Homework set 10 - Solution

Problem 1. (i) Let $\mathfrak{d} \zeta=(2 \pi \mathrm{i})^{-1} d \zeta$. Since

$$
T^{k}=\oint_{\gamma} \zeta^{k}(\zeta 1-T)^{-1} \mathfrak{d} \zeta
$$

we conclude that indeed

$$
\oint_{\gamma}(\zeta 1-T)^{-1} P(\zeta) \mathfrak{d} \zeta=\sum_{j=1}^{N} a_{j} \oint_{\gamma}(\zeta 1-T)^{-1} \zeta^{j} \mathfrak{d} \zeta=\sum_{j=1}^{N} a_{j} T^{j}
$$

(ii) Linearity of $f \mapsto f(T)$ is immediate. We claim that if f, g are analytic in Ω, then $(f g)(T)=f(T) g(T)$. Let Θ, Γ be two contours as above such that Θ is completely in the interior of Γ. Then

$$
f(T) g(T)=\oint_{\Theta} \oint_{\Gamma}(\theta-T)^{-1}(\gamma-T)^{-1} f(\theta) g(\gamma) \mathfrak{d} \gamma \mathfrak{d} \theta .
$$

Now $(\theta-T)-(\gamma-T)=\theta-\gamma$, which yields when multiplied by $(\theta-T)^{-1}(\gamma-T)^{-1}(\theta-\gamma)^{-1}$ the identity

$$
(\theta-\gamma)^{-1}\left((\gamma-T)^{-1}-(\theta-T)^{-1}\right)=(\theta-T)^{-1}(\gamma-T)^{-1}
$$

Hence

$$
f(T) g(T)=\oint_{\Theta} \oint_{\Gamma}\left((\gamma-T)^{-1}-(\theta-T)^{-1}\right) \frac{f(\theta) g(\gamma)}{\theta-\gamma} \mathfrak{d} \gamma \mathfrak{d} \theta
$$

The first term vanishes since $\oint_{\Theta} \frac{f(\theta)}{\theta-\gamma} d \theta=0$ because Γ lies outside of the interior of Θ. The second term reduces to

$$
f(T) g(T)=-\oint_{\Theta}\left(\oint_{\Gamma} \frac{g(\gamma)}{\theta-\gamma} \mathfrak{d} \gamma\right)(\theta-T)^{-1} f(\theta) \mathfrak{d} \theta=-\oint_{\Theta}(\theta-T)^{-1} f(\theta) g(\theta) \mathfrak{d} \theta=(f g)(T)
$$

(iii) Let $\mu \in f(\sigma(T)$, namely $\mu=f(\lambda)$ for some $\lambda \in \sigma(T)$. Since f is analytic, the function $F(\zeta)=$ $(\zeta-\lambda)^{-1}(f(\zeta)-f(\lambda))$ is analytic in Ω so that $F(T)$ is a well-defined element of $\mathcal{L}(V)$. By (ii) applied to $(\zeta-\lambda) F(\zeta)$, we conclude that $(T-\lambda) F(T)=f(T)-\mu$. But $\lambda \in \sigma(T)$ implies that the left hand side is not invertible, and hence $f(T)-\mu$ is not invertible, namely $\mu \in \sigma(f(T))$. Hence $f(\sigma(T)) \subset \sigma(f(T))$. Let now $\mu \notin f(\sigma(T))$, namely $f(\lambda)-\mu \neq 0$ for all $\lambda \in \sigma(T)$. Then $g(\lambda)=(f(\lambda)-\mu)^{-1}$ is analytic in an open neighbourhood of $\sigma(T)$, and hence $g(T)$ is well-defined in $\mathcal{L}(V)$. But then $(f(\lambda)-\mu) g(\lambda)=1$ implies by (ii) that $(f(T)-\mu) g(T)=1$, proving that $g(T)$ is the inverse of $f(T)-\mu$, and hence $\mu \notin \sigma(f(T))$. This shows that $\sigma(f(T)) \subset f(\sigma(T))$ and concludes the proof.

