MATH 421/510, 2019WT2

Homework set 10 -Solution

Problem 1. (i) Let $\partial \zeta = (2\pi i)^{-1} d\zeta$. Since

$$T^{k} = \oint_{\gamma} \zeta^{k} (\zeta 1 - T)^{-1} \mathfrak{d}\zeta,$$

we conclude that indeed

$$\oint_{\gamma} (\zeta 1 - T)^{-1} P(\zeta) \mathfrak{d}\zeta = \sum_{j=1}^{N} a_j \oint_{\gamma} (\zeta 1 - T)^{-1} \zeta^j \mathfrak{d}\zeta = \sum_{j=1}^{N} a_j T^j.$$

(ii) Linearity of $f \mapsto f(T)$ is immediate. We claim that if f, g are analytic in Ω , then (fg)(T) = f(T)g(T). Let Θ, Γ be two contours as above such that Θ is completely in the interior of Γ . Then

$$f(T)g(T) = \oint_{\Theta} \oint_{\Gamma} (\theta - T)^{-1} (\gamma - T)^{-1} f(\theta) g(\gamma) \mathfrak{d}\gamma \mathfrak{d}\theta.$$

Now $(\theta - T) - (\gamma - T) = \theta - \gamma$, which yields when multiplied by $(\theta - T)^{-1}(\gamma - T)^{-1}(\theta - \gamma)^{-1}$ the identity

$$(\theta - \gamma)^{-1} \left((\gamma - T)^{-1} - (\theta - T)^{-1} \right) = (\theta - T)^{-1} (\gamma - T)^{-1}$$

Hence

$$f(T)g(T) = \oint_{\Theta} \oint_{\Gamma} \left((\gamma - T)^{-1} - (\theta - T)^{-1} \right) \frac{f(\theta)g(\gamma)}{\theta - \gamma} \mathfrak{d}\gamma \mathfrak{d}\theta.$$

The first term vanishes since $\oint_{\Theta} \frac{f(\theta)}{\theta - \gamma} d\theta = 0$ because Γ lies outside of the interior of Θ . The second term reduces to

$$f(T)g(T) = -\oint_{\Theta} \left(\oint_{\Gamma} \frac{g(\gamma)}{\theta - \gamma} \mathfrak{d}\gamma\right) (\theta - T)^{-1} f(\theta) \mathfrak{d}\theta = -\oint_{\Theta} (\theta - T)^{-1} f(\theta) g(\theta) \mathfrak{d}\theta = (fg)(T).$$

(iii) Let $\mu \in f(\sigma(T))$, namely $\mu = f(\lambda)$ for some $\lambda \in \sigma(T)$. Since f is analytic, the function $F(\zeta) = (\zeta - \lambda)^{-1}(f(\zeta) - f(\lambda))$ is analytic in Ω so that F(T) is a well-defined element of $\mathcal{L}(V)$. By (ii) applied to $(\zeta - \lambda)F(\zeta)$, we conclude that $(T - \lambda)F(T) = f(T) - \mu$. But $\lambda \in \sigma(T)$ implies that the left hand side is not invertible, and hence $f(T) - \mu$ is not invertible, namely $\mu \in \sigma(f(T))$. Hence $f(\sigma(T)) \subset \sigma(f(T))$. Let now $\mu \notin f(\sigma(T))$, namely $f(\lambda) - \mu \neq 0$ for all $\lambda \in \sigma(T)$. Then $g(\lambda) = (f(\lambda) - \mu)^{-1}$ is analytic in an open neighbourhood of $\sigma(T)$, and hence g(T) is well-defined in $\mathcal{L}(V)$. But then $(f(\lambda) - \mu)g(\lambda) = 1$ implies by (ii) that $(f(T) - \mu)g(T) = 1$, proving that g(T) is the inverse of $f(T) - \mu$, and hence $\mu \notin \sigma(f(T))$. This shows that $\sigma(f(T)) \subset f(\sigma(T))$ and concludes the proof.

Problem 2. (i) A calculation:

$$\|u+v\|^2 + \|u-v\|^2 = \langle u,u\rangle + \langle u,v\rangle + \langle v,u\rangle + \langle v,v\rangle + \langle u,u\rangle - \langle u,v\rangle - \langle v,u\rangle + \langle v,v\rangle = 2\|u\|^2 + 2\|v\|^2.$$

(ii) First fo all, we check that $v \mapsto -v$ exchanges the two real terms with each other, and similarly with the imaginary terms, so that $\langle u, -v \rangle = -\langle u, v \rangle$. Let now $\alpha = \frac{m}{n}$ with $m \in \mathbb{N} \cup \{0\}, n \in \mathbb{N}$. If m = 0, then $\langle u, 0v \rangle = 0$ indeed. Let now $m \in \mathbb{N}$. In order to prove that $\langle u, \frac{m}{n}v \rangle = \frac{m}{n}\langle u, v \rangle$, we show equivalently with $\tilde{v} = \frac{1}{n}v$ that $n\langle u, m\tilde{v} \rangle = m\langle u, n\tilde{v} \rangle$. Since $\langle u, v + w \rangle = \langle u, v \rangle + \langle u, w \rangle$, we have by induction that

