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Homework set 10 – Solution

Problem 1. (i) Let dζ = (2πi)−1dζ. Since

T k =

∮
γ

ζk(ζ1− T )−1dζ,

we conclude that indeed∮
γ

(ζ1− T )−1P (ζ)dζ =

N∑
j=1

aj

∮
γ

(ζ1− T )−1ζjdζ =

N∑
j=1

ajT
j .

(ii) Linearity of f 7→ f(T ) is immediate. We claim that if f, g are analytic in Ω, then (fg)(T ) = f(T )g(T ).
Let Θ,Γ be two contours as above such that Θ is completely in the interior of Γ. Then

f(T )g(T ) =

∮
Θ

∮
Γ

(θ − T )−1(γ − T )−1f(θ)g(γ)dγdθ.

Now (θ − T )− (γ − T ) = θ − γ, which yields when multiplied by (θ − T )−1(γ − T )−1(θ − γ)−1 the identity

(θ − γ)−1
(
(γ − T )−1 − (θ − T )−1

)
= (θ − T )−1(γ − T )−1.

Hence

f(T )g(T ) =

∮
Θ

∮
Γ

(
(γ − T )−1 − (θ − T )−1

) f(θ)g(γ)

θ − γ
dγdθ.

The first term vanishes since
∮

Θ
f(θ)
θ−γ dθ = 0 because Γ lies outside of the interior of Θ. The second term

reduces to

f(T )g(T ) = −
∮

Θ

(∮
Γ

g(γ)

θ − γ
dγ

)
(θ − T )−1f(θ)dθ = −

∮
Θ

(θ − T )−1f(θ)g(θ)dθ = (fg)(T ).

(iii) Let µ ∈ f(σ(T ), namely µ = f(λ) for some λ ∈ σ(T ). Since f is analytic, the function F (ζ) =
(ζ − λ)−1(f(ζ) − f(λ)) is analytic in Ω so that F (T ) is a well-defined element of L(V ). By (ii) applied to
(ζ − λ)F (ζ), we conclude that (T − λ)F (T ) = f(T ) − µ. But λ ∈ σ(T ) implies that the left hand side is
not invertible, and hence f(T ) − µ is not invertible, namely µ ∈ σ(f(T )). Hence f(σ(T )) ⊂ σ(f(T )). Let
now µ /∈ f(σ(T )), namely f(λ) − µ 6= 0 for all λ ∈ σ(T ). Then g(λ) = (f(λ) − µ)−1 is analytic in an open
neighbourhood of σ(T ), and hence g(T ) is well-defined in L(V ). But then (f(λ)−µ)g(λ) = 1 implies by (ii)
that (f(T )− µ)g(T ) = 1, proving that g(T ) is the inverse of f(T )− µ, and hence µ /∈ σ(f(T )). This shows
that σ(f(T )) ⊂ f(σ(T )) and concludes the proof.

Problem 2. (i) A calculation:

‖u+ v‖2 + ‖u− v‖2 = 〈u, u〉+ 〈u, v〉+ 〈v, u〉+ 〈v, v〉+ 〈u, u〉 − 〈u, v〉 − 〈v, u〉+ 〈v, v〉 = 2‖u‖2 + 2‖v‖2.

(ii) First fo all, we check that v 7→ −v exchanges the two real terms with each other, and similarly with
the imaginary terms, so that 〈u,−v〉 = −〈u, v〉. Let now α = m

n with m ∈ N ∪ {0}, n ∈ N. If m = 0,
then 〈u, 0v〉 = 0 indeed. Let now m ∈ N. In order to prove that 〈u, mn v〉 = m

n 〈u, v〉, we show equivalently
with ṽ = 1

nv that n〈u,mṽ〉 = m〈u, nṽ〉. Since 〈u, v + w〉 = 〈u, v〉 + 〈u,w〉, we have by induction that



〈u,Nv〉 = N〈u, v〉 for any N ∈ N. Hence, n〈u,mṽ〉 = nm〈u, ṽ〉 = m〈u, nṽ〉 indeed. We conclude that for
any α = ±mn ± ipq , with m,n, p, q ∈ N,

〈u, αv〉 = ±〈u, m
n
v〉 ± 〈u, ip

q
v〉 = ±m

n
〈u, v〉 ± i〈u, p

q
v〉 = α〈u, v〉.

The fact that 〈u, v〉 = 〈v, u〉 implies that 〈u, u〉 is real. Therefore, the last two terms vanish and hence
4〈u, u〉 = ‖2u‖2, namely 〈u, u〉 = ‖u‖2. This shows that 〈u, u〉 ≥ 0 and it vanishes iff u = 0.
We turn to the Cauchy-Schwarz inequality. It is trivially satisfied if 〈u, v〉 = 0. Hence we assume that
〈u, v〉 = 0, which implies in particular that both ‖u‖ 6= 0, ‖v‖ 6= 0. For any λ, ν ∈ C with rational real and
imaginary parts, we have by the above

0 ≤ ‖λu+ µv‖2 = 〈λu+ µv, λu+ µv〉 = |λ|2‖u‖2 + λµ〈u, v〉+ λµ〈u, v〉+ |µ|2‖v‖2.

As a function of the real and imaginary parts of λ, µ, the right hand side is continuous. It is nonnegative
on a dense set of C×C, and therefore extends by continuity to a nonnegative function on C×C. But then,

the choices λ =
(
‖v‖
‖u‖

)1/2

and µ = − 〈u,v〉|〈u,v〉|

(
‖u‖
‖v‖

)1/2

yields the Cauchy-Schwarz inequality.

