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Homework set 2 – Solution

Problem 1. (i) Pick x ∈ X and a sequence (xn)n∈N converging to x. Let O be a neighbourhood of f(x).
Then f−1(Oo) is an open neighbourhood of x in X. Since xn → x, there is n0 such that xn ∈ f−1(Oo) for all
n ≥ n0, namely f(xn) ∈ Oo ⊂ O for all n ≥ n0. Hence f(xn)→ f(x), since this holds for any neighbourhood
of f(x).
(ii) We first note that it suffices to prove that the preimage of any closed set is closed. Indeed if that holds,
then for any open set O ⊂ Y , the set f−1(Y \O) is closed in X, namely X \ f−1(Y \O) = f−1(O) is open,
proving that f is continuous. Let C be closed in Y . Let (xn)n∈N be a convergent sequence in f−1(C) and
let x be its limit. Then (f(xn))n∈N is a sequence in C which converges to f(x) by assumption, and f(x) ∈ C
since C is closed, hence x ∈ f−1(C). Since X is first countable, this proves that f−1(C) = f−1(C), namely
f−1(C) is closed and hence f is continuous.

Problem 2. (i) Assume that f(S1) is disconnected. Then there exist open sets U, V ⊂ S2 such that
f(S1) ⊂ U ∪ V , while f(S1) ∩ U 6= ∅, f(S1) ∩ V 6= ∅ and f(S1) ∩ U ∩ V = ∅. By continuity, U1 = f−1(U)
and V1 = f−1(V ) are open, and their are both nonempty. Now, f(U1) ⊂ U ∩ f(S1), f(V1) ⊂ V ∩ f(S1) are
disjoint since U ∩ V = ∅, hence U1 ∩ V1 = ∅. Moreover, for any x ∈ S1, f(x) ∈ f(S1) ⊂ U ∪ V , showing that
x ∈ U1 ∪ V1, namely S1 = U1 ∪ V1. Hence S1 is disconnected, a contradiction.
(ii) Assume that S1 is not connected, and let U, V be a separation of S1. Let x ∈ U, y ∈ V . Let f : [0, 1]→ S1

be any continuous function such that f(0) = x, f(1) = y. By (i), one of f([0, 1]) ∩ U, f([0, 1]) ∩ V is empty,
which is a contradiction. Hence S1 is not arcwise connected.
(iii) We first prove that S is connected. Assume that it is disconnected. Then there are open sets U, V of R2

such that S ⊂ U∪V , while S∩U 6= ∅, S∩V 6= ∅ and S∩U∩V = ∅. In particular, (0, 0) belongs to only one of
the the two sets S∩U, S∩V , say (0, 0) ∈ U . Let S = S−∪S+∪{(0, 0)}, where S± correspond to s ≷ 0. Since
U is open, there is r > 0 such that Br(0) ⊂ U and hence U ∩S± 6= ∅. Now, f(s) = (s, sin 1/s)) is continuous
from (0,∞) to R2 and since (0,∞) is connected, so is S+ = f((0, 1)) by (i). But S+∩U ∩V ⊂ S∩U ∩V = ∅
and S+ ⊂ S ⊂ U ∪ V imply that S+ ∩ V = ∅. Repeating the argument with (−∞, 0), we conclude that
S− ∩ V = ∅. But (0, 0) /∈ V implies S ∩ V = (S+ ∩ V ) ∪ (S− ∩ V ) = ∅, which is a contradiction.
Reciprocally, assume that S is connected, and let f : [0, 1]→ S be such that f(0) = (0, 0), f(1) = (1, sin(1)).
Since (0, 0) is closed, its preimage is closed and clearly does not contain 1. Hence, M = sup f−1({(0, 0)}) 6= 1.
Since M ∈ f−1({(0, 0)}), we restrict the attention to [M, 1], and rescale to get a new g : [0, 1] → S such
that g(0) = (0, 0), f(1) = (1, sin(1)) and g(λ) 6= (0, 0) for all λ ∈ (0, 1]. The second component g2 of g
is continuous and hence, for any n, there is tn ∈ (0, 1/n) such that g2(tn) = 1. But by continuity again,
1 = limn→∞ g2(tn) = g2(0) = 0, which is a contradiction.

