Homework set 2 - Solution

Problem 1. (i) Pick $x \in X$ and a sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ converging to x. Let O be a neighbourhood of $f(x)$. Then $f^{-1}\left(O^{o}\right)$ is an open neighbourhood of x in X. Since $x_{n} \rightarrow x$, there is n_{0} such that $x_{n} \in f^{-1}\left(O^{o}\right)$ for all $n \geq n_{0}$, namely $f\left(x_{n}\right) \in O^{o} \subset O$ for all $n \geq n_{0}$. Hence $f\left(x_{n}\right) \rightarrow f(x)$, since this holds for any neighbourhood of $f(x)$.
(ii) We first note that it suffices to prove that the preimage of any closed set is closed. Indeed if that holds, then for any open set $O \subset Y$, the set $f^{-1}(Y \backslash O)$ is closed in X, namely $X \backslash f^{-1}(Y \backslash O)=f^{-1}(O)$ is open, proving that f is continuous. Let C be closed in Y. Let $\left(x_{n}\right)_{n \in \mathbb{N}}$ be a convergent sequence in $f^{-1}(C)$ and let x be its limit. Then $\left(f\left(x_{n}\right)\right)_{n \in \mathbb{N}}$ is a sequence in C which converges to $f(x)$ by assumption, and $f(x) \in C$ since C is closed, hence $x \in f^{-1}(C)$. Since X is first countable, this proves that $\overline{f^{-1}(C)}=f^{-1}(C)$, namely $f^{-1}(C)$ is closed and hence f is continuous.

Problem 2. (i) Assume that $f\left(S_{1}\right)$ is disconnected. Then there exist open sets $U, V \subset S_{2}$ such that $f\left(S_{1}\right) \subset U \cup V$, while $f\left(S_{1}\right) \cap U \neq \emptyset, f\left(S_{1}\right) \cap V \neq \emptyset$ and $f\left(S_{1}\right) \cap U \cap V=\emptyset$. By continuity, $U_{1}=f^{-1}(U)$ and $V_{1}=f^{-1}(V)$ are open, and their are both nonempty. Now, $f\left(U_{1}\right) \subset U \cap f\left(S_{1}\right), f\left(V_{1}\right) \subset V \cap f\left(S_{1}\right)$ are disjoint since $U \cap V=\emptyset$, hence $U_{1} \cap V_{1}=\emptyset$. Moreover, for any $x \in S_{1}, f(x) \in f\left(S_{1}\right) \subset U \cup V$, showing that $x \in U_{1} \cup V_{1}$, namely $S_{1}=U_{1} \cup V_{1}$. Hence S_{1} is disconnected, a contradiction.
(ii) Assume that S_{1} is not connected, and let U, V be a separation of S_{1}. Let $x \in U, y \in V$. Let $f:[0,1] \rightarrow S_{1}$ be any continuous function such that $f(0)=x, f(1)=y$. By (i), one of $f([0,1]) \cap U, f([0,1]) \cap V$ is empty, which is a contradiction. Hence S_{1} is not arcwise connected.
(iii) We first prove that S is connected. Assume that it is disconnected. Then there are open sets U, V of \mathbb{R}^{2} such that $S \subset U \cup V$, while $S \cap U \neq \emptyset, S \cap V \neq \emptyset$ and $S \cap U \cap V=\emptyset$. In particular, (0,0$)$ belongs to only one of the the two sets $S \cap U, S \cap V$, say $(0,0) \in U$. Let $S=S_{-} \cup S_{+} \cup\{(0,0)\}$, where $S_{ \pm}$correspond to $s \gtrless 0$. Since U is open, there is $r>0$ such that $B_{r}(0) \subset U$ and hence $U \cap S_{ \pm} \neq \emptyset$. Now, $\left.f(s)=(s, \sin 1 / s)\right)$ is continuous from $(0, \infty)$ to \mathbb{R}^{2} and since $(0, \infty)$ is connected, so is $S_{+}=f((0,1))$ by (i). But $S_{+} \cap U \cap V \subset S \cap U \cap V=\emptyset$ and $S_{+} \subset S \subset U \cup V$ imply that $S_{+} \cap V=\emptyset$. Repeating the argument with $(-\infty, 0)$, we conclude that $S_{-} \cap V=\emptyset$. But $(0,0) \notin V$ implies $S \cap V=\left(S_{+} \cap V\right) \cup\left(S_{-} \cap V\right)=\emptyset$, which is a contradiction.
