Homework set 3 - Solution

Problem 1. (i) Let $x, x^{\prime} \in X$ and $y \in E$. Taking the infimum of $d(x, y) \leq d\left(x, x^{\prime}\right)+d\left(x^{\prime}, y\right)$ over $y \in E$ implies that $d_{E}(x) \leq d\left(x, x^{\prime}\right)+d_{E}\left(x^{\prime}\right)$. Combining this inequality with the one obtained by interchanging x with x^{\prime}, we conclude that $\left|d_{E}(x)-d_{E}\left(x^{\prime}\right)\right| \leq d\left(x, x^{\prime}\right)$, proving the uniform continuity of d_{E}.
(ii) Since A is closed, $x \in A \Leftrightarrow d_{A}(x)=0$. Since \Rightarrow is immediate, we prove \Leftarrow. By definition of the infimum, $d_{A}(x)=0$ implies that there is a sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ in A such that $d\left(x, x_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$. Hence $x \in \bar{A}=A$. Now, since A, B are disjoint, $d_{A}(x)+d_{B}(x)>0$ for all $x \in X$, and therefore f is continuous by (i). Moreover, $f(x)=0$ for all $x \in A$ and $f(x)=1$ for all $x \in B$ and $0 \leq f \leq 1$. In other words, f provides a a slightly weaker separation of $K=B$ and $U=X \backslash A$ under weaker assumptions: B is not compact and $\operatorname{supp}(f)=\overline{X \backslash A}$.

Problem 2. (i) Let $\left\{O_{1}, \ldots, O_{N}\right\}$ be a finite open subcover of K (here we insist with the use of the relative topology on $K)$. For any $1 \leq j \leq N$, we define $f_{j}: K \rightarrow[0, \infty)$ by $f_{j}(x)=d_{K \backslash O_{j}}(x)$ as in Problem 1. Each f_{j} is continuous and so is $f=f_{1} \vee \cdots \vee f_{N}$. For any $x \in K$, there is $1 \leq j_{0} \leq N$ such that $x \in O_{j_{0}}$, and hence there is δ_{x} such that $B_{\delta_{x}}(x) \cap K \subset O_{j_{0}}$. It follows that $f(x) \geq f_{j_{0}}(x)>0$. By continuity, $f(K)$ is a compact subset of \mathbb{R}, and hence $2 r=\min \{f(x): x \in K\}>0$. By the definition of f, for any $x \in K$, there is $1 \leq i_{0} \leq N$ such that $f_{i_{0}}(x)>r$, namely $B_{r}(x) \cap K \subset O_{i_{0}}$, which is what we had set to prove.
(ii) Apply the above to the cover with one element $U \cap K$.

Remark. In other words: In a metric space, for any neighbourhood U of a compact set K, the distance between K and U^{c} is strictly positive.

Problem 3. We first note that

$$
|x|-P_{n+1}(x)=\left(|x|-P_{n}(x)\right)\left(1-\frac{|x|+P_{n}(x)}{2}\right)
$$

Assume that $|x| \leq 1$. Then $0 \leq P_{0} \leq|x|$. Moreover, $0 \leq P_{n}(x) \leq|x|$ implies $0 \leq 1-\frac{|x|+P_{n}(x)}{2} \leq 1$ and hence $0 \leq P_{n+1}(x) \leq|x|$. It follows that $0 \leq P_{n}(x) \leq|x|$ for all $n \in \mathbb{N}$. With this, $P_{n+1}(x)-P_{n}(x)=$ $\left(x^{2}-\left(P_{n}(x)\right)^{2}\right) / 2 \geq 0$, so that $0 \leq P_{n}(x) \leq P_{n+1}(x) \leq|x|$ for all $n \in \mathbb{N}$. Hence, $\left(P_{n}(x)\right)_{n \in \mathbb{N}}$ is convergent for any $|x| \leq 1$. The limit $L(x)=\lim _{n \rightarrow \infty} P_{n}(x)$ satisfies $0=x^{2}-L(x)$ and hence $L(x)=|x|$ since $L(x) \geq 0$. The convergence is uniform by Dini's theorem.
Remark. With this in hand, the proof of Stone-Weierstrass does not require the classical Weirstrass result.
Problem 4. (i) If f is continuous, then for any $a \in \mathbb{R}$, both $f^{-1}((-\infty, a))$ and $f^{-1}((a, \infty))$ are open, proving that f is both l.s.c. and u.s.c. Reciprocally, for any $\left.a<b, f^{-1}((a, b))=f^{-1}((-\infty, b)) \cap f^{-1}(a, \infty)\right)$, which is open if f is both l.s.c. and u.s.c. This proves continuity since $\{(a, b):-\infty<a<b<\infty\}$ is a base for the metric topology on \mathbb{R}. Indeed: let \mathcal{B} be a base for a topology and assume that $f^{-1}(B)$ is open for all $B \in \mathcal{B}$. Any open set can be written as $O=\cup_{\alpha \in I} B_{\alpha}$, where $B_{\alpha} \in \mathcal{B}$ and so $f^{-1}(O)=\{x: f(x) \in$ $\left.\cup_{\alpha \in I} B_{\alpha}\right\}=\cup_{\alpha \in I} f^{-1}\left(B_{\alpha}\right)$ is open.
(ii) If O is open, then

