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Homework set 5 – Solution

Problem 1. Clearly, C,C0 are vector spaces. So we check completeness. Let (zn)n∈N be a Cauchy sequence
in C, and let limj→∞ znj = Zn for any n ∈ N. First of all,

|Zn − Zm| = | lim
j→∞

(znj − zmj )| ≤ sup{|znj − zmj | : j ∈ N} = ‖(zn)− (zm)‖,

so that (Zn)n∈N is a Cauchy sequence in C and hence convergent. Let Z = limn→∞ Zn. Secondly, |znj −zmj | ≤
sup{|znj −zmj | : j ∈ N} = ‖(zn)−(zm)‖ so that for any fixed j ∈ N the sequence (znj )n∈N is a Cauchy sequence
in C and hence convergent. Let wj = limn→∞ znj . We now claim (a) that (wj)j∈N is a convergent sequence,
namely (wj)j∈N ∈ C with limj→∞ wj = Z, and (b) that limn→∞(zn) = (wj)j∈N. (a,b) together conclude the
proof in the case C. The case C0 follows then by imposing Zn = 0 for all n and hence Z = 0.
Proof of (a). Let ε > 0. There is m ∈ N such that |znj − zmj | < ε/3 for all n > m and j ∈ N as well as
|Zm − Z| < ε/3. Then for all j ∈ N,

|wj − zmj | = lim
n→∞

|znj − zmj | ≤
ε

3
.

Let now N be so that |zmj − Zm| < ε/3 for all j > N . Then

|wj − Z| ≤ |wj − zmj |+ |zmj − Zm|+ |Zm − Z| < ε

for all j > N indeed.
Proof of (b). Let ε > 0. There is N ∈ N such that ‖zn − zm‖ < ε for all n,m ≥ N . But then

‖zn − w‖ = sup{|znj − wj | : j ∈ N} = sup{ lim
m→∞

|znj − zmj | : j ∈ N} ≤ lim
m→∞

‖zn − zm‖ < ε

for all n ≥ N .

Problem 2. (i) We first note the following, which is simply a rephrasing of the definition of the essential
supremum. For any ε > 0, we have that ‖g‖∞ + ε ∈ {M : |g(x)| ≤ M for µ-almost every x ∈ Ω}, namely
there is a set Eε of measure zero such that

sup{|g(x)| : x ∈ Ω \ Eε} ≤ ‖g‖∞ + ε.

Assume that (fn)n∈N converges to f in the ‖ · ‖∞-norm. For each n ∈ N there is a set En ⊂ Ω of measure
zero such that

sup{|fn(x)− f(x)| : x ∈ Ω \ En} ≤ ‖fn − f‖∞ +
1

n
. (1)

The set E =
⋃
n∈NEn is a countable union of sets of measure zero, hence it is itself a set of measure zero.

Furthermore,

lim sup
n→∞

sup{|fn(x)− f(x)| : x ∈ Ω \ E} ≤ lim sup
n→∞

sup{|fn(x)− f(x)| : x ∈ Ω \ En} = 0

by (1). Thus (fn)n∈N converges uniformly to f on Ω \ E.
Reciprocally, assume that there is a set E ⊂ Ω of measure zero such that (fn)n∈N converges uniformly to f
on Ω \ E. As

lim sup
n→∞

‖fn − f‖∞ ≤ lim sup
n→∞

sup{|fn(x)− f(x)| : x ∈ Ω \ E} = 0,

fn converges to f in the ‖ · ‖∞-norm.



