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Homework set 1 – Solution

Problem 1. (i) By definition O ∩X ⊂ X so that TX ⊂ P(X). ∅ ∈ T implies ∅ ∈ TX , and S ∈ T implies
X = S ∩ X ∈ TX . The finite intersection property holds in TX since ∩nj=1(Oj ∩ X) = (∩nj=1Oj) ∩ X and
the finite intersection property in T . The arbitrary union property follows similarly from ∪α∈I(Oα ∩X) =
(∪α∈IOα) ∪X.
(ii) Since A is a subset of X, A = A ∩X so that A ∈ T ⇒ A ∈ TX . Reciprocally, if A ∈ TX , there exists
O ∈ T such that A = O ∩X, showing that A ∈ T since both O,X ∈ T .
(iii) Here, A ⊂ X implies that X \A = X ∩ (S \A). Hence if A is closed in S, then X \A ∈ TX . Reciprocally,
if A is closed in X, there exists O ∈ T such that X \ A = X ∩ O = X \ (X \ O), namely A = X \ O, and
further A = (S \ O) ∩ X. Therefore, A is the intersection of two closed sets in S, hence it is closed itself
(indeed, if C1, C2 are closed then C1 ∩ C2 = (S \O1) ∩ (S \O2) = S \ (O1 ∪O2) is closed).

Problem 2. (i) Clearly, M ∈ T . Let x ∈ ∩nj=1Oj , with Oj ∈ T . There exists rj such that Bx(rj) ⊂ Oj
and hence Bx(r0) ⊂ ∩nj=1Oj , where r0 = min{rj : 1 ≤ j ≤ n} > 0 proving the finite intersection property. If
now x ∈ ∪α∈IOα, there is α0 such that x ∈ Oα0

and hence r0 such that Br0(x) ⊂ Oα0
⊂ ∪α∈IOα, proving

the arbitrary union property.
(ii) Let x ∈ M . Then {Bq(x) : q ∈ Q} is a countable set. Let Nx be a neighbourhood of x, namely
x ∈ No

x . Since No
x is open, Br(x) ⊂ No

x ⊂ Nx for some r > 0 and hence all q ∈ Q with 0 < q < r. Hence,
{Bq(x) : q ∈ Q} is a countable neighbourhood base for x, and M is first countable since x is arbitrary.
(iii) It suffices to show that separable implies second countable. Let D ⊂M be a countable dense set. Then
B = {Bq(x) : q ∈ Q, x ∈ D} is countable base, so that M is second countable. Indeed, let O be open and
y ∈ O. We show that there is B ∈ B such that y ∈ B. Clearly, Br(y) ⊂ O for some r > 0. For any ε > 0 there
is x ∈ D such that y ∈ Bε(x) by density. It follows that there is 0 < δ ∈ Q such that y ∈ Bδ(x) ⊂ Br(y) ⊂ O.
(iv) Let x, y ∈M be distinct. Then 3r := d(x, y) > 0. Then Br(x) ∩Br(y) = ∅, proving the claim.

Problem 3. (i) ∅ ∈ T and S \ S = ∅ is finite, hence S ∈ T . If Yj ∈ T for 1 ≤ j ≤ n, then S \ (∩nj=1Yj) =
∪nj=1(S \ Yj) is finite, being a finite union of finite sets, hence ∩nj=1Yj ∈ T . Similarly, Yα ∈ T for all α ∈ I,
then S \ (∪α∈IYα) = ∩α∈I(S \ Yα) is finite, being the intersection of finite sets, hence ∪α∈IYα. Hence T is
a topology, called the cofinite topology.
(ii) By definition, S \X and S \ Y are finite, and hence so is their union S \ (X ∩ Y ). Since S is infinite,
this implies that X ∩ Y is not empty (in fact, it is infinite).
(iii) Let Nx = {Nj : j ∈ N} be a countable base at x. Let y 6= x. Then S \ {y} is an open neighbourhood
of x and hence x ∈ No

j0
⊂ S \ {y} for some j0. Hence y /∈ ∩∞j=1N

o
j , and hence ∩∞j=1N

o
j = {x}. But

S \ {x} = ∪∞j=1(S \No
j ) is countable, since it is a countable union of finite sets. This is in contradiction of

the uncountablility of S.
(iv) Let x ∈ S be arbitrary and let O ∈ T be such that x ∈ O. Then S \ O is finite, and since (xn)n∈N
does not take the same value twice, we conclude that xn ∈ O for all n ≥ nx for some nx. Hence xn → x as
n→∞.

Problem 4. (i) Let x be a cluster point, and let Nx be a countable neighbourhood base of x, such that
Nj ⊂ Nj−1. For each j, let xnj

∈ Nj . Then (xnj
)j∈N converges to x. Indeed, let Mx be a neighbourhood of

x and let Nk ⊂ Mx. Then xnj ∈ Nj ⊂ Nk for all j ≥ k. Reciprocally, if (xnj )j∈N converges to x, then for
any neighbourhood Nx of x, xnj ∈ Nx for all j ≥ j0. Hence x is a cluster point since {j ≥ j0} is infinite.
(ii) (a) Since S \ [0, 1) = {1} is finite, [0, 1) is open. Hence S = [0, 1) ∪ {1} is smallest closed set containing
[0, 1). (b) The set V := S \ {xn : n ∈ N} of values of the sequence is open and 1 ∈ V , so that it is a
neighbourhood of 1. But xn /∈ V for all n ∈ N, showing that (xn)n∈N does not converge to 1. In particular,
([0, 1), T ) is not first countable.



Problem 5. (i) S is disconnected if and only if there are disjoint, open U, V 6= ∅ such that S \V = U , which
is equivalent to U being both open and closed and U 6= S since V 6= ∅.
(ii) Let E = ∪α∈IEα. If E is disconnected, there are disjoint, nonempty, open (in E) sets U, V such that
E = U ∪ V . By assumption, there exists x ∈ ∩α∈IEα, w.l.o.g x ∈ U . For y ∈ V , we have y ∈ Eα0

for some
α0 ∈ I. Of course, x ∈ Eα0

. Hence, Eα0
∩ U 6= ∅ as well as Eα0

∩ V 6= ∅, which is in contradiction with the
fact that Eα0 is connected.
(iii) Assume that X is disconnected, namely X = U ∪ V , with U, V nonempty open and closed in X. If X
is connected, then either X ∩ U = ∅ or X ∩ V = ∅, say the second one, namely X ⊂ U . Taking the closure
in X yields X ⊂ U , namely V = ∅, which is a contradiction.
(iv) We declare x ∼ y if there is a connected set containing both x, y. Then ∼ is an equivalence relation:
indeed, if x ∼ y and y ∼ z, then the union of the corresponding connected sets is connected by (ii). Let
Cx be the equivalence class of x, which is connected and maximal by construction. But Cx ⊂ Cx which is
connected by (iii), and hence by maximality Cx = Cx, proving that it is closed.


