Homework set 4 - Solution

Problem 1. The image of a compact set by a continuous function being compact, $\{|f(x)|: x \in M\}$ is a closed and bounded subset of $[0, \infty)$ and so has a well-defined supremum which is in $[0, \infty)$. Hence $\|\cdot\|$ is well-defined, and $\|f\| \geq 0$. Let $f \in C_{\mathbb{C}}(M)$. Then $\|f\|=0$ is equivalent to $\sup \{|f(x)|: x \in M\}=0$, which is equivalent to $|f(x)|=0$ for all $x \in M$, namely $f=0$. Let $\lambda \in \mathbb{C}$. Then $\|\lambda f\|=\sup \{|\lambda f(x)|: x \in M\}=\sup \{|\lambda||f(x)|$: $x \in M\}=|\lambda| \sup \{|f(x)|: x \in M\}=|\lambda|\|f\|$ indeed. Finally, $|f(x)+g(x)| \leq|f(x)|+|g(x)| \leq\|f\|+\|g\|$ for all $x \in M$ implies that $\|f+g\|=\sup \{|f(x)+g(x)|: x \in M\} \leq\|f\|+\|g\|$. Hence $\|\cdot\|$ is a norm. It remains to prove that $C_{\mathbb{C}}(M)$ is complete. Let $\left(f_{n}\right)_{n \in \mathbb{N}}$ be a Cauchy sequence in $C_{\mathbb{C}}(M)$. Since $\left|f_{n}(x)-f_{m}(x)\right| \leq\left\|f_{n}-f_{m}\right\|$ as above, $\left(f_{n}(x)\right)_{n \in \mathbb{N}}$ is a Cauchy sequence in \mathbb{C} for all $x \in M$. Let $f(x)$ be its limit. Now,

$$
\left|f_{n}(x)-f(x)\right|=\lim _{m \rightarrow \infty}\left|f_{n}(x)-f_{m}(x)\right| \leq \sup \left\{\left|f_{n}(x)-f_{m}(x)\right|: m \geq n\right\} \leq \sup \left\{\left\|f_{n}-f_{m}\right\|: m \geq n\right\}
$$

vanishes as $n \rightarrow \infty$ since $\left(f_{n}\right)_{n \in \mathbb{N}}$ is Cauchy. In other words, $\left(f_{n}\right)_{n \in \mathbb{N}}$ converges uniformly to the function f, which is consequently continuous.

Problem 2. (i) Let W be complete. A normed space being a metric space, it is first countable and Hausdorff. Hence $x \in \bar{W}$ implies that there is $\left(x_{n}\right)_{n \in \mathbb{N}}$ in W with $x_{n} \rightarrow x$. In particular, $\left(x_{n}\right)_{n \in \mathbb{N}}$ is a Cauchy sequence in W, hence convergent, say to $y \in W$. But limits are unique in Hausdorff spaces, so that $x=y \in W$ and W is closed. Reciprocally, let W be closed and let $\left(x_{n}\right)_{n \in \mathbb{N}}$ be a Cauchy sequence in W. Since V is complete, $x_{n} \rightarrow x \in V$. But $x \in W$ since W is closed. It follows that any Cauchy sequence in W is convergent in W, namely W is complete.
(ii) The inequality holds if $S=\sum_{i=1}^{n}\left|\lambda_{i}\right|=0$. Assume that $S>0$. By redefining $\lambda_{i} \rightarrow \lambda_{i} / S$, it suffices to consider the case $S=1$. Assume that no such lower bound exists. Then there is a sequence $\left(y_{m}\right)_{m \in \mathbb{N}}$ given by $y_{m}=\sum_{i=1}^{n} \lambda_{i, m} x_{i}$ with $\sum_{i=1}^{n}\left|\lambda_{i, m}\right|=1$ for all $m \in \mathbb{N}$, and such that $y_{m} \rightarrow 0$ as $m \rightarrow \infty$. Since $\left|\lambda_{i, m}\right| \leq 1$ for all (i, m), the bounded sequence $\left(\lambda_{1, m}\right)_{m \in \mathbb{N}}$ in \mathbb{C} has a convergent subsequence with limit λ_{1} and let $\left(y_{m}^{(1)}\right)_{m \in \mathbb{N}}$ be the corresponding subsequence of $\left(y_{m}\right)_{m \in \mathbb{N}}$. Repeating this with $\left(y_{m}^{(1)}\right)_{m \in \mathbb{N}}$ instead of $\left(y_{m}\right)_{m \in \mathbb{N}}$, and then recursively for a total of n times, we obtain a sequence $\left(y_{m}^{(n)}\right)_{m \in \mathbb{N}}$ with $y_{m}^{(n)}=\sum_{i=1}^{n} \lambda_{i, m}^{(n)} x_{i}$ for which $\sum_{i=1}^{n}\left|\lambda_{i, m}^{(n)}\right|=1$ and $\lim _{m \rightarrow \infty} \lambda_{i, m}^{(n)}=\lambda_{i}$ for any $1 \leq i \leq n$. Hence $\lim _{m \rightarrow \infty} y_{m}^{(n)}=\sum_{i=1}^{n} \lambda_{i} x_{i}$. But $\left(y_{m}^{(n)}\right)_{m \in \mathbb{N}}$ being a subsequence of the original $\left(y_{m}\right)_{m \in \mathbb{N}}$, we have that $\sum_{i=1}^{n} \lambda_{i} x_{i}=0$ so that by linear independence $\lambda_{i}=0$ for all $1 \leq i \leq n$, which is a contradiction.
(iii) Let $\left(x_{n}\right)_{n \in \mathbb{N}}$ be a Cauchy sequence in W and let $\lambda_{i, n}$ be the coefficients of x_{n} in the basis. For $\epsilon>0$, there $N \in \mathbb{N}$ such that $k, l \geq N$ implies

