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Homework set 3 – Solution

Problem 1. (i) Let x, x′ ∈ X and y ∈ E. Taking the infimum of d(x, y) ≤ d(x, x′) + d(x′, y) over y ∈ E
implies that dE(x) ≤ d(x, x′) + dE(x′). Combining this inequality with the one obtained by interchanging x
with x′, we conclude that |dE(x)− dE(x′)| ≤ d(x, x′), proving the uniform continuity of dE .
(ii) Since A is closed, x ∈ A ⇔ dA(x) = 0. Since ⇒ is immediate, we prove ⇐. By definition of the
infimum, dA(x) = 0 implies that there is a sequence (xn)n∈N in A such that d(x, xn)→ 0 as n→∞. Hence
x ∈ A = A. Now, since A,B are disjoint, dA(x) + dB(x) > 0 for all x ∈ X, and therefore f is continuous
by (i). Moreover, f(x) = 0 for all x ∈ A and f(x) = 1 for all x ∈ B and 0 ≤ f ≤ 1. In other words,
f provides a a slightly weaker separation of K = B and U = X \ A under weaker assumptions: B is not
compact and supp(f) = X \A.

Problem 2. (i) Let {O1, . . . , ON} be a finite open subcover of K (here we insist with the use of the relative
topology on K). For any 1 ≤ j ≤ N , we define fj : K → [0,∞) by fj(x) = dK\Oj

(x) as in Problem 1. Each
fj is continuous and so is f = f1 ∨ · · · ∨ fN . For any x ∈ K, there is 1 ≤ j0 ≤ N such that x ∈ Oj0 , and
hence there is δx such that Bδx(x) ∩K ⊂ Oj0 . It follows that f(x) ≥ fj0(x) > 0. By continuity, f(K) is a
compact subset of R, and hence 2r = min{f(x) : x ∈ K} > 0. By the definition of f , for any x ∈ K, there
is 1 ≤ i0 ≤ N such that fi0(x) > r, namely Br(x) ∩K ⊂ Oi0 , which is what we had set to prove.
(ii) Apply the above to the cover with one element U ∩K.
Remark. In other words: In a metric space, for any neighbourhood U of a compact set K, the distance
between K and U c is strictly positive.

Problem 3. We first note that

|x| − Pn+1(x) = (|x| − Pn(x))

(
1− |x|+ Pn(x)

2

)
.

Assume that |x| ≤ 1. Then 0 ≤ P0 ≤ |x|. Moreover, 0 ≤ Pn(x) ≤ |x| implies 0 ≤ 1 − |x|+Pn(x)
2 ≤ 1 and

hence 0 ≤ Pn+1(x) ≤ |x|. It follows that 0 ≤ Pn(x) ≤ |x| for all n ∈ N. With this, Pn+1(x) − Pn(x) =
(x2− (Pn(x))2)/2 ≥ 0, so that 0 ≤ Pn(x) ≤ Pn+1(x) ≤ |x| for all n ∈ N. Hence, (Pn(x))n∈N is convergent for
any |x| ≤ 1. The limit L(x) = limn→∞ Pn(x) satisfies 0 = x2 − L(x) and hence L(x) = |x| since L(x) ≥ 0.
The convergence is uniform by Dini’s theorem.
Remark. With this in hand, the proof of Stone-Weierstrass does not require the classical Weirstrass result.

Problem 4. (i) If f is continuous, then for any a ∈ R, both f−1((−∞, a)) and f−1((a,∞)) are open,
proving that f is both l.s.c. and u.s.c. Reciprocally, for any a < b, f−1((a, b)) = f−1((−∞, b))∩ f−1(a,∞)),
which is open if f is both l.s.c. and u.s.c. This proves continuity since {(a, b) : −∞ < a < b < ∞} is a
base for the metric topology on R. Indeed: let B be a base for a topology and assume that f−1(B) is open
for all B ∈ B. Any open set can be written as O = ∪α∈IBα, where Bα ∈ B and so f−1(O) = {x : f(x) ∈
∪α∈IBα} = ∪α∈If−1(Bα) is open.
(ii) If O is open, then

{x ∈ S : χO(x) > a} =


∅ if a ≥ 1

O if 0 ≤ a < 1

S if a < 0

proving that χO is l.s.c. since all three ∅, O, S are open.
(iii) Let C be closed, namely C = Oc where O is open. Then χC(x) = 1 − χO(x) proving that χC is u.s.c
by (ii). Indeed, if f is l.s.c then −f is u.s.c. since {x : f(x) > a} = {x : −f(x) < −a}.



(iv) It suffices to note that {x ∈ S : sup{fα(x) : α ∈ I} > a} = ∪α∈I{x : fα(x) > a}. Hence it is open if all
fα are l.s.c.

Problem 5. (i) Let {Oα : α ∈ I} be an open cover of X × Y . For any (x, y) ∈ X × Y , there is an α(x, y)
such that (x, y) ∈ Oα(x,y). Since simple products of open sets form a base, there are U(x,y) ∈ TX , V(x,y) ∈ TY
such that (x, y) ∈ U(x,y) × V(x,y) ⊂ Oα(x,y). For any fixed x ∈ X, the collection {V(x,y) : y ∈ Y } is an open
cover of Y , from which we extract a finite subcover indexed by {yx,1, . . . , yx,n}. The set Ux = ∩nj=1U(x,yx,j)

is open and contains x. Hence, the collection {Ux : x ∈ X} is an open cover of X, from which we extract
a finite subcover indexed by {x1, . . . , xm}. It follows that {Oα(xi,yxi,j

) : 1 ≤ i ≤ m, 1 ≤ j ≤ n} is a finite
subcover of X × Y .

(ii) Let A = {
∑n
j=1 gj(x)hj(y) : n ∈ N and gj ∈ CR(X), hj ∈ CR(Y ) for all 1 ≤ j ≤ n}. Clearly, A is an

algebra. 1 ∈ A since 1 corresponds to n = 1, g1 = h1 = 1. Let (x, y) 6= (x′, y′), without loss x 6= x′. By
Urysohn’s lemma applied to K = {x} and U = X \ {x′}, there is a function g ∈ CR(X) such that g(x) = 1
and g(x′) = 0. g is identified with a function in A by setting n = 1, h = 1 and hence A separates points.
By (i), X × Y is compact so that A is dense in CR(X,Y ) by Stone-Weierstrass, concluding the proof.