 $\langle u, Nv \rangle = N \langle u, v \rangle$ for any $N \in \mathbb{N}$. Hence, $n \langle u, m\tilde{v} \rangle = nm \langle u, \tilde{v} \rangle = m \langle u, n\tilde{v} \rangle$ indeed. We conclude that for any $\alpha = \pm \frac{m}{n} \pm i \frac{p}{q}$, with $m, n, p, q \in \mathbb{N}$,

$$\langle u,\alpha v\rangle = \pm \langle u,\frac{m}{n}v\rangle \pm \langle u,\mathrm{i}\frac{p}{q}v\rangle = \pm \frac{m}{n} \langle u,v\rangle \pm \mathrm{i} \langle u,\frac{p}{q}v\rangle = \alpha \langle u,v\rangle.$$

The fact that $\langle u, v \rangle = \overline{\langle v, u \rangle}$ implies that $\langle u, u \rangle$ is real. Therefore, the last two terms vanish and hence $4\langle u, u \rangle = \|2u\|^2$, namely $\langle u, u \rangle = \|u\|^2$. This shows that $\langle u, u \rangle \ge 0$ and it vanishes iff u = 0.

We turn to the Cauchy-Schwarz inequality. It is trivially satisfied if $\langle u, v \rangle = 0$. Hence we assume that $\langle u, v \rangle = 0$, which implies in particular that both $||u|| \neq 0$, $||v|| \neq 0$. For any $\lambda, \nu \in \mathbb{C}$ with rational real and imaginary parts, we have by the above

$$0 \le \|\lambda u + \mu v\|^2 = \langle \lambda u + \mu v, \lambda u + \mu v \rangle = |\lambda|^2 \|u\|^2 + \lambda \overline{\mu} \overline{\langle u, v \rangle} + \overline{\lambda} \mu \langle u, v \rangle + |\mu|^2 \|v\|^2.$$

As a function of the real and imaginary parts of λ, μ , the right hand side is continuous. It is nonnegative on a dense set of $\mathbb{C} \times \mathbb{C}$, and therefore extends by continuity to a nonnegative function on $\mathbb{C} \times \mathbb{C}$. But then, the choices $\lambda = \left(\frac{\|v\|}{\|u\|}\right)^{1/2}$ and $\overline{\mu} = -\frac{\langle u, v \rangle}{|\langle u, v \rangle|} \left(\frac{\|u\|}{\|v\|}\right)^{1/2}$ yields the Cauchy-Schwarz inequality. Finally, let $\alpha \in \mathbb{C}$, and let $(\alpha_n)_{n \in \mathbb{N}}$ be a sequence of complex numbers with rational real and imaginary parts, and converging to α . Then

$$|\langle u, \alpha_n v \rangle - \langle u, \alpha v \rangle| = |\langle u, (\alpha_n - \alpha)v \rangle| \le ||u|| ||(\alpha_n - \alpha)v|| = |\alpha_n - \alpha|||u|| ||v||$$

converges to zero and hence $\langle u, \alpha v \rangle = \lim_{n \to \infty} \langle u, \alpha_n v \rangle = \lim_{n \to \infty} \alpha_n \langle u, v \rangle = \alpha \langle u, v \rangle$, concluding the proof.

Problem 3. (i) Since $||w|| = \sup\{|\langle u, w \rangle| : ||u|| = 1\},\$

$$||A^*|| = \sup_{v \in \mathcal{H}, ||v|| = 1} ||A^*v|| = \sup_{v \in \mathcal{H}, ||v|| = 1} \sup_{u \in \mathcal{H}, ||u|| = 1} |\langle u, A^*v \rangle| = ||A||$$

where we noted that $|\langle u, A^*v \rangle| = |\langle Au, v \rangle| = |\langle v, Au \rangle|$. (ii) The equality for A^* follows from $1 = 1^*$, the fact that $(TS)^* = S^*T^*$, and

$$T \in \mathrm{Gl}(\mathcal{H}) \Leftrightarrow \exists S \in \mathcal{L}(\mathcal{H}) \text{ s.t. } ST = TS = 1 \Leftrightarrow \exists S \in \mathcal{L}(\mathcal{H}) \text{ s.t. } T^*S^* = S^*T^* = 1 \Leftrightarrow T^* \in \mathrm{Gl}(\mathcal{H}),$$

applied to $T = \lambda 1 - A$. As for A^{-1} , it suffices to write $\lambda 1 - A = \lambda A(A^{-1} - \lambda^{-1}1)$ to conclude that if $A \in \operatorname{Gl}(\mathcal{H})$, then $\lambda 1 - A \in \operatorname{Gl}(\mathcal{H})$ iff $(\lambda^{-1}1 - A^{-1}) \in \operatorname{Gl}(\mathcal{H})$.

