Homework set 5 - Solution

Problem 1. Clearly, C, C_{0} are vector spaces. So we check completeness. Let $\left(z^{n}\right)_{n \in \mathbb{N}}$ be a Cauchy sequence in C, and let $\lim _{j \rightarrow \infty} z_{j}^{n}=Z^{n}$ for any $n \in \mathbb{N}$. First of all,

$$
\left|Z^{n}-Z^{m}\right|=\left|\lim _{j \rightarrow \infty}\left(z_{j}^{n}-z_{j}^{m}\right)\right| \leq \sup \left\{\left|z_{j}^{n}-z_{j}^{m}\right|: j \in \mathbb{N}\right\}=\left\|\left(z^{n}\right)-\left(z^{m}\right)\right\|
$$

so that $\left(Z^{n}\right)_{n \in \mathbb{N}}$ is a Cauchy sequence in \mathbb{C} and hence convergent. Let $Z=\lim _{n \rightarrow \infty} Z^{n}$. Secondly, $\left|z_{j}^{n}-z_{j}^{m}\right| \leq$ $\sup \left\{\left|z_{j}^{n}-z_{j}^{m}\right|: j \in \mathbb{N}\right\}=\left\|\left(z^{n}\right)-\left(z^{m}\right)\right\|$ so that for any fixed $j \in \mathbb{N}$ the sequence $\left(z_{j}^{n}\right)_{n \in \mathbb{N}}$ is a Cauchy sequence in \mathbb{C} and hence convergent. Let $w_{j}=\lim _{n \rightarrow \infty} z_{j}^{n}$. We now claim (a) that $\left(w_{j}\right)_{j \in \mathbb{N}}$ is a convergent sequence, namely $\left(w_{j}\right)_{j \in \mathbb{N}} \in C$ with $\lim _{j \rightarrow \infty} w_{j}=Z$, and (b) that $\lim _{n \rightarrow \infty}\left(z^{n}\right)=\left(w_{j}\right)_{j \in \mathbb{N}}$. (a, b) together conclude the proof in the case C. The case C_{0} follows then by imposing $Z^{n}=0$ for all n and hence $Z=0$.
Proof of (a). Let $\epsilon>0$. There is $m \in \mathbb{N}$ such that $\left|z_{j}^{n}-z_{j}^{m}\right|<\epsilon / 3$ for all $n>m$ and $j \in \mathbb{N}$ as well as $\left|Z^{m}-Z\right|<\epsilon / 3$. Then for all $j \in \mathbb{N}$,

$$
\left|w_{j}-z_{j}^{m}\right|=\lim _{n \rightarrow \infty}\left|z_{j}^{n}-z_{j}^{m}\right| \leq \frac{\epsilon}{3}
$$

Let now N be so that $\left|z_{j}^{m}-Z^{m}\right|<\epsilon / 3$ for all $j>N$. Then

$$
\left|w_{j}-Z\right| \leq\left|w_{j}-z_{j}^{m}\right|+\left|z_{j}^{m}-Z^{m}\right|+\left|Z^{m}-Z\right|<\epsilon
$$

for all $j>N$ indeed.
Proof of (b). Let $\epsilon>0$. There is $N \in \mathbb{N}$ such that $\left\|z^{n}-z^{m}\right\|<\epsilon$ for all $n, m \geq N$. But then

$$
\left\|z^{n}-w\right\|=\sup \left\{\left|z_{j}^{n}-w_{j}\right|: j \in \mathbb{N}\right\}=\sup \left\{\lim _{m \rightarrow \infty}\left|z_{j}^{n}-z_{j}^{m}\right|: j \in \mathbb{N}\right\} \leq \lim _{m \rightarrow \infty}\left\|z^{n}-z^{m}\right\|<\epsilon
$$

for all $n \geq N$.
Problem 2. (i) We first note the following, which is simply a rephrasing of the definition of the essential supremum. For any $\epsilon>0$, we have that $\|g\|_{\infty}+\epsilon \in\{M:|g(x)| \leq M$ for μ-almost every $x \in \Omega\}$, namely there is a set E_{ϵ} of measure zero such that

$$
\sup \left\{|g(x)|: x \in \Omega \backslash E_{\epsilon}\right\} \leq\|g\|_{\infty}+\epsilon
$$

