MATH 421/510, 2019WT2

Homework set 6 – Solution

Problem 1. (i) Let $w \in \ell^1$. Since any $z \in C_0$ is bounded, elementary properties of sequences yield $|\sum_{n=1}^{\infty} w_n z_n| \leq ||z||_{\infty} ||w||_1$, where $||z||_{\infty} = \sup\{|z_n| : n \in \mathbb{N}\}$, showing that $T_w(z) = \sum_{n=1}^{\infty} w_n z_n$ is a bounded linear functional on C_0 . We claim that reciprocally, for any $\lambda \in C_0^*$, there is a sequence $w \in \ell^1$ such that $\lambda(z) = T_w(z)$. For any $m \in \mathbb{N}$, let $\delta^m \in C_0$ be the sequence $\delta_n^m = \delta_{m,n}$. Let w be the sequence defined by $w_n = \lambda(\delta^n)$, and define

$$\tilde{w}_n = \begin{cases} \overline{w_n}/|w_n| & \text{if } w_n \neq 0\\ 0 & \text{otherwise} \end{cases}$$

With these definitions, $\sum_{n=1}^{N} |w_n| = \sum_{n=1}^{N} w_n \tilde{w}_n = \sum_{n=1}^{N} \lambda(\delta^n) \tilde{w}_n = \lambda\left(\sum_{n=1}^{N} \tilde{w}_n \delta^n\right)$ by the linearity of λ . For any fixed $N \in \mathbb{N}$, $\sum_{n=1}^{N} \tilde{w}_n \delta^n$ is a linear combination of elements of C_0 , hence itself in C_0 , and as such each of its components has magnitude at most equal to 1. We conclude that $\sum_{n=1}^{N} |w_n| \leq ||\lambda||$. The sequence $(w_n)_{n \in \mathbb{N}}$ is therefore monotone and bounded, hence convergent, namely $w \in \ell^1$. Let $T_w \in C_0^*$ be as in the first part. Clearly $T_w(\delta^n) = w_n = \lambda(\delta^n)$ and so by linearity $T_w(z) = \lambda(z)$ for any sequence with a finite number of nonzero components. But this is a dense set in C_0 . For $z \in C_0$, let $z^n \to z$. Then

$$|T_w(z) - \lambda(z)| \le |T_w(z) - T_w(z^n)| + |T_w(z^n) - \lambda(z^n)| + |\lambda(z^n) - \lambda(z)| \le (||T_w|| - ||\lambda||) ||z^n - z||_{\infty},$$

proving that $T_w = \lambda$ on C_0 .

(ii) We first note that the functional $L(z) = \lim_{n \to \infty} z_n$ is in C^* . Indeed, $|L(z)| = |\lim_{n \to \infty} z_n| \leq \sup\{|z_n| : n \in \mathbb{N}\} = \|z\|_{\infty}$. We now claim that $\lambda \in C^*$ if and only if there is $\tau \in \mathbb{C}$ and $w \in \ell^1$ such that $\lambda(z) = \tau L(z) + T_w(z)$. Let $\lambda \in C^*$. The sequences δ^n define in (i) are elements of C, and we let again $w_n = \lambda(\delta^n)$. As above, $w \in \ell^1$, and T_w defines a bounded linear functional on C^* . Let $\tau = \lambda(1) - \sum_{n=1}^{\infty} z_n$, where the series is convergent since it is absolutely convergent and $1 \in C$ denotes the constant sequence $1_n = 1$ for all $n \in \mathbb{N}$. But

$$(\tau L + T_w)(\delta^n) = w_n = \lambda(\delta^n)$$
 and $(\tau L + T_w)(1) = \tau + \sum_{n=1}^{\infty} w_n = \lambda(1)$

by definition of τ . By linearity, $(\tau L + T_w)(z) = \lambda$ for any z with finitely many different components, and since this is a dense subset of C, we conclude as above that $\tau L + T_w = \lambda$ on C. Finally, we note that we proved along the way that $\tau L + T_w \in C^*$ for any $\tau \in \mathbb{C}$ and $w \in \ell^1$, concluding the proof.

Problem 2. (i) If $F, G \in A^{\perp}$ and $\lambda \in \mathbb{C}$, then $(F + \lambda G)(x) = F(x) + \lambda G(x) = 0$ showing that A^{\perp} is a linear subspace. Since the norm topology is metric, it is first countable and hence it suffices to prove that the limit of any convergent sequence $(F_n)_{n \in \mathbb{N}}$ in A^{\perp} belongs to A^{\perp} . But that is immediate since $x \in A$ implies that $0 = F_n(x)$ for all $n \in \mathbb{N}$ and in turn that F(x) = 0, namely $F \in A^{\perp}$.