Finally, let α ∈ C, and let (αn)n∈N be a sequence of complex numbers with rational real and imaginary
parts, and converging to α. Then

|〈u, αnv〉 − 〈u, αv〉| = |〈u, (αn − α)v〉| ≤ ‖u‖‖(αn − α)v‖ = |αn − α|‖u‖‖v‖

converges to zero and hence 〈u, αv〉 = limn→∞〈u, αnv〉 = limn→∞ αn〈u, v〉 = α〈u, v〉, concluding the proof.

Problem 3. (i) Since ‖w‖ = sup{|〈u,w〉| : ‖u‖ = 1},

‖A∗‖ = sup
v∈H,‖v‖=1

‖A∗v‖ = sup
v∈H,‖v‖=1

sup
u∈H,‖u‖=1

|〈u,A∗v〉| = ‖A‖

where we noted that |〈u,A∗v〉| = |〈Au, v〉| = |〈v,Au〉|.
(ii) The equality for A∗ follows from 1 = 1∗, the fact that (TS)∗ = S∗T ∗, and

T ∈ Gl(H)⇔ ∃S ∈ L(H) s.t. ST = TS = 1⇔ ∃S ∈ L(H) s.t. T ∗S∗ = S∗T ∗ = 1⇔ T ∗ ∈ Gl(H),

applied to T = λ1 − A. As for A−1, it suffices to write λ1 − A = λA(A−1 − λ−11) to conclude that if
A ∈ Gl(H), then λ1−A ∈ Gl(H) iff (λ−11−A−1) ∈ Gl(H).
(iii) By Cauchy-Schwarz, |〈v,Av〉| ≤ ‖v‖‖Av‖ ≤ ‖v‖2‖A‖, proving that ‖A‖ ≥ sup{|〈v,Av〉|/‖v‖2, v ∈ H}.
For the reverse inequality, we pick v ∈ H such that |v‖ = 1 and Av 6= 0 (if no such vector exists, then A = 0
and there is nothing to prove). Let u = ‖Av‖1/2v and w = ‖Av‖−1/2Av. Then ‖u‖2 = ‖Av‖ = ‖w‖2. For
x = u+ w, y = u− w, we compute

〈x,Ax〉 − 〈y,Ay〉 = 2〈u,Aw〉+ 2〈w,Au〉 = 2〈v,A2v〉+ 2〈Av,Av〉 = 4‖Av‖2

since A = A∗. On the other hand, if S = sup{|〈v,Av〉| : ‖v‖ = 1}, the triangle inequality yields that

|〈x,Ax〉 − 〈y,Ay〉| ≤ S(‖x‖2 + ‖y‖2) ≤ 2S(‖u‖2 + ‖v‖2) = 4S‖Av‖

by the parallelogram identity. Hence ‖Av‖ ≤ S. Taking the supremum over v yields the claim.
(iv) Since A∗A is self-adjoint, we see that ‖A∗A‖ = sup{〈v,A∗Av〉 : ‖v‖ = 1} = sup{‖Av‖2 : ‖v‖ = 1} =
‖A‖2. With that, and if A is normal,

‖A2n

‖2 = ‖(A∗)2n

A2n

‖ = ‖(A∗A)2n

‖ = ‖(A∗A)2n−1

(A∗A)2n−1

‖ = ‖(A∗A)2n−1

‖2

which yields ‖A2n‖2 = ‖A∗A‖2n

by repeating the last steps and finally ‖A2n‖2 = ‖A‖2n+1

. The claim follows
from this by the very definition of r(A).



(v) If λ ∈ ρ(BA), and λ 6= 0, then

(λ1−AB)(1 +A(λ1−BA)−1B) = λ1

since λ((λ1−BA)−1−λ−1) = BA(λ1−BA)−1, which shows that λ1−AB is invertible on the right, showing
that σ(BA) \ {0} ⊂ σ(AB) \ {0}. The inverse inclusion follows by exchanging the roles of A,B.

Problem 4. Let (fn)n∈N be a bounded sequence in L2(Y, ν) and let M = sup{‖fn‖L2(Y,ν) : n ∈ N}. Since, by
the Riesz lemma, any Hilbert space is reflexive, there is a weakly convergent subsequence (fnk

)k∈N . We claim
that (Kfnk

)k∈N converges to Kf in the norm topology of L2(X,µ). Since
∫
X×Y |k(x, y)|2dµ(x)dν(y) < ∞,

we have that
∫
Y
|k(x, y)|2dν(y) <∞ for µ-almost every x ∈ X. Therefore, for any such x,

lim
k→∞

(Kfnk
)(x) = lim

k→∞
〈k(x, ·), fnk

〉L2(Y,ν) = 〈k(x, ·), f〉L2(Y,ν) = (Kf)(x)

by weak convergence. Moreover, the Cauchy-Schwarz inequality yields

|(Kfnk
)(x)| ≤ ‖fnk

‖L2(Y,ν)

(∫
Y

|k(x, y)|2dν(y)

)1/2

≤M
(∫

Y

|k(x, y)|2dν(y)

)1/2

= H(x).

Note that by assumption, H ∈ L2(X,µ). In other words, Kfnk
converges pointwise µ-almost everywhere

to
∫
Y
k(x, y)f(y)dν(y), and it is bounded uniformly in k by the function H ∈ L2(X,µ). We conclude by

dominated convergence that

lim
k→∞

‖Kfnk
−Kf‖2L2(X,µ) = lim

k→∞

∫
X

|(Kfnk
)(x)− (Kf)(x)|2 dµ(x) = 0.