Reciprocally, assume that S is connected, and let $f:[0,1] \rightarrow S$ be such that $f(0)=(0,0), f(1)=(1, \sin (1))$. Since $(0,0)$ is closed, its preimage is closed and clearly does not contain 1 . Hence, $M=\sup f^{-1}(\{(0,0)\}) \neq 1$. Since $M \in f^{-1}(\{(0,0)\})$, we restrict the attention to $[M, 1]$, and rescale to get a new $g:[0,1] \rightarrow S$ such that $g(0)=(0,0), f(1)=(1, \sin (1))$ and $g(\lambda) \neq(0,0)$ for all $\lambda \in(0,1]$. The second component g_{2} of g is continuous and hence, for any n, there is $t_{n} \in(0,1 / n)$ such that $g_{2}\left(t_{n}\right)=1$. But by continuity again, $1=\lim _{n \rightarrow \infty} g_{2}\left(t_{n}\right)=g_{2}(0)=0$, which is a contradiction.

Problem 3. (i) It is clear that $\emptyset, X \in \mathcal{T}$. Let $\left\{O_{1}, \ldots, O_{N}\right\}$ be open sets. If $\infty \notin \cap_{j=1}^{N} O_{j}$, namely $\exists j_{0}$ such that $\infty \notin O_{j_{0}}$, then $\cap_{j=1}^{N} O_{j}=S \cap\left(\cap_{j=1}^{N} O_{j}\right)$ is an open set of S since it is a finite intersection of open sets of S. But since $\infty \notin \cap_{j=1}^{N} O_{j}$, it is also an open set of X. On the other hand, assume that $\infty \in O_{j}$ for all $1 \leq j \leq N$. Then by definition $X \backslash O_{j}$ is a compact subset of S, and so is their finite union $\cup_{j=1}^{N} X \backslash O_{j}=X \backslash \cap_{j=1}^{N} O_{j}$. This shows that the intersection belongs to \mathcal{T} since it contains ∞. Let now $\left\{O_{\alpha}: \alpha \in I\right\}$ be an arbitrary family in \mathcal{T}. If $\infty \notin O_{\alpha}$ for all $\alpha \in I$, then $\cup_{\alpha \in I} O_{\alpha}$ is a union of open sets of S. Since $\infty \notin \cup_{\alpha \in I} O_{\alpha}$ it is also open in X. If $\infty \in O_{\alpha_{0}}$ for some $\alpha_{0} \in I$, then $X \backslash \cup_{\alpha \in I} O_{\alpha}$ is a closed subset of the compact $X \backslash O_{\alpha_{0}}$, hence compact. Since $\infty \in \cup_{\alpha \in I} O_{\alpha}$ it is open in X.
(ii) Since $X \backslash S=\{\infty\}$, it suffices to show that \bar{S} is strictly larger than S , and equivalently that S is not closed. If it were, its complement $\{\infty\}$ would be open, namely $X \backslash\{\infty\}=S$ would be compact, a contradiction.
(iii) Let $\left\{O_{\alpha}: \alpha \in I\right\}$ be an open cover of X. There is an $\alpha_{0} \in I$ such that $\infty \in O_{\alpha_{0}}$. In particular, $X \backslash O_{\alpha_{0}}$ is compact in S and $\left\{S \cap O_{\alpha}: \alpha \neq \alpha_{0}\right\}$ is an open cover of $X \backslash O_{\alpha_{0}}$. Extracting a finite cover $\left\{O_{\alpha_{j}}, 1 \leq j \leq N\right\}$, we conclude that $\left\{O_{\alpha_{j}}, 0 \leq j \leq N\right\}$ is a finite cover of X.