$$
\epsilon>\left\|x_{k}-x_{l}\right\|=\left\|\sum_{i=1}^{n}\left(\lambda_{i, k}-\lambda_{i, l}\right) e_{i}\right\| \geq c \sum_{i=1}^{n}\left|\lambda_{i, k}-\lambda_{i, l}\right|
$$

where $c>0$. Hence, for any $1 \leq i \leq n$, the sequence $\left(\lambda_{i, n}\right)_{n \in \mathbb{N}}$ is Cauchy and therefore convergent in \mathbb{C}. Let λ_{i} be its limit, and let $x=\sum_{i=1}^{n} \lambda_{i} e_{i} \in W$. But then $\left\|x_{n}-x\right\| \leq \sum_{i=1}^{n}\left|\lambda_{i, k}-\lambda_{i}\right|\left\|e_{i}\right\| \rightarrow 0$ proving that $\left(x_{n}\right)_{n \in \mathbb{N}}$ is convergent in W, which is what we had set to prove.
Remark. In (i), the proof of (complete \Rightarrow closed) does not use the completeness of V. We conclude that any finite dimensional subspace of a normed vector space is closed.

Problem 3. (i) The metric topology being generated by open balls, it suffice to show that any open ball w.r.t. $\|\cdot\|_{1}$ is contained in an open ball w.r.t. $\|\cdot\|_{2}$ and vice versa. But that is exactly the property defining equivalent norms.
(ii) Let $\left\{e_{1}, \ldots, e_{n}\right\}$ be a basis of V and let $\mathbb{K}=\mathbb{C}$ or $\mathbb{K}=\mathbb{R}$. Let $i: \mathbb{K}^{n} \rightarrow V$ be the linear bijection defined by $i\left(\lambda_{1}, \ldots, \lambda_{n}\right)=\sum_{i=1}^{n} \lambda_{i} e_{i}$. Furthermore, let $\|\cdot\|_{2}: V \rightarrow[0, \infty)$ be defined by $\left\|\sum_{i=1}^{n} \lambda_{i} e_{i}\right\|_{2}=\left(\sum_{i=1}^{n}\left|\lambda_{i}\right|^{2}\right)^{1 / 2}$,
namely $\|i(\underline{\lambda})\|_{2}=\|\underline{\lambda}\|$, where $\|\cdot\|$ is the standard Pythagorean norm in \mathbb{K}^{n}. Hence $\|\cdot\|_{2}$ is a norm on V and i is a bounded bijection from $\left(\mathbb{K}^{n},\|\cdot\|\right)$ to $\left(V,\|\cdot\|_{2}\right)$. It now suffices to prove that any other norm $\|\cdot\|_{1}$ is equivalent to $\|\cdot\|_{2}$. Let $\ell: V \rightarrow[0, \infty)$ (with V equipped with $\|\cdot\|_{2}$) be defined by $\ell(v)=\|v\|_{1}$. Then $v=\sum_{i=1}^{n} \lambda_{i} e_{i}$ and

$$
\|v\|_{1} \leq \sum_{i=1}^{n}\left|\lambda_{i}\right|\left\|e_{i}\right\|_{1} \leq n \max \left\{\left\|e_{i}\right\|_{1}: 1 \leq i \leq n\right\} \max \left\{\left|\lambda_{i}\right|: 1 \leq i \leq n\right\} \leq C\left(\sum_{i=1}^{n}\left|\lambda_{i}\right|^{2}\right)^{1 / 2}=C\|v\|_{2}
$$

where $C=n \max \left\{\left\|e_{i}\right\|_{1}: 1 \leq i \leq n\right\}$, proving that ℓ is a continuous map. Now the image $S \subset V$ by i of the unit sphere is the image of a compact set by a continuous function, hence it is itself compact. It follows that $\ell(S)$ is compact and hence there are $m, M \in[0, \infty)$ such that $m \leq \ell(v) \leq M$ for all $v \in S$. Since $\|v\|_{2} \neq 0$ for all nonzero $v \in V$, we conclude that $m \leq\|v /\| v\left\|_{2}\right\|_{1} \leq M$ for all nonzero $v \in V$, which is the desired equivalence after multiplication by $\|v\|_{2}$.

