Homework set 11 - Solution

Problem 1. Denote $a_{1}=\sup _{n \in \mathbb{N}} \sum_{m \in \mathbb{N}}|A(n, m)|$ and $a_{2}=\sup _{m \in \mathbb{N}} \sum_{n \in \mathbb{N}}|A(n, m)|$ Then, by the CauchySchwarz inequality, for each fixed $n \in \mathbb{N}$,

$$
\left|(A b)_{n}\right| \leq \sum_{m \in \mathbb{N}}\left|A(n, m) b_{m}\right| \leq \sqrt{a_{1}}\left(\sum_{m \in \mathbb{N}}|A(n, m)|\left|b_{m}\right|^{2}\right)^{1 / 2}
$$

Hence

$$
\|A b\|^{2}=\sum_{n \in \mathbb{N}}\left|(A b)_{n}\right|^{2} \leq a_{1} \sum_{n \in \mathbb{N}} \sum_{m \in \mathbb{N}}\left|A(n, m)\left\|\left.b_{m}\right|^{2} \leq a_{1} a_{2} \sum_{m \in \mathbb{N}}\left|b_{m}\right|^{2}=a_{1} a_{2}\right\| b \|^{2}\right.
$$

proving that A is a bounded operator on ℓ^{2} with $\|A\| \leq \sqrt{a_{1} a_{2}}$.
Problem 2. (i) ' \Rightarrow ', by contradiction: We assume that there is $\epsilon_{0}>0$ such that $\mu\{x \in X:|f(x)-\lambda|<$ $\left.\epsilon_{0}\right\}=0$. Then $|f(x)-\lambda| \geq \epsilon_{0}$ for μ almost all $x \in X$ so that the operator of multiplication by $(f(x)-\lambda)^{-1}$ is bounded by ϵ_{0}^{-1}. Clearly, this is also the inverse of T_{f}. Hence $\lambda \notin \sigma\left(T_{f}\right)$.
' \Leftarrow ', by contradiction: We assume that $\lambda \notin \sigma\left(T_{f}\right)$. Then $T_{f}-\lambda 1$ is invertible with bounded inverse and we denote $M=\left\|\left(T_{f}-\lambda 1\right)^{-1}\right\|$. Let S be a set of finite positive measure such that $|f(x)-\lambda|<(2 M)^{-1}$ for every $x \in S$. Its characteristic function has finite L^{2} norm, namely $\left\|\chi_{S}\right\|_{2}^{2}=\mu(S)$. But then

$$
\left\|\left(T_{f}-\lambda 1\right) \chi_{S}\right\|_{2} \leq(2 M)^{-1} \sqrt{\mu(S)}=(2 M)^{-1}\left\|\chi_{S}\right\|_{2}
$$

Let now $g=\left(T_{f}-\lambda 1\right) \chi_{S}$. It follows that

$$
\left\|\left(T_{f}-\lambda 1\right)^{-1} g\right\|_{2}=\left\|\chi_{s}\right\|_{2} \geq 2 M\left\|\left(T_{f}-\lambda 1\right) \chi_{S}\right\|_{2}=2 M\|g\|_{2}
$$

which is a contradiction with the definition of M.
(ii) ' \Rightarrow ': Let $0 \neq g_{\lambda} \in \mathcal{H}$ be such that $T_{f} g_{\lambda}=\lambda g_{\lambda}$. This implies that $(f(x)-\lambda) g_{\lambda}(x)=0$ for μ almost every $x \in X$. Assume now that $\mu\{x \in X: \mid f(x)=\lambda\}=0$. Then $g_{\lambda}(x)=0$ for μ almost every $x \in X$, namely $g_{\lambda}=0$ as an L^{2} function, contradiction.
' \Leftarrow ': Let S be a set of finite positive measure such that $f(x)=\lambda$ for every $x \in S$. Then χ_{S} is a non-zero L^{2} function, but $(f(x)-\lambda) \chi_{S}(x)=0$ for all $s \in S$, namely $\lambda \in \sigma\left(T_{f}\right)$.
(iii) Since $\{x \in(0,1): x=\lambda\}$ is either $\{\lambda\}$ if $\lambda \in(0,1)$ or \emptyset otherwise, the conclude by (ii) that the multiplication operator by x has no eigenvalue. However, if $\lambda \in[0,1]$, then for $\epsilon>0,\{x \in(0,1):|x \lambda|<$ $\epsilon\}=(\lambda-\epsilon, \lambda+\epsilon)$, which has finite measure. If $\lambda \notin(0,1)$, the measure of the corresponding set vanishes for ϵ small enough. Hence $\sigma\left(T_{f}\right)=[0,1]$.