(iii) By Cauchy-Schwarz, $|\langle v, Av \rangle| \leq ||v|| ||Av|| \leq ||v||^2 ||A||$, proving that $||A|| \geq \sup\{|\langle v, Av \rangle|/||v||^2, v \in \mathcal{H}\}$. For the reverse inequality, we pick $v \in \mathcal{H}$ such that |v|| = 1 and $Av \neq 0$ (if no such vector exists, then A = 0 and there is nothing to prove). Let $u = ||Av||^{1/2}v$ and $w = ||Av||^{-1/2}Av$. Then $||u||^2 = ||Av|| = ||w||^2$. For x = u + w, y = u - w, we compute

$$\langle x, Ax \rangle - \langle y, Ay \rangle = 2 \langle u, Aw \rangle + 2 \langle w, Au \rangle = 2 \langle v, A^2v \rangle + 2 \langle Av, Av \rangle = 4 \|Av\|^2$$

since $A = A^*$. On the other hand, if $S = \sup\{|\langle v, Av \rangle| : ||v|| = 1\}$, the triangle inequality yields that

$$|\langle x, Ax \rangle - \langle y, Ay \rangle| \le S(||x||^2 + ||y||^2) \le 2S(||u||^2 + ||v||^2) = 4S||Av||$$

by the parallelogram identity. Hence $||Av|| \leq S$. Taking the supremum over v yields the claim. (iv) Since A^*A is self-adjoint, we see that $||A^*A|| = \sup\{\langle v, A^*Av \rangle : ||v|| = 1\} = \sup\{||Av||^2 : ||v|| = 1\} = ||A||^2$. With that, and if A is normal,

$$||A^{2^{n}}||^{2} = ||(A^{*})^{2^{n}}A^{2^{n}}|| = ||(A^{*}A)^{2^{n}}|| = ||(A^{*}A)^{2^{n-1}}(A^{*}A)^{2^{n-1}}|| = ||(A^{*}A)^{2^{n-1}}||^{2}$$

which yields $||A^{2^n}||^2 = ||A^*A||^{2^n}$ by repeating the last steps and finally $||A^{2^n}||^2 = ||A||^{2^{n+1}}$. The claim follows from this by the very definition of r(A).

(v) If $\lambda \in \rho(BA)$, and $\lambda \neq 0$, then

$$(\lambda 1 - AB)(1 + A(\lambda 1 - BA)^{-1}B) = \lambda 1$$

since $\lambda((\lambda 1 - BA)^{-1} - \lambda^{-1}) = BA(\lambda 1 - BA)^{-1}$, which shows that $\lambda 1 - AB$ is invertible on the right, showing that $\sigma(BA) \setminus \{0\} \subset \sigma(AB) \setminus \{0\}$. The inverse inclusion follows by exchanging the roles of A, B.

Problem 4. Let $(f_n)_{n\in\mathbb{N}}$ be a bounded sequence in $L^2(Y,\nu)$ and let $M = \sup\{\|f_n\|_{L^2(Y,\nu)} : n\in\mathbb{N}\}$. Since, by the Riesz lemma, any Hilbert space is reflexive, there is a weakly convergent subsequence $(f_{n_k})_{k\in\mathbb{N}}$. We claim that $(Kf_{n_k})_{k\in\mathbb{N}}$ converges to Kf in the norm topology of $L^2(X,\mu)$. Since $\int_{X\times Y} |k(x,y)|^2 d\mu(x) d\nu(y) < \infty$, we have that $\int_Y |k(x,y)|^2 d\nu(y) < \infty$ for μ -almost every $x \in X$. Therefore, for any such x,

$$\lim_{k \to \infty} (Kf_{n_k})(x) = \lim_{k \to \infty} \langle \overline{k(x, \cdot)}, f_{n_k} \rangle_{L^2(Y, \nu)} = \langle \overline{k(x, \cdot)}, f \rangle_{L^2(Y, \nu)} = (Kf)(x)$$

by weak convergence. Moreover, the Cauchy-Schwarz inequality yields

$$|(Kf_{n_k})(x)| \le ||f_{n_k}||_{L^2(Y,\nu)} \left(\int_Y |k(x,y)|^2 d\nu(y)\right)^{1/2} \le M \left(\int_Y |k(x,y)|^2 d\nu(y)\right)^{1/2} = H(x).$$

Note that by assumption, $H \in L^2(X,\mu)$. In other words, Kf_{n_k} converges pointwise μ -almost everywhere to $\int_Y k(x,y)f(y)d\nu(y)$, and it is bounded uniformly in k by the function $H \in L^2(X,\mu)$. We conclude by dominated convergence that

$$\lim_{k \to \infty} \|Kf_{n_k} - Kf\|_{L^2(X,\mu)}^2 = \lim_{k \to \infty} \int_X |(Kf_{n_k})(x) - (Kf)(x)|^2 \, d\mu(x) = 0.$$