MATH 421/510, 2019WT2

Homework set 11 -Solution

Problem 1. Denote $a_1 = \sup_{n \in \mathbb{N}} \sum_{m \in \mathbb{N}} |A(n,m)|$ and $a_2 = \sup_{m \in \mathbb{N}} \sum_{n \in \mathbb{N}} |A(n,m)|$ Then, by the Cauchy-Schwarz inequality, for each fixed $n \in \mathbb{N}$,

$$|(Ab)_n| \le \sum_{m \in \mathbb{N}} |A(n,m)b_m| \le \sqrt{a_1} \Big(\sum_{m \in \mathbb{N}} |A(n,m)| |b_m|^2 \Big)^{1/2}$$

Hence

$$|Ab||^{2} = \sum_{n \in \mathbb{N}} |(Ab)_{n}|^{2} \le a_{1} \sum_{n \in \mathbb{N}} \sum_{m \in \mathbb{N}} |A(n,m)| |b_{m}|^{2} \le a_{1}a_{2} \sum_{m \in \mathbb{N}} |b_{m}|^{2} = a_{1}a_{2} ||b||^{2}$$

proving that A is a bounded operator on ℓ^2 with $||A|| \leq \sqrt{a_1 a_2}$.

Problem 2. (i) ' \Rightarrow ', by contradiction: We assume that there is $\epsilon_0 > 0$ such that $\mu\{x \in X : |f(x) - \lambda| < 0\}$ $\epsilon_0 \} = 0$. Then $|f(x) - \lambda| \ge \epsilon_0$ for μ almost all $x \in X$ so that the operator of multiplication by $(f(x) - \lambda)^{-1}$ is bounded by ϵ_0^{-1} . Clearly, this is also the inverse of T_f . Hence $\lambda \notin \sigma(T_f)$.

' \Leftarrow ', by contradiction: We assume that $\lambda \notin \sigma(T_f)$. Then $T_f - \lambda 1$ is invertible with bounded inverse and we denote $M = ||(T_f - \lambda 1)^{-1}||$. Let S be a set of finite positive measure such that $|f(x) - \lambda| < (2M)^{-1}$ for every $x \in S$. Its characteristic function has finite L^2 norm, namely $\|\chi_S\|_2^2 = \mu(S)$. But then

$$||(T_f - \lambda 1)\chi_S||_2 \le (2M)^{-1}\sqrt{\mu(S)} = (2M)^{-1}||\chi_S||_2.$$

Let now $g = (T_f - \lambda 1)\chi_S$. It follows that

$$||(T_f - \lambda 1)^{-1}g||_2 = ||\chi_s||_2 \ge 2M ||(T_f - \lambda 1)\chi_S||_2 = 2M ||g||_2$$

which is a contradiction with the definition of M.

(ii) ' \Rightarrow ': Let $0 \neq g_{\lambda} \in \mathcal{H}$ be such that $T_f g_{\lambda} = \lambda g_{\lambda}$. This implies that $(f(x) - \lambda)g_{\lambda}(x) = 0$ for μ almost every $x \in X$. Assume now that $\mu\{x \in X : | f(x) = \lambda\} = 0$. Then $g_{\lambda}(x) = 0$ for μ almost every $x \in X$, namely $g_{\lambda} = 0$ as an L^2 function, contradiction.

' \leftarrow ': Let S be a set of finite positive measure such that $f(x) = \lambda$ for every $x \in S$. Then χ_S is a non-zero L^2 function, but $(f(x) - \lambda)\chi_S(x) = 0$ for all $s \in S$, namely $\lambda \in \sigma(T_f)$.

(iii) Since $\{x \in (0,1) : x = \lambda\}$ is either $\{\lambda\}$ if $\lambda \in (0,1)$ or \emptyset otherwise, the conclude by (ii) that the multiplication operator by x has no eigenvalue. However, if $\lambda \in [0,1]$, then for $\epsilon > 0$, $\{x \in (0,1) : |x\lambda| < 0\}$ $\epsilon = (\lambda - \epsilon, \lambda + \epsilon)$, which has finite measure. If $\lambda \notin (0, 1)$, the measure of the corresponding set vanishes for ϵ small enough. Hence $\sigma(T_f) = [0, 1]$.