(ii) Let F, F' both be in [F], namely there is $G \in A^{\perp}$ such that F' = F + G, and hence $F' \upharpoonright_A = F \upharpoonright_A + G \upharpoonright_A = F \upharpoonright_A + G \bowtie_A = F \upharpoonright_A$ so that J is well-defined. Note that J is linear. Now

$$J([F]) = 0 \quad \Leftrightarrow \quad F \upharpoonright_A = 0 \quad \Leftrightarrow \quad F \in A^{\perp} \quad \Leftrightarrow \quad [F] = 0$$

so that J is injective. By Hahn-Banach's theorem any bounded linear functional $f \in A^*$ has a bounded linear extension $F \in X^*$, showing that J is surjective. We now recall that $||[F]|| = \inf\{||G|| : G \in [F]\}$ and that X^*/A^{\perp} is complete since X^* is Banach and A is closed. For any $G \in A^{\perp}, F \in X^*$,

$$\|F + G\|_{X^*} = \sup\{|F(x) + G(x)| / \|x\|_X : 0 \neq x \in X\} \ge \sup\{\|F(x)\| / \|x\|_X : 0 \neq x \in A\} = \|F\upharpoonright_A\|_{A^*}.$$

showing that $\|[F]\|_{X^*/A^{\perp}} \ge \|F \upharpoonright_A \|_{A^*}$. Reciprocally, let $F \in X^*$. By Hahn-Banach, its restriction $F \upharpoonright_A$ has an extension $G \in X^*$ such that $\|G\|_{X^*} = \|F \upharpoonright_A \|_{A^*}$, and $F - G \in A^{\perp}$ namely [F] = [G]. Hence, $\|[F]\|_{X^*/A^{\perp}} \le \|[G]\|_{X^*} = \|F \upharpoonright_A \|_{A^*}$. Hence J is isometric.

Problem 3. (i) Linearity follows from $(T^{\times}(g+\lambda f))(x) = (g+\lambda f)(T(x)) = g(T(x)) + \lambda f(T(x)) = (T^{\times}g)(x) + (T^{\times}(\lambda f))(x)$. In order to prove boundedness, we compute

$$\|T^{\times}\| = \sup\left\{\frac{\|T^{\times}g\|_{V^{*}}}{\|g\|_{W^{*}}} : 0 \neq g \in W^{*}\right\} = \sup_{x \in V} \sup_{g \in W^{*}} \frac{|(T^{\times}g)(x)|}{\|x\|_{V}\|g\|_{W^{*}}} = \sup_{x \in V} \sup_{g \in W^{*}} \frac{|g(T(x))|}{\|x\|_{V}\|g\|_{W^{*}}}$$

By a corollary of Hahn-Banach, $\sup\{|g(T(x))|/||g||_{W^*} : g \in W^*\} = ||T(x)||_V$, and further $\sup\{||T(x)||_V/||x||_V : v \in V\} = ||T||$ by definition.

(ii) $g \in \operatorname{Ker}(T^{\times})$ implies g(T(x)) = 0, namely $g \in \operatorname{Ran}(T)^{\perp}$, proving $\operatorname{Ker}(T^{\times}) \subset \operatorname{Ran}(T)^{\perp}$. Reciprocally, if $g \in \operatorname{Ran}(T)^{\perp}$, then $(T^{\times}g)(x) = 0$ for all $x \in V$, namely $T^{\times}g = 0$, proving $\operatorname{Ker}(T^{\times}) \supset \operatorname{Ran}(T)^{\perp}$, and hence the claim.

(iii) $x \in \operatorname{Ker}(T)$ implies $(T^{\times}g)(x) = 0$ for all $g \in W^*$, namely $x \in \operatorname{Ran}(T^{\times})^{\perp}$ showing $\operatorname{Ker}(T) \subset \operatorname{Ran}(T^{\times})^{\perp}$. Reciprocally, if $x \in \operatorname{Ker}(T^{\times}g)$ for all $g \in W^*$, then g(T(x)) = 0 for all $g \in W^*$. Since bounded linear functionals separate points by Hahn-Banach, this implies that T(x) = 0, namely $x \in \operatorname{Ker}(T)$ and hence $\operatorname{Ker}(T) \supset \operatorname{Ran}(T^{\times})^{\perp}$.

(iv) Immediate from $((ST)^{\times}g)(x) = g(ST(x)) = (S^{\times}g)(T(x)) = (T^{\times}S^{\times}g)(x)$. Using this with $S = T^{-1}$ proves the second claim.

Problem 4. We apply Hahn-Banach for vector spaces to the subspace $X = \{\alpha v + w : \alpha \in \mathbb{C}, w \in W\}$ and the functional $\lambda(\alpha v + w) = \alpha d$. This is a well-defined functional since a vector in X has a unique decomposition in $\alpha v + w$. It is linear and bounded. Indeed, if $\alpha \neq 0$, then

$$\lambda(v + w/\alpha) = d = \operatorname{dist}(v, W) \le \|v - (-w/\alpha)\|,$$

proving that $\|\lambda\|_{X^*} \leq 1$. Hence there is $\ell \in V^*$ such that $\|\ell\|_{V^*} = \|\lambda\|_{X^*} \leq 1$, as well as $\ell(w) = \lambda(w) = 0$ for all $w \in W \subset X$ and $\ell(v) = \lambda(v) = d$ since $\{\alpha x : \alpha \in \mathbb{C}\} \subset X$.