MATH 421/510, 2019WT2

Homework set 11 — Solution

Problem 1. Denote a1 = sup,,en > en |[A(n, m)| and az = sup,, ey >, cn |[A(n, m)| Then, by the Cauchy-
Schwarz inequality, for each fixed n € N,
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Hence
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proving that A is a bounded operator on ¢? with || Al < \/a1az.

Problem 2. (i) ‘=’, by contradiction: We assume that there is ¢y > 0 such that p{r € X : |f(z) — A <
€0} = 0. Then |f(z) — A| > € for u almost all z € X so that the operator of multiplication by (f(z) — \)~*
is bounded by ¢;'. Clearly, this is also the inverse of Ty. Hence \ ¢ o(T).

‘<=’, by contradiction: We assume that A ¢ o(Ty). Then Ty — Al is invertible with bounded inverse and we
denote M = ||(Tf — A1)7!|. Let S be a set of finite positive measure such that |f(z) — A\| < (2M)~! for
every x € S. Its characteristic function has finite L? norm, namely ||xs|% = x(S). But then

1Ty = A)xsl2 < (2M) ™'/ u(S) = 2M) 7 |xs ]2
Let now g = (Ty — Al)xs. It follows that
1Ty =AD" gll2 = lIxsll2 2 2M|[(Ty — AL)xsll2 = 2M||g]l2

which is a contradiction with the definition of M.

(i) ‘=": Let 0 # gx € H be such that Trgx = Agx. This implies that (f(z) — A)ga(z) = 0 for p almost
every x € X. Assume now that u{z € X : |f(x) = A} = 0. Then gx(z) = 0 for p almost every z € X,
namely g = 0 as an L? function, contradiction.

‘<=": Let S be a set of finite positive measure such that f(x) = A for every # € S. Then xg is a non-zero L?
function, but (f(z) — A)xs(z) =0 for all s € S, namely X € o(T}).

(iii) Since {x € (0,1) : @ = A} is either {\} if A € (0,1) or 0 otherwise, the conclude by (ii) that the
multiplication operator by z has no eigenvalue. However, if A € [0,1], then for € > 0, {x € (0,1) : |z)| <
€} = (A — ¢, A+ ¢), which has finite measure. If A ¢ (0, 1), the measure of the corresponding set vanishes for
e small enough. Hence o(Ty) = [0, 1].

Problem 3. (i) First, we check that {¢p, : n € Z} is an orthonormal set in L?([0,27]). If m and n are
distinct integers,
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since e'’ is periodic of period 27. Thus, when m and n are distinct integers, ¢,, and ¢,, are orthogonal. If
n is any integer,
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(n,on) = */ ln=m)l gp — 7/ dg = 1.
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Thus, when n is an integer, ¢, is normalized.
Hence by Bessel’s inequality Y7, lcj|? < || f]I3 < oo for any integers n < m. This implies lim, oo ¢4y, = 0.



(ii) We compute
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Now the sum is the difference of two partial sums of geometric series, namely

o _ ei(6—2) - i 0=z
ne_N 1—e sin =

i oin(6—2) _ e iN(O—z) _ l(N+1)(0—2) _ sin((NV +1/2)(0 — x))

It remains to plug this in the expression above, make the change of variables ©+ — x + 6, and use the
periodicity of the integrand to restore the limits of integration.

Problem 4. (i) First of all, we note that by (i) of Problem 3,
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so that using (ii) of Problem 3,
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Sn(0) — £(0) = sin(z/2)

27
/O (f(z+0)— 1(9)) dr = (-, g) — (on. h)

where ¢ were defined in Problem 3, and

2v/2risin(z/2) 2+/2misin(z/2)
Since g, h are continuous periodic functions, they belong to L?([0,27]), and we conclude by Problem 3(i)
that imyeo(p—n,9) = 0 = limy_ 00 (@n, k), which yields the claim. Continuity follows from the fact
that lim,_.o Sm(%2) =1 and the observation that M fol f/(6 + tz)dt, since the right hand side it
continuous by assumption.
(ii) Convergence of 3 |b,|? is again by Bessel’s inequality with || f/[|3 < co. Moreover,
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b, = — e T (x)dx = —/ ine " f(z)dx = inc,,
= [ e - | f(@)

where we integrated by parts and used periodicity to cancel out the boundary terms. This proves the second
claim.

g . 1/2 1/2
(iii) By Holder’s inequality, Y . [cn| = |co| + Zméo ~Inca] < el + (Zn?&o n%) (Zn#) n2|cn|2) ,
which is convergent.

(iv) By the above, Sy (0) =}, <z cntpn(f) converges uniformly. By (i) the limit is f(¢) indeed.