$$
\left\{x \in S: \chi_{O}(x)>a\right\}= \begin{cases}\emptyset & \text { if } a \geq 1 \\ O & \text { if } 0 \leq a<1 \\ S & \text { if } a<0\end{cases}
$$

proving that χ_{O} is l.s.c. since all three \emptyset, O, S are open.
(iii) Let C be closed, namely $C=O^{c}$ where O is open. Then $\chi_{C}(x)=1-\chi_{O}(x)$ proving that χ_{C} is u.s.c by (ii). Indeed, if f is l.s.c then $-f$ is u.s.c. since $\{x: f(x)>a\}=\{x:-f(x)<-a\}$.
(iv) It suffices to note that $\left\{x \in S: \sup \left\{f_{\alpha}(x): \alpha \in I\right\}>a\right\}=\cup_{\alpha \in I}\left\{x: f_{\alpha}(x)>a\right\}$. Hence it is open if all f_{α} are l.s.c.

Problem 5. (i) Let $\left\{O_{\alpha}: \alpha \in I\right\}$ be an open cover of $X \times Y$. For any $(x, y) \in X \times Y$, there is an $\alpha(x, y)$ such that $(x, y) \in O_{\alpha(x, y)}$. Since simple products of open sets form a base, there are $U_{(x, y)} \in \mathcal{T}_{X}, V_{(x, y)} \in \mathcal{T}_{Y}$ such that $(x, y) \in U_{(x, y)} \times V_{(x, y)} \subset O_{\alpha(x, y)}$. For any fixed $x \in X$, the collection $\left\{V_{(x, y)}: y \in Y\right\}$ is an open cover of Y, from which we extract a finite subcover indexed by $\left\{y_{x, 1}, \ldots, y_{x, n}\right\}$. The set $U_{x}=\cap_{j=1}^{n} U_{\left(x, y_{x, j}\right)}$ is open and contains x. Hence, the collection $\left\{U_{x}: x \in X\right\}$ is an open cover of X, from which we extract a finite subcover indexed by $\left\{x_{1}, \ldots, x_{m}\right\}$. It follows that $\left\{O_{\alpha\left(x_{i}, y_{x_{i}, j}\right)}: 1 \leq i \leq m, 1 \leq j \leq n\right\}$ is a finite subcover of $X \times Y$.
(ii) Let $\mathcal{A}=\left\{\sum_{j=1}^{n} g_{j}(x) h_{j}(y): n \in \mathbb{N}\right.$ and $g_{j} \in C_{\mathbb{R}}(X), h_{j} \in C_{\mathbb{R}}(Y)$ for all $\left.1 \leq j \leq n\right\}$. Clearly, \mathcal{A} is an algebra. $1 \in \mathcal{A}$ since 1 corresponds to $n=1, g_{1}=h_{1}=1$. Let $(x, y) \neq\left(x^{\prime}, y^{\prime}\right)$, without loss $x \neq x^{\prime}$. By Urysohn's lemma applied to $K=\{x\}$ and $U=X \backslash\left\{x^{\prime}\right\}$, there is a function $g \in C_{\mathbb{R}}(X)$ such that $g(x)=1$ and $g\left(x^{\prime}\right)=0 . g$ is identified with a function in \mathcal{A} by setting $n=1, h=1$ and hence \mathcal{A} separates points. By (i), $X \times Y$ is compact so that \mathcal{A} is dense in $C_{\mathbb{R}}(X, Y)$ by Stone-Weierstrass, concluding the proof.