Problem 2. (i) A calculation:

$$
\|u+v\|^{2}+\|u-v\|^{2}=\langle u, u\rangle+\langle u, v\rangle+\langle v, u\rangle+\langle v, v\rangle+\langle u, u\rangle-\langle u, v\rangle-\langle v, u\rangle+\langle v, v\rangle=2\|u\|^{2}+2\|v\|^{2} .
$$

(ii) First fo all, we check that $v \mapsto-v$ exchanges the two real terms with each other, and similarly with the imaginary terms, so that $\langle u,-v\rangle=-\langle u, v\rangle$. Let now $\alpha=\frac{m}{n}$ with $m \in \mathbb{N} \cup\{0\}, n \in \mathbb{N}$. If $m=0$, then $\langle u, 0 v\rangle=0$ indeed. Let now $m \in \mathbb{N}$. In order to prove that $\left\langle u, \frac{m}{n} v\right\rangle=\frac{m}{n}\langle u, v\rangle$, we show equivalently with $\tilde{v}=\frac{1}{n} v$ that $n\langle u, m \tilde{v}\rangle=m\langle u, n \tilde{v}\rangle$. Since $\langle u, v+w\rangle=\langle u, v\rangle+\langle u, w\rangle$, we have by induction that
$\langle u, N v\rangle=N\langle u, v\rangle$ for any $N \in \mathbb{N}$. Hence, $n\langle u, m \tilde{v}\rangle=n m\langle u, \tilde{v}\rangle=m\langle u, n \tilde{v}\rangle$ indeed. We conclude that for any $\alpha= \pm \frac{m}{n} \pm \mathrm{i} \frac{p}{q}$, with $m, n, p, q \in \mathbb{N}$,

$$
\langle u, \alpha v\rangle= \pm\left\langle u, \frac{m}{n} v\right\rangle \pm\left\langle u, \mathrm{i} \frac{p}{q} v\right\rangle= \pm \frac{m}{n}\langle u, v\rangle \pm \mathrm{i}\left\langle u, \frac{p}{q} v\right\rangle=\alpha\langle u, v\rangle .
$$

The fact that $\langle u, v\rangle=\overline{\langle v, u\rangle}$ implies that $\langle u, u\rangle$ is real. Therefore, the last two terms vanish and hence $4\langle u, u\rangle=\|2 u\|^{2}$, namely $\langle u, u\rangle=\|u\|^{2}$. This shows that $\langle u, u\rangle \geq 0$ and it vanishes iff $u=0$.
We turn to the Cauchy-Schwarz inequality. It is trivially satisfied if $\langle u, v\rangle=0$. Hence we assume that $\langle u, v\rangle=0$, which implies in particular that both $\|u\| \neq 0,\|v\| \neq 0$. For any $\lambda, \nu \in \mathbb{C}$ with rational real and imaginary parts, we have by the above

$$
0 \leq\|\lambda u+\mu v\|^{2}=\langle\lambda u+\mu v, \lambda u+\mu v\rangle=|\lambda|^{2}\|u\|^{2}+\lambda \bar{\mu} \overline{\langle u, v\rangle}+\bar{\lambda} \mu\langle u, v\rangle+|\mu|^{2}\|v\|^{2} .
$$

As a function of the real and imaginary parts of λ, μ, the right hand side is continuous. It is nonnegative on a dense set of $\mathbb{C} \times \mathbb{C}$, and therefore extends by continuity to a nonnegative function on $\mathbb{C} \times \mathbb{C}$. But then, the choices $\lambda=\left(\frac{\|v\|}{\|u\|}\right)^{1 / 2}$ and $\bar{\mu}=-\frac{\langle u, v\rangle}{\mid\langle u, v\rangle}\left(\frac{\|u\|}{\|v\|}\right)^{1 / 2}$ yields the Cauchy-Schwarz inequality.
Finally, let $\alpha \in \mathbb{C}$, and let $\left(\alpha_{n}\right)_{n \in \mathbb{N}}$ be a sequence of complex numbers with rational real and imaginary parts, and converging to α. Then