Problem 3. (i) First, we check that $\{\varphi_n : n \in \mathbb{Z}\}$ is an orthonormal set in $L^2([0, 2\pi])$. If m and n are distinct integers,

$$\langle \varphi_n, \varphi_m \rangle = \frac{1}{2\pi} \int_0^{2\pi} e^{i(n-m)\theta} d\theta = \frac{1}{2\pi i(n-m)} e^{i(n-m)\theta} \Big|_0^{2\pi} = 0$$

since e^{it} is periodic of period 2π . Thus, when m and n are distinct integers, φ_n and φ_m are orthogonal. If n is any integer,

$$\langle \varphi_n, \varphi_n \rangle = \frac{1}{2\pi} \int_0^{2\pi} e^{i(n-n)\theta} d\theta = \frac{1}{2\pi} \int_0^{2\pi} d\theta = 1.$$

Thus, when n is an integer, φ_n is normalized. Hence by Bessel's inequality $\sum_{j=n}^m |c_j|^2 \le ||f||_2^2 < \infty$ for any integers n < m. This implies $\lim_{n \to \infty} c_{\pm n} = 0$.

(ii) We compute

$$S_N(\theta) = \frac{1}{2\pi} \sum_{n=-N}^{N} e^{in\theta} \int_0^{2\pi} f(x) e^{-inx} dx = \frac{1}{2\pi} \int_0^{2\pi} f(x) \sum_{n=-N}^{N} e^{in(\theta-x)} dx$$

Now the sum is the difference of two partial sums of geometric series, namely

$$\sum_{n=-N}^{N} e^{in(\theta-x)} = \frac{e^{-iN(\theta-x)} - e^{i(N+1)(\theta-x)}}{1 - e^{i(\theta-x)}} = \frac{\sin((N+1/2)(\theta-x))}{\sin\frac{\theta-x}{2}}$$

It remains to plug this in the expression above, make the change of variables $x \to x + \theta$, and use the periodicity of the integrand to restore the limits of integration.

Problem 4. (i) First of all, we note that by (i) of Problem 3,

$$\frac{1}{2\pi} \int_0^{2\pi} \frac{\sin((N+1/2)x)}{\sin(x/2)} dx = \sum_{n=-N}^N \frac{1}{2\pi} \int_0^{2\pi} e^{inx} dx = 1.$$

so that using (ii) of Problem 3,

$$S_N(\theta) - f(\theta) = \frac{1}{2\pi} \int_0^{2\pi} (f(x+\theta) - f(\theta)) \frac{\sin((N+1/2)x)}{\sin(x/2)} dx = \langle \varphi_{-N}, g \rangle - \langle \varphi_N, h \rangle$$

where φ_N were defined in Problem 3, and

$$g(x) = e^{ix/2} \frac{f(x+\theta) - f(\theta)}{2\sqrt{2\pi}i\sin(x/2)}, \qquad h(x) = e^{-ix/2} \frac{f(x+\theta) - f(\theta)}{2\sqrt{2\pi}i\sin(x/2)}.$$

Since g, h are continuous periodic functions, they belong to $L^2([0, 2\pi])$, and we conclude by Problem 3(i) that $\lim_{N\to\infty} \langle \varphi_{-N}, g \rangle = 0 = \lim_{N\to\infty} \langle \varphi_N, h \rangle$, which yields the claim. Continuity follows from the fact that $\lim_{x\to 0} \frac{\sin(x/2)}{x/2} = 1$ and the observation that $\frac{f(x+\theta)-f(\theta)}{x} = \int_0^1 f'(\theta+tx)dt$, since the right hand side it continuous by assumption.

(ii) Convergence of $\sum |b_n|^2$ is again by Bessel's inequality with $||f'||_2^2 < \infty$. Moreover,

$$b_n = \frac{1}{\sqrt{2\pi}} \int_0^{2\pi} e^{-inx} f'(x) dx = \frac{1}{\sqrt{2\pi}} \int_0^{2\pi} ine^{-inx} f(x) dx = inc_n$$

where we integrated by parts and used periodicity to cancel out the boundary terms. This proves the second claim.

(iii) By Hölder's inequality, $\sum_{n \in \mathbb{Z}} |c_n| = |c_0| + \sum_{n \neq 0} \frac{1}{n} |nc_n| \le |c_0| + \left(\sum_{n \neq 0} \frac{1}{n^2}\right)^{1/2} \left(\sum_{n \neq 0} n^2 |c_n|^2\right)^{1/2}$, which is convergent.

(iv) By the above, $S_N(\theta) = \sum_{n \in \mathbb{Z}} c_n \varphi_n(\theta)$ converges uniformly. By (i) the limit is $f(\theta)$ indeed.