(ii) Let ε > 0. Let δ > 0. Then for any x ∈ Ω, there is N(δ, x) such that |fn(x)− f(x)| < δ for n ≥ N(δ, x).
For N ∈ N, the sets S(δ,N) = {x ∈ Ω : M(δ, x) ≤ N} for a non-decreasing sequence in both δ and N ,
and let S(δ) = ∪N∈NS(δ,N). By assumption, almost every x ∈ Ω belongs to some S(δ,N), we have that
µ(S(δ)) = limN→∞ µ(S(δ,N)) = µ(Ω). In particular, for any ρ > 0, µ(S(δ,N)) ≥ µ(Ω) − ρ for N large
enough. Let now (δj)j∈N be a sequence of positive numbers tending to zero and let (Nj)j∈N be so that
µ(S(δj , Nj)) ≥ µ(Ω) − 2−jε. By construction, the set Rε = ∩j∈NS(δj , Nj) is so that fn → f uniformly on
Rε. Moreover,

µ(Rε) = µ(∪j∈NΩ \ S(δj , Nj)) ≤
∞∑
j=1

2−jε = ε

so that Rε satisfies the claim. Remark. This is known as Egorov’s theorem

Problem 3. (i) The substitution x → z = x/y and the scaling property of the kernel K (by y) yield∫∞
0
|K(x, y)f(x)|dx =

∫∞
0
|K(z, 1)fz(y)|dz. Here fz(y) = f(zy) for which ‖fz‖p = z−1/p‖f‖p by scaling.

In particular y 7→ |K(z, 1)fz(y)| is in Lp and
∫∞

0
|K(z, 1)|‖fz‖pdz = C‖f‖p < ∞ by the integrability

assumption on K. The claim now follows from the generalized Minkowski’s inequality, namely ‖Tf‖p ≤∫∞
0
|K(z, 1)|‖fz‖pdz = C‖f‖p.

(ii) The inequality is ‖Tf‖pp ≤ Cp‖f‖pp of (i) with the choices

f(x) =
h(x)

x(1+r−p)/p K(x, y) = χ{0<x<y}(x, y)
1

y(1+r)/p
x(1+r−p)/p.

On the one hand, this choice gives (Tf)(y) = y−(1+r)/p
∫ y

0
h(x)dx and ‖Tf‖pp is the left hand side of the

inequality. On the other hand, ‖f‖pp is the integral on the right hand side of the inequality. We compute the

constant as Cp = (
∫ 1

0
x(1+r−p)/px−1/pdx)p = (p/r)p indeed.

Remark. This is called Hardy’s inequality. It is often stated in the case r = p−1 and expressed in differential
terms: ∫ ∞

0

(
g(y)

y

)p
dx ≤

(
p

p− 1

)p ∫ ∞
0

(g′(x))p dx

Problem 4. We establish differentiability at t = 0. Differentiability for any t follows from the argument
below upon replacing f with f + tg. For any z, w ∈ C,

lim
t→0

t−1|z + tw|p =
d

dt
(z + tw)p/2(z̄ + tw̄)p/2|t=0 =

p

2
|z|p−2(zw̄ + z̄w)

which reduces the proof to the exchange of differentiation and integration. The convexity of x 7→ |x|p for
p ≥ 1 yields

|f + tg|p ≤ (1− t)|f |p + t|f + g|p (0 ≤ t ≤ 1)

|f + tg|p ≤ (1 + t)|f |p − t|f − g|p (−1 ≤ t ≤ 0)

as well as

|f + tw|p ≥ |f |p + t(p/2)|f |p−2(fḡ + f̄g).

Hence,

(p/2)|f |p−2(fḡ + f̄g) ≤ 1

t
(|f(x) + tg(x)|p − |f(x)|p) ≤ |f(x) + g(x)|p − |f(x)|p (0 < t ≤ 1)

|f(x)|p − |f(x)− g(x)|p ≤ 1

t
(|f(x) + tg(x)|p − |f(x)|p) ≤ (p/2)|f |p−2(fḡ + f̄g) (−1 ≤ t < 0)

which implies that the limit can be interchanged with the integral by dominated convergence. Indeed, |f |p
and |f ± g|p are integrable, and so is |f |p−2(fḡ + f̄g) by Hölder’s inequality:∣∣∣∣∫

Ω

|f |p−2(fḡ + f̄g)dµ

∣∣∣∣ ≤ 2‖f‖p‖g‖p


