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Homework set 4 – Solution

Problem 1. The image of a compact set by a continuous function being compact, {|f(x)| : x ∈M} is a closed
and bounded subset of [0,∞) and so has a well-defined supremum which is in [0,∞). Hence ‖·‖ is well-defined,
and ‖f‖ ≥ 0. Let f ∈ CC(M). Then ‖f‖ = 0 is equivalent to sup{|f(x)| : x ∈ M} = 0, which is equivalent
to |f(x)| = 0 for all x ∈M , namely f = 0. Let λ ∈ C. Then ‖λf‖ = sup{|λf(x)| : x ∈M} = sup{|λ||f(x)| :
x ∈M} = |λ| sup{|f(x)| : x ∈M} = |λ|‖f‖ indeed. Finally, |f(x)+g(x)| ≤ |f(x)|+ |g(x)| ≤ ‖f‖+‖g‖ for all
x ∈M implies that ‖f+g‖ = sup{|f(x)+g(x)| : x ∈M} ≤ ‖f‖+‖g‖. Hence ‖·‖ is a norm. It remains to prove
that CC(M) is complete. Let (fn)n∈N be a Cauchy sequence in CC(M). Since |fn(x)− fm(x)| ≤ ‖fn − fm‖
as above, (fn(x))n∈N is a Cauchy sequence in C for all x ∈M . Let f(x) be its limit. Now,

|fn(x)− f(x)| = lim
m→∞

|fn(x)− fm(x)| ≤ sup{|fn(x)− fm(x)| : m ≥ n} ≤ sup{‖fn − fm‖ : m ≥ n}

vanishes as n→∞ since (fn)n∈N is Cauchy. In other words, (fn)n∈N converges uniformly to the function f ,
which is consequently continuous.

Problem 2. (i) Let W be complete. A normed space being a metric space, it is first countable and Hausdorff.
Hence x ∈W implies that there is (xn)n∈N in W with xn → x. In particular, (xn)n∈N is a Cauchy sequence
in W , hence convergent, say to y ∈W . But limits are unique in Hausdorff spaces, so that x = y ∈W and W
is closed. Reciprocally, let W be closed and let (xn)n∈N be a Cauchy sequence in W . Since V is complete,
xn → x ∈ V . But x ∈ W since W is closed. It follows that any Cauchy sequence in W is convergent in W ,
namely W is complete.
(ii) The inequality holds if S =

∑n
i=1 |λi| = 0. Assume that S > 0. By redefining λi → λi/S, it suffices to

consider the case S = 1. Assume that no such lower bound exists. Then there is a sequence (ym)m∈N given
by ym =

∑n
i=1 λi,mxi with

∑n
i=1 |λi,m| = 1 for all m ∈ N, and such that ym → 0 as m→∞. Since |λi,m| ≤ 1

for all (i,m), the bounded sequence (λ1,m)m∈N in C has a convergent subsequence with limit λ1 and let

(y
(1)
m )m∈N be the corresponding subsequence of (ym)m∈N. Repeating this with (y

(1)
m )m∈N instead of (ym)m∈N,

and then recursively for a total of n times, we obtain a sequence (y
(n)
m )m∈N with y

(n)
m =

∑n
i=1 λ

(n)
i,mxi for which∑n

i=1 |λ
(n)
i,m| = 1 and limm→∞ λ

(n)
i,m = λi for any 1 ≤ i ≤ n. Hence limm→∞ y

(n)
m =

∑n
i=1 λixi. But (y

(n)
m )m∈N

being a subsequence of the original (ym)m∈N, we have that
∑n
i=1 λixi = 0 so that by linear independence

λi = 0 for all 1 ≤ i ≤ n, which is a contradiction.
(iii) Let (xn)n∈N be a Cauchy sequence in W and let λi,n be the coefficients of xn in the basis. For ε > 0,
there N ∈ N such that k, l ≥ N implies

ε > ‖xk − xl‖ = ‖
n∑
i=1

(λi,k − λi,l)ei‖ ≥ c
n∑
i=1

|λi,k − λi,l|,

where c > 0. Hence, for any 1 ≤ i ≤ n, the sequence (λi,n)n∈N is Cauchy and therefore convergent in C.
Let λi be its limit, and let x =

∑n
i=1 λiei ∈W . But then ‖xn − x‖ ≤

∑n
i=1 |λi,k − λi|‖ei‖ → 0 proving that

(xn)n∈N is convergent in W , which is what we had set to prove.
Remark. In (i), the proof of (complete ⇒ closed) does not use the completeness of V . We conclude that any
finite dimensional subspace of a normed vector space is closed.