$$
\left|\left\langle u, \alpha_{n} v\right\rangle-\langle u, \alpha v\rangle\right|=\left|\left\langle u,\left(\alpha_{n}-\alpha\right) v\right\rangle\right| \leq\|u\|\left\|\left(\alpha_{n}-\alpha\right) v\right\|=\left|\alpha_{n}-\alpha\right|\|u\|\|v\|
$$

converges to zero and hence $\langle u, \alpha v\rangle=\lim _{n \rightarrow \infty}\left\langle u, \alpha_{n} v\right\rangle=\lim _{n \rightarrow \infty} \alpha_{n}\langle u, v\rangle=\alpha\langle u, v\rangle$, concluding the proof.
Problem 3. (i) Since $\|w\|=\sup \{|\langle u, w\rangle|:\|u\|=1\}$,

$$
\left\|A^{*}\right\|=\sup _{v \in \mathcal{H},\|v\|=1}\left\|A^{*} v\right\|=\sup _{v \in \mathcal{H},\|v\|=1} \sup _{u \in \mathcal{H},\|u\|=1}\left|\left\langle u, A^{*} v\right\rangle\right|=\|A\|
$$

where we noted that $\left|\left\langle u, A^{*} v\right\rangle\right|=|\langle A u, v\rangle|=|\langle v, A u\rangle|$.
(ii) The equality for A^{*} follows from $1=1^{*}$, the fact that $(T S)^{*}=S^{*} T^{*}$, and

$$
T \in \operatorname{Gl}(\mathcal{H}) \Leftrightarrow \exists S \in \mathcal{L}(\mathcal{H}) \text { s.t. } S T=T S=1 \Leftrightarrow \exists S \in \mathcal{L}(\mathcal{H}) \text { s.t. } T^{*} S^{*}=S^{*} T^{*}=1 \Leftrightarrow T^{*} \in \operatorname{Gl}(\mathcal{H})
$$

applied to $T=\lambda 1-A$. As for A^{-1}, it suffices to write $\lambda 1-A=\lambda A\left(A^{-1}-\lambda^{-1} 1\right)$ to conclude that if $A \in \mathrm{Gl}(\mathcal{H})$, then $\lambda 1-A \in \mathrm{Gl}(\mathcal{H})$ iff $\left(\lambda^{-1} 1-A^{-1}\right) \in \mathrm{Gl}(\mathcal{H})$.
(iii) By Cauchy-Schwarz, $|\langle v, A v\rangle| \leq\|v\|\|A v\| \leq\|v\|^{2}\|A\|$, proving that $\|A\| \geq \sup \left\{|\langle v, A v\rangle| /\|v\|^{2}, v \in \mathcal{H}\right\}$. For the reverse inequality, we pick $v \in \mathcal{H}$ such that $\mid v \|=1$ and $A v \neq 0$ (if no such vector exists, then $A=0$ and there is nothing to prove). Let $u=\|A v\|^{1 / 2} v$ and $w=\|A v\|^{-1 / 2} A v$. Then $\|u\|^{2}=\|A v\|=\|w\|^{2}$. For $x=u+w, y=u-w$, we compute

$$
\langle x, A x\rangle-\langle y, A y\rangle=2\langle u, A w\rangle+2\langle w, A u\rangle=2\left\langle v, A^{2} v\right\rangle+2\langle A v, A v\rangle=4\|A v\|^{2}
$$

since $A=A^{*}$. On the other hand, if $S=\sup \{|\langle v, A v\rangle|:\|v\|=1\}$, the triangle inequality yields that

$$
|\langle x, A x\rangle-\langle y, A y\rangle| \leq S\left(\|x\|^{2}+\|y\|^{2}\right) \leq 2 S\left(\|u\|^{2}+\|v\|^{2}\right)=4 S\|A v\|
$$

by the parallelogram identity. Hence $\|A v\| \leq S$. Taking the supremum over v yields the claim.
(iv) Since $A^{*} A$ is self-adjoint, we see that $\left\|A^{*} A\right\|=\sup \left\{\left\langle v, A^{*} A v\right\rangle:\|v\|=1\right\}=\sup \left\{\|A v\|^{2}:\|v\|=1\right\}=$ $\|A\|^{2}$. With that, and if A is normal,