Assume that $\left(f_{n}\right)_{n \in \mathbb{N}}$ converges to f in the $\|\cdot\|_{\infty}$-norm. For each $n \in \mathbb{N}$ there is a set $E_{n} \subset \Omega$ of measure zero such that

$$
\begin{equation*}
\sup \left\{\left|f_{n}(x)-f(x)\right|: x \in \Omega \backslash E_{n}\right\} \leq\left\|f_{n}-f\right\|_{\infty}+\frac{1}{n} \tag{1}
\end{equation*}
$$

The set $E=\bigcup_{n \in \mathbb{N}} E_{n}$ is a countable union of sets of measure zero, hence it is itself a set of measure zero. Furthermore,

$$
\limsup _{n \rightarrow \infty} \sup \left\{\left|f_{n}(x)-f(x)\right|: x \in \Omega \backslash E\right\} \leq \limsup _{n \rightarrow \infty} \sup \left\{\left|f_{n}(x)-f(x)\right|: x \in \Omega \backslash E_{n}\right\}=0
$$

by (1). Thus $\left(f_{n}\right)_{n \in \mathbb{N}}$ converges uniformly to f on $\Omega \backslash E$.
Reciprocally, assume that there is a set $E \subset \Omega$ of measure zero such that $\left(f_{n}\right)_{n \in \mathbb{N}}$ converges uniformly to f on $\Omega \backslash E$. As

$$
\limsup _{n \rightarrow \infty}\left\|f_{n}-f\right\|_{\infty} \leq \limsup _{n \rightarrow \infty} \sup \left\{\left|f_{n}(x)-f(x)\right|: x \in \Omega \backslash E\right\}=0
$$

f_{n} converges to f in the $\|\cdot\|_{\infty}$-norm.
(ii) Let $\epsilon>0$. Let $\delta>0$. Then for any $x \in \Omega$, there is $N(\delta, x)$ such that $\left|f_{n}(x)-f(x)\right|<\delta$ for $n \geq N(\delta, x)$. For $N \in \mathbb{N}$, the sets $S(\delta, N)=\{x \in \Omega: M(\delta, x) \leq N\}$ for a non-decreasing sequence in both δ and N, and let $S(\delta)=\cup_{N \in \mathbb{N}} S(\delta, N)$. By assumption, almost every $x \in \Omega$ belongs to some $S(\delta, N)$, we have that $\mu(S(\delta))=\lim _{N \rightarrow \infty} \mu(S(\delta, N))=\mu(\Omega)$. In particular, for any $\rho>0, \mu(S(\delta, N)) \geq \mu(\Omega)-\rho$ for N large enough. Let now $\left(\delta_{j}\right)_{j \in \mathbb{N}}$ be a sequence of positive numbers tending to zero and let $\left(N_{j}\right)_{j \in \mathbb{N}}$ be so that $\mu\left(S\left(\delta_{j}, N_{j}\right)\right) \geq \mu(\Omega)-2^{-j} \epsilon$. By construction, the set $R_{\epsilon}=\cap_{j \in \mathbb{N}} S\left(\delta_{j}, N_{j}\right)$ is so that $f_{n} \rightarrow f$ uniformly on R_{ϵ}. Moreover,

$$
\mu\left(R_{\epsilon}\right)=\mu\left(\cup_{j \in \mathbb{N}} \Omega \backslash S\left(\delta_{j}, N_{j}\right)\right) \leq \sum_{j=1}^{\infty} 2^{-j} \epsilon=\epsilon
$$