Problem 3. (i) The metric topology being generated by open balls, it suffice to show that any open ball
w.r.t. ‖ · ‖1 is contained in an open ball w.r.t. ‖ · ‖2 and vice versa. But that is exactly the property defining
equivalent norms.
(ii) Let {e1, . . . , en} be a basis of V and let K = C or K = R. Let i : Kn → V be the linear bijection defined by
i(λ1, . . . , λn) =

∑n
i=1 λiei. Furthermore, let ‖·‖2 : V → [0,∞) be defined by ‖

∑n
i=1 λiei‖2 = (

∑n
i=1 |λi|2)1/2,



namely ‖i(λ)‖2 = ‖λ‖, where ‖ · ‖ is the standard Pythagorean norm in Kn. Hence ‖ · ‖2 is a norm on V
and i is a bounded bijection from (Kn, ‖ · ‖) to (V, ‖ · ‖2). It now suffices to prove that any other norm ‖ · ‖1
is equivalent to ‖ · ‖2. Let ` : V → [0,∞) (with V equipped with ‖ · ‖2) be defined by `(v) = ‖v‖1. Then
v =

∑n
i=1 λiei and

‖v‖1 ≤
n∑
i=1

|λi|‖ei‖1 ≤ nmax{‖ei‖1 : 1 ≤ i ≤ n}max{|λi| : 1 ≤ i ≤ n} ≤ C(

n∑
i=1

|λi|2)1/2 = C‖v‖2,

where C = nmax{‖ei‖1 : 1 ≤ i ≤ n}, proving that ` is a continuous map. Now the image S ⊂ V by i of the
unit sphere is the image of a compact set by a continuous function, hence it is itself compact. It follows that
`(S) is compact and hence there are m,M ∈ [0,∞) such that m ≤ `(v) ≤ M for all v ∈ S. Since ‖v‖2 6= 0
for all nonzero v ∈ V , we conclude that m ≤ ‖v/‖v‖2‖1 ≤ M for all nonzero v ∈ V , which is the desired
equivalence after multiplication by ‖v‖2.

Problem 4. (i) We first note that [v] + [w] = [v + w] and [λv] = λ[v] are well-defined since C is a vector
subspace, namely closed under addition and scalar multiplication. Hence, V/C is a vector space. We check
the three axioms of the norm.

‖λ[v]‖ = ‖[λv]‖ = inf{‖λv + w‖ : w ∈ C} = inf{|λ|‖v + w‖ : w ∈ C} = |λ| inf{‖w‖ : w ∈ [v]} = |λ|‖[v]‖
‖[v + w]‖ = inf{‖v + w + 2z‖ : z ∈ C} ≤ inf{‖v + z‖+ ‖w + z‖ : z ∈ C} ≤ ‖[v]‖+ ‖[w]‖

while ‖[v]‖ ≥ 0, being the infimum over a set of non-negative numbers. It remains to prove the non-degenerate
property. If ‖[v]‖ = 0, there is a sequence (wn)n∈N in C such that limn→∞ ‖v +wn‖ = 0, namely (−wn)n∈N
converges to v in V . Since C is closed, we must have v ∈ C, namely [v] = 0.
(ii) Let

∑∞
n=1 ‖[vn]‖ be convergent. For any n ∈ N, there is wn ∼ vn such that ‖wn‖ ≤ ‖[vn]‖+ 2−n. Hence∑∞

n=1 ‖wn‖ is convergent and so is
∑∞
n=1 wn = w since V is complete. Hence,

‖[w]−
N∑
n=1

[vn]‖ = ‖[w]−
N∑
n=1

[wn]‖ = ‖[w −
N∑
n=1

wn]‖ ≤ ‖w −
N∑
n=1

wn‖

vanishes as n→∞, proving that
∑∞
n=1[vn] is convergent. Hence V/C is complete.

Problem 5. (i) Let us first consider the case q <∞. We write r = λp+ (1−λ)q, where λ = r−q
p−q and apply

Hölder’s inequality to |f |λp and |f |(1−λ)q with indices 1/λ, 1/(1−λ) to get ‖f‖rr ≤ ‖f‖
λ/q
p ‖f‖(1−λ)/qq . If q =∞,

we similarly use Hölder’s inequality with |f |p and |f |r−p and indices 1,∞ to get ‖f‖rr ≤ ‖f‖pp‖|f |r−p‖∞ =
‖f‖pp‖f‖r−p∞ .
(ii) By definition, the set At = {x ∈ Ω : |f(x)| ≥ t} has positive measure for all t < ‖f‖∞, and

‖f‖q ≥
(∫

At

|f |qdµ
)1/q

≥ tµ(At)
1/q

for any 1 ≤ q < ∞. Hence, lim infq→∞ ‖f‖q ≥ t and since this holds for any t < ‖f‖∞, we conclude that

lim infq→∞ ‖f‖q ≥ ‖f‖∞. Now, since f ∈ Lp(Ω), the last part of (i) yields ‖f‖q ≤ ‖f‖p/qp ‖f‖1−p/q∞ for any
q > p and hence lim supq→∞ ‖f‖q ≤ ‖f‖∞.