Problem 3. (i) It is clear that ∅, X ∈ T . Let {O1, . . . , ON} be open sets. If ∞ /∈ ∩Nj=1Oj , namely ∃j0
such that ∞ /∈ Oj0 , then ∩Nj=1Oj = S ∩ (∩Nj=1Oj) is an open set of S since it is a finite intersection of

open sets of S. But since ∞ /∈ ∩Nj=1Oj , it is also an open set of X. On the other hand, assume that
∞ ∈ Oj for all 1 ≤ j ≤ N . Then by definition X \ Oj is a compact subset of S, and so is their finite union
∪Nj=1X \ Oj = X \ ∩Nj=1Oj . This shows that the intersection belongs to T since it contains ∞. Let now
{Oα : α ∈ I} be an arbitrary family in T . If ∞ /∈ Oα for all α ∈ I, then ∪α∈IOα is a union of open sets of
S. Since ∞ /∈ ∪α∈IOα it is also open in X. If ∞ ∈ Oα0

for some α0 ∈ I, then X \∪α∈IOα is a closed subset
of the compact X \Oα0

, hence compact. Since ∞ ∈ ∪α∈IOα it is open in X.
(ii) Since X \ S = {∞}, it suffices to show that S is strictly larger than S, and equivalently that S is
not closed. If it were, its complement {∞} would be open, namely X \ {∞} = S would be compact, a
contradiction.
(iii) Let {Oα : α ∈ I} be an open cover of X. There is an α0 ∈ I such that ∞ ∈ Oα0 . In particular,
X \ Oα0

is compact in S and {S ∩ Oα : α 6= α0} is an open cover of X \ Oα0
. Extracting a finite cover

{Oαj
, 1 ≤ j ≤ N}, we conclude that {Oαj

, 0 ≤ j ≤ N} is a finite cover of X.



(iv) Let x 6= y in X. If both are not ∞, then there are disjoint neighbourhoods Ox, Oy ⊂ S of x, y that are
open in S. Hence they are open in X. Let now x =∞, y ∈ S. Since S is locally compact, there is a compact
(in S) neighbourhood Ky of y. Then Oy = N0

y is open in S and hence in X and contains y. Moreover,
Ox = X \Ky is an open (in X) and contains x, and Ox ∩Oy = ∅.
(v) Let f : S → R and y ∈ R. We say limx→∞ f(x) = y if for any ε > 0, there is a compact Kε such that
|y − f(x)| < ε for all x ∈ S \Kε. Claim: f has a continuous extension to X iff limx→∞ f(x) exists. Let us
first assume that the limit exists and call that limit y. Then the function g defined by g(x) = f(x)(x ∈ S)
and g(∞) = y is a continuous extension of f . We only need to check continuity for open sets O 3 ∞. Then
by definition of the limit, there is a compact set KO such that f(S \KO) ⊂ O, namely S \KO ⊂ f−1(O) and
S \ f−1(O) ⊂ KO. But f−1(O) being open implies that S \ f−1(O) is a closed subset of a compact set and
it is therefore compact. But g−1(O) = {∞} ∪ f−1(O) so that X \ g−1(O) = S \ f−1(O) is compact, proving
that g−1(O) is open. Reciprocally, we assume that f has a continuous extension g to X. Let y = g(∞).
Then for any ε > 0, the continuity of g implies that g−1((y − ε, y + ε)) = {∞} ∪ f−1((y − ε, y + ε)) is open
in X, namely its complement in X, Kε = f−1((y − ε, y + ε)) is compact. But that is exactly the definition
of limx→∞ f(x) = y.

Problem 4. (i) Let D = {x ∈ X : f(x) = g(x)}. We assume that f 6= g and show that D is not
dense. Let x0 be so that f(x0) ≤ g(x0). Since Y is Hausdorff, there are disjoint open sets Of , Og with
f(x0) ∈ Of , g(x0) ∈ Og. By continuity, O = f−1(Of ) ∩ g−1(Og) is open in X, and nonempty since x0 ∈ O.
Now, f(O) ⊂ Of and g(O) ⊂ Og are disjoint, namely f(x) 6= g(x) for all x ∈ O. In other words O ∩D = ∅
and hence D ⊂ X \O, which is closed, so that D ⊂ X \O 6= X.
(ii) Since f−1(∅) = ∅ and by definition f−1(Y ) = Y , both of which are open, f is continuous.
(iii) Let f : R→ Y be the indicator function of Q, which is continuous when Y is equipped with the trivial
topology, and let g = 1. Then f and g agree on the dense set Q, but they are not equal. Of course, this is
because Y is not Hausdorff.


