n=1}^{\infty} w_{n}=\lambda(1)
$$

by definition of τ. By linearity, $\left(\tau L+T_{w}\right)(z)=\lambda$ for any z with finitely many different components, and since this is a dense subset of C, we conclude as above that $\tau L+T_{w}=\lambda$ on C. Finally, we note that we proved along the way that $\tau L+T_{w} \in C^{*}$ for any $\tau \in \mathbb{C}$ and $w \in \ell^{1}$, concluding the proof.

Problem 2. (i) If $F, G \in A^{\perp}$ and $\lambda \in \mathbb{C}$, then $(F+\lambda G)(x)=F(x)+\lambda G(x)=0$ showing that A^{\perp} is a linear subspace. Since the norm topology is metric, it is first countable and hence it suffices to prove that the limit of any convergent sequence $\left(F_{n}\right)_{n \in \mathbb{N}}$ in A^{\perp} belongs to A^{\perp}. But that is immediate since $x \in A$ implies that $0=F_{n}(x)$ for all $n \in \mathbb{N}$ and in turn that $F(x)=0$, namely $F \in A^{\perp}$.
(ii) Let F, F^{\prime} both be in $[F]$, namely there is $G \in A^{\perp}$ such that $F^{\prime}=F+G$, and hence $F^{\prime} \upharpoonright_{A}=F \upharpoonright_{A}+G \upharpoonright_{A}=$ $F \upharpoonright_{A}$ so that J is well-defined. Note that J is linear. Now

$$
J([F])=0 \quad \Leftrightarrow \quad F \upharpoonright_{A}=0 \quad \Leftrightarrow \quad F \in A^{\perp} \quad \Leftrightarrow \quad[F]=0
$$

so that J is injective. By Hahn-Banach's theorem any bounded linear functional $f \in A^{*}$ has a bounded linear extension $F \in X^{*}$, showing that J is surjective. We now recall that $\|[F]\|=\inf \{\|G\|: G \in[F]\}$ and that X^{*} / A^{\perp} is complete since X^{*} is Banach and A is closed. For any $G \in A^{\perp}, F \in X^{*}$,

$$
\|F+G\|_{X^{*}}=\sup \left\{|F(x)+G(x)| /\|x\|_{X}: 0 \neq x \in X\right\} \geq \sup \left\{\|F(x)\| /\|x\|_{X}: 0 \neq x \in A\right\}=\left\|F \upharpoonright_{A}\right\|_{A^{*}}
$$

showing that $\|[F]\|_{X^{*} / A^{\perp}} \geq\left\|F \upharpoonright_{A}\right\|_{A^{*}}$. Reciprocally, let $F \in X^{*}$. By Hahn-Banach, its restriction $F \upharpoonright_{A}$ has an extension $G \in X^{*}$ such that $\|G\|_{X^{*}}=\left\|F \upharpoonright_{A}\right\|_{A^{*}}$, and $F-G \in A^{\perp}$ namely $[F]=[G]$. Hence, $\|[F]\|_{X^{*} / A^{\perp}} \leq\|[G]\|_{X^{*}}=\left\|F \upharpoonright_{A}\right\|_{A^{*}}$. Hence J is isometric.

Problem 3. (i) Linearity follows from $\left(T^{\times}(g+\lambda f)\right)(x)=(g+\lambda f)(T(x))=g(T(x))+\lambda f(T(x))=\left(T^{\times} g\right)(x)+$ $\left(T^{\times}(\lambda f)\right)(x)$. In order to prove boundedness, we compute

$$
\left\|T^{\times}\right\|=\sup \left\{\frac{\left\|T^{\times} g\right\|_{V^{*}}}{\|g\|_{W^{*}}}: 0 \neq g \in W^{*}\right\}=\sup _{x \in V} \sup _{g \in W^{*}} \frac{\left|\left(T^{\times} g\right)(x)\right|}{\|x\|_{V}\|g\|_{W^{*}}}=\sup _{x \in V} \sup _{g \in W^{*}} \frac{|g(T(x))|}{\|x\|_{V}\|g\|_{W^{*}}}
$$

By a corollary of Hahn-Banach, $\sup \left\{|g(T(x))| /\|g\|_{W^{*}}: g \in W^{*}\right\}=\|T(x)\|_{V}$, and further $\sup \left\{\|T(x)\|_{V} /\|x\|_{V}\right.$: $v \in V\}=\|T\|$ by definition.
(ii) $g \in \operatorname{Ker}\left(T^{\times}\right)$implies $g(T(x))=0$, namely $g \in \operatorname{Ran}(T)^{\perp}$, proving $\operatorname{Ker}\left(T^{\times}\right) \subset \operatorname{Ran}(T)^{\perp}$. Reciprocally, if $g \in \operatorname{Ran}(T)^{\perp}$, then $\left(T^{\times} g\right)(x)=0$ for all $x \in V$, namely $T^{\times} g=0$, proving $\operatorname{Ker}\left(T^{\times}\right) \supset \operatorname{Ran}(T)^{\perp}$, and hence the claim.
(iii) $x \in \operatorname{Ker}(T)$ implies $\left(T^{\times} g\right)(x)=0$ for all $g \in W^{*}$, namely $x \in \operatorname{Ran}\left(T^{\times}\right)^{\perp}$ showing $\operatorname{Ker}(T) \subset \operatorname{Ran}\left(T^{\times}\right)^{\perp}$. Reciprocally, if $x \in \operatorname{Ker}\left(T^{\times} g\right)$ for all $g \in W^{*}$, then $g(T(x))=0$ for all $g \in W^{*}$. Since bounded linear functionals separate points by Hahn-Banach, this implies that $T(x)=0$, namely $x \in \operatorname{Ker}(T)$ and hence $\operatorname{Ker}(T) \supset \operatorname{Ran}\left(T^{\times}\right)^{\perp}$.
(iv) Immediate from $\left((S T)^{\times} g\right)(x)=g(S T(x))=\left(S^{\times} g\right)(T(x))=\left(T^{\times} S^{\times} g\right)(x)$. Using this with $S=T^{-1}$ proves the second claim.

Problem 4. We apply Hahn-Banach for vector spaces to the subspace $X=\{\alpha v+w: \alpha \in \mathbb{C}, w \in W\}$ and the functional $\lambda(\alpha v+w)=\alpha d$. This is a well-defined functional since a vector in X has a unique decomposition in $\alpha v+w$. It is linear and bounded. Indeed, if $\alpha \neq 0$, then

$$
\lambda(v+w / \alpha)=d=\operatorname{dist}(v, W) \leq\|v-(-w / \alpha)\|
$$

proving that $\|\lambda\|_{X^{*}} \leq 1$. Hence there is $\ell \in V^{*}$ such that $\|\ell\|_{V^{*}}=\|\lambda\|_{X^{*}} \leq 1$, as well as $\ell(w)=\lambda(w)=0$ for all $w \in W \subset X$ and $\ell(v)=\lambda(v)=d$ since $\{\alpha x: \alpha \in \mathbb{C}\} \subset X$.