(iv) Let $x \neq y$ in X. If both are not ∞, then there are disjoint neighbourhoods $O_{x}, O_{y} \subset S$ of x, y that are open in S. Hence they are open in X. Let now $x=\infty, y \in S$. Since S is locally compact, there is a compact (in S) neighbourhood K_{y} of y. Then $O_{y}=N_{y}^{0}$ is open in S and hence in X and contains y. Moreover, $O_{x}=X \backslash K_{y}$ is an open (in X) and contains x, and $O_{x} \cap O_{y}=\emptyset$.
(v) Let $f: S \rightarrow \mathbb{R}$ and $y \in \mathbb{R}$. We say $\lim _{x \rightarrow \infty} f(x)=y$ if for any $\epsilon>0$, there is a compact K_{ϵ} such that $|y-f(x)|<\epsilon$ for all $x \in S \backslash K_{\epsilon}$. Claim: f has a continuous extension to X iff $\lim _{x \rightarrow \infty} f(x)$ exists. Let us first assume that the limit exists and call that limit y. Then the function g defined by $g(x)=f(x)(x \in S)$ and $g(\infty)=y$ is a continuous extension of f. We only need to check continuity for open sets $O \ni \infty$. Then by definition of the limit, there is a compact set K_{O} such that $f\left(S \backslash K_{O}\right) \subset O$, namely $S \backslash K_{O} \subset f^{-1}(O)$ and $S \backslash f^{-1}(O) \subset K_{O}$. But $f^{-1}(O)$ being open implies that $S \backslash f^{-1}(O)$ is a closed subset of a compact set and it is therefore compact. But $g^{-1}(O)=\{\infty\} \cup f^{-1}(O)$ so that $X \backslash g^{-1}(O)=S \backslash f^{-1}(O)$ is compact, proving that $g^{-1}(O)$ is open. Reciprocally, we assume that f has a continuous extension g to X. Let $y=g(\infty)$. Then for any $\epsilon>0$, the continuity of g implies that $g^{-1}((y-\epsilon, y+\epsilon))=\{\infty\} \cup f^{-1}((y-\epsilon, y+\epsilon))$ is open in X, namely its complement in $X, K_{\epsilon}=f^{-1}((y-\epsilon, y+\epsilon))$ is compact. But that is exactly the definition of $\lim _{x \rightarrow \infty} f(x)=y$.

Problem 4. (i) Let $D=\{x \in X: f(x)=g(x)\}$. We assume that $f \neq g$ and show that D is not dense. Let x_{0} be so that $f\left(x_{0}\right) \leq g\left(x_{0}\right)$. Since Y is Hausdorff, there are disjoint open sets O_{f}, O_{g} with $f\left(x_{0}\right) \in O_{f}, g\left(x_{0}\right) \in O_{g}$. By continuity, $O=f^{-1}\left(O_{f}\right) \cap g^{-1}\left(O_{g}\right)$ is open in X, and nonempty since $x_{0} \in O$. Now, $f(O) \subset O_{f}$ and $g(O) \subset O_{g}$ are disjoint, namely $f(x) \neq g(x)$ for all $x \in O$. In other words $O \cap D=\emptyset$ and hence $D \subset X \backslash O$, which is closed, so that $\bar{D} \subset X \backslash O \neq X$.
(ii) Since $f^{-1}(\emptyset)=\emptyset$ and by definition $f^{-1}(Y)=Y$, both of which are open, f is continuous.
(iii) Let $f: \mathbb{R} \rightarrow Y$ be the indicator function of \mathbb{Q}, which is continuous when Y is equipped with the trivial topology, and let $g=1$. Then f and g agree on the dense set \mathbb{Q}, but they are not equal. Of course, this is because Y is not Hausdorff.