Problem 3. (i) First, we check that $\left\{\varphi_{n}: n \in \mathbb{Z}\right\}$ is an orthonormal set in $L^{2}([0,2 \pi])$. If m and n are distinct integers,

$$
\left\langle\varphi_{n}, \varphi_{m}\right\rangle=\frac{1}{2 \pi} \int_{0}^{2 \pi} \mathrm{e}^{i(n-m) \theta} d \theta=\left.\frac{1}{2 \pi i(n-m)} \mathrm{e}^{\mathrm{i}(n-m) \theta}\right|_{0} ^{2 \pi}=0
$$

since $\mathrm{e}^{\mathrm{i} t}$ is periodic of period 2π. Thus, when m and n are distinct integers, φ_{n} and φ_{m} are orthogonal. If n is any integer,

$$
\left\langle\varphi_{n}, \varphi_{n}\right\rangle=\frac{1}{2 \pi} \int_{0}^{2 \pi} \mathrm{e}^{\mathrm{i}(n-n) \theta} d \theta=\frac{1}{2 \pi} \int_{0}^{2 \pi} d \theta=1
$$

Thus, when n is an integer, φ_{n} is normalized.
Hence by Bessel's inequality $\sum_{j=n}^{m}\left|c_{j}\right|^{2} \leq\|f\|_{2}^{2}<\infty$ for any integers $n<m$. This implies $\lim _{n \rightarrow \infty} c_{ \pm n}=0$.
(ii) We compute

$$
S_{N}(\theta)=\frac{1}{2 \pi} \sum_{n=-N}^{N} \mathrm{e}^{\mathrm{i} n \theta} \int_{0}^{2 \pi} f(x) \mathrm{e}^{-\mathrm{i} n x} d x=\frac{1}{2 \pi} \int_{0}^{2 \pi} f(x) \sum_{n=-N}^{N} \mathrm{e}^{\mathrm{i} n(\theta-x)} d x
$$

Now the sum is the difference of two partial sums of geometric series, namely

$$
\sum_{n=-N}^{N} \mathrm{e}^{\mathrm{i} n(\theta-x)}=\frac{\mathrm{e}^{-\mathrm{i} N(\theta-x)}-\mathrm{e}^{\mathrm{i}(N+1)(\theta-x)}}{1-\mathrm{e}^{\mathrm{i}(\theta-x)}}=\frac{\sin ((N+1 / 2)(\theta-x))}{\sin \frac{\theta-x}{2}}
$$

It remains to plug this in the expression above, make the change of variables $x \rightarrow x+\theta$, and use the periodicity of the integrand to restore the limits of integration.

Problem 4. (i) First of all, we note that by (i) of Problem 3,

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{\sin ((N+1 / 2) x)}{\sin (x / 2)} d x=\sum_{n=-N}^{N} \frac{1}{2 \pi} \int_{0}^{2 \pi} \mathrm{e}^{\mathrm{i} n x} d x=1
$$

so that using (ii) of Problem 3,

$$
S_{N}(\theta)-f(\theta)=\frac{1}{2 \pi} \int_{0}^{2 \pi}(f(x+\theta)-f(\theta)) \frac{\sin ((N+1 / 2) x)}{\sin (x / 2)} d x=\left\langle\varphi_{-N}, g\right\rangle-\left\langle\varphi_{N}, h\right\rangle
$$

where φ_{N} were defined in Problem 3, and

$$
g(x)=\mathrm{e}^{\mathrm{i} x / 2} \frac{f(x+\theta)-f(\theta)}{2 \sqrt{2 \pi} \mathrm{i} \sin (x / 2)}, \quad h(x)=\mathrm{e}^{-\mathrm{i} x / 2} \frac{f(x+\theta)-f(\theta)}{2 \sqrt{2 \pi} \mathrm{i} \sin (x / 2)} .
$$

Since g, h are continuous periodic functions, they belong to $L^{2}([0,2 \pi])$, and we conclude by Problem 3(i) that $\lim _{N \rightarrow \infty}\left\langle\varphi_{-N}, g\right\rangle=0=\lim _{N \rightarrow \infty}\left\langle\varphi_{N}, h\right\rangle$, which yields the claim. Continuity follows from the fact that $\lim _{x \rightarrow 0} \frac{\sin (x / 2)}{x / 2}=1$ and the observation that $\frac{f(x+\theta)-f(\theta)}{x}=\int_{0}^{1} f^{\prime}(\theta+t x) d t$, since the right hand side it continuous by assumption.
(ii) Convergence of $\sum\left|b_{n}\right|^{2}$ is again by Bessel's inequality with $\left\|f^{\prime}\right\|_{2}^{2}<\infty$. Moreover,

$$
b_{n}=\frac{1}{\sqrt{2 \pi}} \int_{0}^{2 \pi} \mathrm{e}^{-\mathrm{i} n x} f^{\prime}(x) d x=\frac{1}{\sqrt{2 \pi}} \int_{0}^{2 \pi} \mathrm{i} n \mathrm{e}^{-\mathrm{i} n x} f(x) d x=\mathrm{i} n c_{n}
$$

where we integrated by parts and used periodicity to cancel out the boundary terms. This proves the second claim.
(iii) By Hölder's inequality, $\sum_{n \in \mathbb{Z}}\left|c_{n}\right|=\left|c_{0}\right|+\sum_{n \neq 0} \frac{1}{n}\left|n c_{n}\right| \leq\left|c_{0}\right|+\left(\sum_{n \neq 0} \frac{1}{n^{2}}\right)^{1 / 2}\left(\sum_{n \neq 0} n^{2}\left|c_{n}\right|^{2}\right)^{1 / 2}$, which is convergent.
(iv) By the above, $S_{N}(\theta)=\sum_{n \in \mathbb{Z}} c_{n} \varphi_{n}(\theta)$ converges uniformly. By (i) the limit is $f(\theta)$ indeed.

