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Homework set 11 – Solution

Problem 1. Denote a1 = supn∈N
∑
m∈N |A(n,m)| and a2 = supm∈N

∑
n∈N |A(n,m)| Then, by the Cauchy-

Schwarz inequality, for each fixed n ∈ N,

|(Ab)n| ≤
∑
m∈N
|A(n,m)bm| ≤

√
a1

( ∑
m∈N
|A(n,m)||bm|2

)1/2
Hence

‖Ab‖2 =
∑
n∈N
|(Ab)n|2 ≤ a1

∑
n∈N

∑
m∈N
|A(n,m)||bm|2 ≤ a1a2

∑
m∈N
|bm|2 = a1a2‖b‖2

proving that A is a bounded operator on `2 with ‖A‖ ≤ √a1a2.

Problem 2. (i) ‘⇒’, by contradiction: We assume that there is ε0 > 0 such that µ{x ∈ X : |f(x) − λ| <
ε0} = 0. Then |f(x)− λ| ≥ ε0 for µ almost all x ∈ X so that the operator of multiplication by (f(x)− λ)−1

is bounded by ε−10 . Clearly, this is also the inverse of Tf . Hence λ /∈ σ(Tf ).
‘⇐’, by contradiction: We assume that λ /∈ σ(Tf ). Then Tf − λ1 is invertible with bounded inverse and we
denote M = ‖(Tf − λ1)−1‖. Let S be a set of finite positive measure such that |f(x) − λ| < (2M)−1 for
every x ∈ S. Its characteristic function has finite L2 norm, namely ‖χS‖22 = µ(S). But then

‖(Tf − λ1)χS‖2 ≤ (2M)−1
√
µ(S) = (2M)−1‖χS‖2.

Let now g = (Tf − λ1)χS . It follows that

‖(Tf − λ1)−1g‖2 = ‖χs‖2 ≥ 2M‖(Tf − λ1)χS‖2 = 2M‖g‖2

which is a contradiction with the definition of M .
(ii) ‘⇒’: Let 0 6= gλ ∈ H be such that Tfgλ = λgλ. This implies that (f(x) − λ)gλ(x) = 0 for µ almost
every x ∈ X. Assume now that µ{x ∈ X : |f(x) = λ} = 0. Then gλ(x) = 0 for µ almost every x ∈ X,
namely gλ = 0 as an L2 function, contradiction.
‘⇐’: Let S be a set of finite positive measure such that f(x) = λ for every x ∈ S. Then χS is a non-zero L2

function, but (f(x)− λ)χS(x) = 0 for all s ∈ S, namely λ ∈ σ(Tf ).
(iii) Since {x ∈ (0, 1) : x = λ} is either {λ} if λ ∈ (0, 1) or ∅ otherwise, the conclude by (ii) that the
multiplication operator by x has no eigenvalue. However, if λ ∈ [0, 1], then for ε > 0, {x ∈ (0, 1) : |xλ| <
ε} = (λ− ε, λ+ ε), which has finite measure. If λ /∈ (0, 1), the measure of the corresponding set vanishes for
ε small enough. Hence σ(Tf ) = [0, 1].

Problem 3. (i) First, we check that {ϕn : n ∈ Z} is an orthonormal set in L2([0, 2π]). If m and n are
distinct integers,

〈ϕn, ϕm〉 =
1

2π

∫ 2π

0

ei(n−m)θ dθ =
1

2πi(n−m)
ei(n−m)θ

∣∣2π
0

= 0

since eit is periodic of period 2π. Thus, when m and n are distinct integers, ϕn and ϕm are orthogonal. If
n is any integer,

〈ϕn, ϕn〉 =
1

2π

∫ 2π

0

ei(n−n)θ dθ =
1

2π

∫ 2π

0

dθ = 1.

Thus, when n is an integer, ϕn is normalized.
Hence by Bessel’s inequality

∑m
j=n |cj |2 ≤ ‖f‖22 <∞ for any integers n < m. This implies limn→∞ c±n = 0.



(ii) We compute

SN (θ) =
1

2π

N∑
n=−N

einθ
∫ 2π

0

f(x)e−inxdx =
1

2π

∫ 2π

0

f(x)

N∑
n=−N

ein(θ−x) dx

Now the sum is the difference of two partial sums of geometric series, namely

N∑
n=−N

ein(θ−x) =
e−iN(θ−x) − ei(N+1)(θ−x)

1− ei(θ−x)
=

sin((N + 1/2)(θ − x))

sin θ−x
2

It remains to plug this in the expression above, make the change of variables x → x + θ, and use the
periodicity of the integrand to restore the limits of integration.

Problem 4. (i) First of all, we note that by (i) of Problem 3,

1

2π

∫ 2π

0

sin((N + 1/2)x)

sin(x/2)
dx =

N∑
n=−N

1

2π

∫ 2π

0

einxdx = 1,

so that using (ii) of Problem 3,

SN (θ)− f(θ) =
1

2π

∫ 2π

0

(f(x+ θ)− f(θ))
sin((N + 1/2)x)

sin(x/2)
dx = 〈ϕ−N , g〉 − 〈ϕN , h〉

where ϕN were defined in Problem 3, and

g(x) = eix/2
f(x+ θ)− f(θ)

2
√

2πi sin(x/2)
, h(x) = e−ix/2

f(x+ θ)− f(θ)

2
√

2πi sin(x/2)
.

Since g, h are continuous periodic functions, they belong to L2([0, 2π]), and we conclude by Problem 3(i)
that limN→∞〈ϕ−N , g〉 = 0 = limN→∞〈ϕN , h〉, which yields the claim. Continuity follows from the fact

that limx→0
sin(x/2)
x/2 = 1 and the observation that f(x+θ)−f(θ)

x =
∫ 1

0
f ′(θ + tx)dt, since the right hand side it

continuous by assumption.
(ii) Convergence of

∑
|bn|2 is again by Bessel’s inequality with ‖f ′‖22 <∞. Moreover,

bn =
1√
2π

∫ 2π

0

e−inxf ′(x)dx =
1√
2π

∫ 2π

0

ine−inxf(x)dx = incn

where we integrated by parts and used periodicity to cancel out the boundary terms. This proves the second
claim.

(iii) By Hölder’s inequality,
∑
n∈Z |cn| = |c0| +

∑
n 6=0

1
n |ncn| ≤ |c0| +

(∑
n 6=0

1
n2

)1/2(∑
n 6=0 n

2|cn|2
)1/2

,

which is convergent.
(iv) By the above, SN (θ) =

∑
n∈Z cnϕn(θ) converges uniformly. By (i) the limit is f(θ) indeed.