so that R_{ϵ} satisfies the claim. Remark. This is known as Egorov's theorem
Problem 3. (i) The substitution $x \rightarrow z=x / y$ and the scaling property of the kernel K (by y) yield $\int_{0}^{\infty}|K(x, y) f(x)| d x=\int_{0}^{\infty}\left|K(z, 1) f_{z}(y)\right| d z$. Here $f_{z}(y)=f(z y)$ for which $\left\|f_{z}\right\|_{p}=z^{-1 / p}\|f\|_{p}$ by scaling. In particular $y \mapsto\left|K(z, 1) f_{z}(y)\right|$ is in L^{p} and $\int_{0}^{\infty}|K(z, 1)|\left\|f_{z}\right\|_{p} d z=C\|f\|_{p}<\infty$ by the integrability assumption on K. The claim now follows from the generalized Minkowski's inequality, namely $\|T f\|_{p} \leq$ $\int_{0}^{\infty}|K(z, 1)|\left\|f_{z}\right\|_{p} d z=C\|f\|_{p}$.
(ii) The inequality is $\|T f\|_{p}^{p} \leq C^{p}\|f\|_{p}^{p}$ of (i) with the choices

$$
f(x)=\frac{h(x)}{x^{(1+r-p) / p}} \quad K(x, y)=\chi_{\{0<x<y\}}(x, y) \frac{1}{y^{(1+r) / p}} x^{(1+r-p) / p}
$$

On the one hand, this choice gives $(T f)(y)=y^{-(1+r) / p} \int_{0}^{y} h(x) d x$ and $\|T f\|_{p}^{p}$ is the left hand side of the inequality. On the other hand, $\|f\|_{p}^{p}$ is the integral on the right hand side of the inequality. We compute the constant as $C^{p}=\left(\int_{0}^{1} x^{(1+r-p) / p} x^{-1 / p} d x\right)^{p}=(p / r)^{p}$ indeed.
Remark. This is called Hardy's inequality. It is often stated in the case $r=p-1$ and expressed in differential terms:

$$
\int_{0}^{\infty}\left(\frac{g(y)}{y}\right)^{p} d x \leq\left(\frac{p}{p-1}\right)^{p} \int_{0}^{\infty}\left(g^{\prime}(x)\right)^{p} d x
$$

Problem 4. We establish differentiability at $t=0$. Differentiability for any t follows from the argument below upon replacing f with $f+t g$. For any $z, w \in \mathbb{C}$,

$$
\lim _{t \rightarrow 0} t^{-1}|z+t w|^{p}=\left.\frac{d}{d t}(z+t w)^{p / 2}(\bar{z}+t \bar{w})^{p / 2}\right|_{t=0}=\frac{p}{2}|z|^{p-2}(z \bar{w}+\bar{z} w)
$$

which reduces the proof to the exchange of differentiation and integration. The convexity of $x \mapsto|x|^{p}$ for $p \geq 1$ yields

$$
\begin{aligned}
|f+t g|^{p} \leq(1-t)|f|^{p}+t|f+g|^{p} & & (0 \leq t \leq 1) \\
|f+t g|^{p} \leq(1+t)|f|^{p}-t|f-g|^{p} & & (-1 \leq t \leq 0)
\end{aligned}
$$

as well as

$$
|f+t w|^{p} \geq|f|^{p}+t(p / 2)|f|^{p-2}(f \bar{g}+\bar{f} g)
$$

Hence,

$$
\begin{array}{ll}
(p / 2)|f|^{p-2}(f \bar{g}+\bar{f} g) \leq \frac{1}{t}\left(|f(x)+t g(x)|^{p}-|f(x)|^{p}\right) \leq|f(x)+g(x)|^{p}-|f(x)|^{p} & (0<t \leq 1) \\
|f(x)|^{p}-|f(x)-g(x)|^{p} \leq \frac{1}{t}\left(|f(x)+t g(x)|^{p}-|f(x)|^{p}\right) \leq(p / 2)|f|^{p-2}(f \bar{g}+\bar{f} g) & (-1 \leq t<0)
\end{array}
$$

which implies that the limit can be interchanged with the integral by dominated convergence. Indeed, $|f|^{p}$ and $|f \pm g|^{p}$ are integrable, and so is $|f|^{p-2}(f \bar{g}+\bar{f} g)$ by Hölder's inequality:

$$
\left.\left|\int_{\Omega}\right| f\right|^{p-2}(f \bar{g}+\bar{f} g) d \mu \mid \leq 2\|f\|_{p}\|g\|_{p}
$$