$$
\left\|A^{2^{n}}\right\|^{2}=\left\|\left(A^{*}\right)^{2^{n}} A^{2^{n}}\right\|=\left\|\left(A^{*} A\right)^{2^{n}}\right\|=\left\|\left(A^{*} A\right)^{2^{n-1}}\left(A^{*} A\right)^{2^{n-1}}\right\|=\left\|\left(A^{*} A\right)^{2^{n-1}}\right\|^{2}
$$

which yields $\left\|A^{2^{n}}\right\|^{2}=\left\|A^{*} A\right\|^{2^{n}}$ by repeating the last steps and finally $\left\|A^{2^{n}}\right\|^{2}=\|A\|^{2^{n+1}}$. The claim follows from this by the very definition of $r(A)$.
(v) If $\lambda \in \rho(B A)$, and $\lambda \neq 0$, then

$$
(\lambda 1-A B)\left(1+A(\lambda 1-B A)^{-1} B\right)=\lambda 1
$$

since $\lambda\left((\lambda 1-B A)^{-1}-\lambda^{-1}\right)=B A(\lambda 1-B A)^{-1}$, which shows that $\lambda 1-A B$ is invertible on the right, showing that $\sigma(B A) \backslash\{0\} \subset \sigma(A B) \backslash\{0\}$. The inverse inclusion follows by exchanging the roles of A, B.

Problem 4. Let $\left(f_{n}\right)_{n \in \mathbb{N}}$ be a bounded sequence in $L^{2}(Y, \nu)$ and let $M=\sup \left\{\left\|f_{n}\right\|_{L^{2}(Y, \nu)}: n \in \mathbb{N}\right\}$. Since, by the Riesz lemma, any Hilbert space is reflexive, there is a weakly convergent subsequence $\left(f_{n_{k}}\right)_{k \in \mathbb{N}}$. We claim that $\left(K f_{n_{k}}\right)_{k \in \mathbb{N}}$ converges to $K f$ in the norm topology of $L^{2}(X, \mu)$. Since $\int_{X \times Y}|k(x, y)|^{2} d \mu(x) d \nu(y)<\infty$, we have that $\int_{Y}|k(x, y)|^{2} d \nu(y)<\infty$ for μ-almost every $x \in X$. Therefore, for any such x,

$$
\lim _{k \rightarrow \infty}\left(K f_{n_{k}}\right)(x)=\lim _{k \rightarrow \infty}\left\langle\overline{k(x, \cdot)}, f_{n_{k}}\right\rangle_{L^{2}(Y, \nu)}=\langle\overline{k(x, \cdot)}, f\rangle_{L^{2}(Y, \nu)}=(K f)(x)
$$

by weak convergence. Moreover, the Cauchy-Schwarz inequality yields

$$
\left|\left(K f_{n_{k}}\right)(x)\right| \leq\left\|f_{n_{k}}\right\|_{L^{2}(Y, \nu)}\left(\int_{Y}|k(x, y)|^{2} d \nu(y)\right)^{1 / 2} \leq M\left(\int_{Y}|k(x, y)|^{2} d \nu(y)\right)^{1 / 2}=H(x)
$$

Note that by assumption, $H \in L^{2}(X, \mu)$. In other words, $K f_{n_{k}}$ converges pointwise μ-almost everywhere to $\int_{Y} k(x, y) f(y) d \nu(y)$, and it is bounded uniformly in k by the function $H \in L^{2}(X, \mu)$. We conclude by dominated convergence that

$$
\lim _{k \rightarrow \infty}\left\|K f_{n_{k}}-K f\right\|_{L^{2}(X, \mu)}^{2}=\lim _{k \rightarrow \infty} \int_{X}\left|\left(K f_{n_{k}}\right)(x)-(K f)(x)\right|^{2} d \mu(x)=0 .
$$