Problem 4. (i) We first note that $[v]+[w]=[v+w]$ and $[\lambda v]=\lambda[v]$ are well-defined since C is a vector subspace, namely closed under addition and scalar multiplication. Hence, V / C is a vector space. We check the three axioms of the norm.

$$
\begin{aligned}
\|\lambda[v]\| & =\|[\lambda v]\|=\inf \{\|\lambda v+w\|: w \in C\}=\inf \{|\lambda|\|v+w\|: w \in C\}=|\lambda| \inf \{\|w\|: w \in[v]\}=|\lambda|\|[v]\| \\
\|[v+w]\| & =\inf \{\|v+w+2 z\|: z \in C\} \leq \inf \{\|v+z\|+\|w+z\|: z \in C\} \leq\|[v]\|+\|[w]\|
\end{aligned}
$$

while $\|[v]\| \geq 0$, being the infimum over a set of non-negative numbers. It remains to prove the non-degenerate property. If $\|[v]\|=0$, there is a sequence $\left(w_{n}\right)_{n \in \mathbb{N}}$ in C such that $\lim _{n \rightarrow \infty}\left\|v+w_{n}\right\|=0$, namely $\left(-w_{n}\right)_{n \in \mathbb{N}}$ converges to v in V. Since C is closed, we must have $v \in C$, namely $[v]=0$.
(ii) Let $\sum_{n=1}^{\infty}\left\|\left[v_{n}\right]\right\|$ be convergent. For any $n \in \mathbb{N}$, there is $w_{n} \sim v_{n}$ such that $\left\|w_{n}\right\| \leq\left\|\left[v_{n}\right]\right\|+2^{-n}$. Hence $\sum_{n=1}^{\infty}\left\|w_{n}\right\|$ is convergent and so is $\sum_{n=1}^{\infty} w_{n}=w$ since V is complete. Hence,

$$
\left\|[w]-\sum_{n=1}^{N}\left[v_{n}\right]\right\|=\left\|[w]-\sum_{n=1}^{N}\left[w_{n}\right]\right\|=\left\|\left[w-\sum_{n=1}^{N} w_{n}\right]\right\| \leq\left\|w-\sum_{n=1}^{N} w_{n}\right\|
$$

vanishes as $n \rightarrow \infty$, proving that $\sum_{n=1}^{\infty}\left[v_{n}\right]$ is convergent. Hence V / C is complete.
Problem 5. (i) Let us first consider the case $q<\infty$. We write $r=\lambda p+(1-\lambda) q$, where $\lambda=\frac{r-q}{p-q}$ and apply Hölder's inequality to $|f|^{\lambda p}$ and $|f|^{(1-\lambda) q}$ with indices $1 / \lambda, 1 /(1-\lambda)$ to get $\|f\|_{r}^{r} \leq\|f\|_{p}^{\lambda / q}\|f\|_{q}^{(1-\lambda) / q}$. If $q=\infty$, we similarly use Hölder's inequality with $|f|^{p}$ and $|f|^{r-p}$ and indices $1, \infty$ to get $\|f\|_{r}^{r} \leq\|f\|_{p}^{p}\left\||f|^{r-p}\right\|_{\infty}=$ $\|f\|_{p}^{p}\|f\|_{\infty}^{r-p}$.
(ii) By definition, the set $A_{t}=\{x \in \Omega:|f(x)| \geq t\}$ has positive measure for all $t<\|f\|_{\infty}$, and

$$
\|f\|_{q} \geq\left(\int_{A_{t}}|f|^{q} d \mu\right)^{1 / q} \geq t \mu\left(A_{t}\right)^{1 / q}
$$

for any $1 \leq q<\infty$. Hence, $\liminf _{q \rightarrow \infty}\|f\|_{q} \geq t$ and since this holds for any $t<\|f\|_{\infty}$, we conclude that $\liminf _{q \rightarrow \infty}\|f\|_{q} \geq\|f\|_{\infty}$. Now, since $f \in L^{p}(\Omega)$, the last part of (i) yields $\|f\|_{q} \leq\|f\|_{p}^{p / q}\|f\|_{\infty}^{1-p / q}$ for any $q>p$ and hence $\lim \sup _{q \rightarrow \infty}\|f\|_{q} \leq\|f\|_{\infty}$.

