Homework set 1 - Solution

Problem 1. (i) By definition $O \cap X \subset X$ so that $\mathcal{T}_{X} \subset \mathcal{P}(X)$. $\emptyset \in \mathcal{T}$ implies $\emptyset \in \mathcal{T}_{X}$, and $S \in \mathcal{T}$ implies $X=S \cap X \in \mathcal{T}_{X}$. The finite intersection property holds in \mathcal{T}_{X} since $\cap_{j=1}^{n}\left(O_{j} \cap X\right)=\left(\cap_{j=1}^{n} O_{j}\right) \cap X$ and the finite intersection property in \mathcal{T}. The arbitrary union property follows similarly from $\cup_{\alpha \in I}\left(O_{\alpha} \cap X\right)=$ $\left(\cup_{\alpha \in I} O_{\alpha}\right) \cup X$.
(ii) Since A is a subset of $X, A=A \cap X$ so that $A \in \mathcal{T} \Rightarrow A \in \mathcal{T}_{X}$. Reciprocally, if $A \in \mathcal{T}_{X}$, there exists $O \in \mathcal{T}$ such that $A=O \cap X$, showing that $A \in \mathcal{T}$ since both $O, X \in \mathcal{T}$.
(iii) Here, $A \subset X$ implies that $X \backslash A=X \cap(S \backslash A)$. Hence if A is closed in S, then $X \backslash A \in \mathcal{T}_{X}$. Reciprocally, if A is closed in X, there exists $O \in \mathcal{T}$ such that $X \backslash A=X \cap O=X \backslash(X \backslash O)$, namely $A=X \backslash O$, and further $A=(S \backslash O) \cap X$. Therefore, A is the intersection of two closed sets in S, hence it is closed itself (indeed, if C_{1}, C_{2} are closed then $C_{1} \cap C_{2}=\left(S \backslash O_{1}\right) \cap\left(S \backslash O_{2}\right)=S \backslash\left(O_{1} \cup O_{2}\right)$ is closed).

Problem 2. (i) Clearly, $M \in \mathcal{T}$. Let $x \in \cap_{j=1}^{n} O_{j}$, with $O_{j} \in \mathcal{T}$. There exists r_{j} such that $B_{x}\left(r_{j}\right) \subset O_{j}$ and hence $B_{x}\left(r_{0}\right) \subset \cap_{j=1}^{n} O_{j}$, where $r_{0}=\min \left\{r_{j}: 1 \leq j \leq n\right\}>0$ proving the finite intersection property. If now $x \in \cup_{\alpha \in I} O_{\alpha}$, there is α_{0} such that $x \in O_{\alpha_{0}}$ and hence r_{0} such that $B_{r_{0}}(x) \subset O_{\alpha_{0}} \subset \cup_{\alpha \in I} O_{\alpha}$, proving the arbitrary union property.
(ii) Let $x \in M$. Then $\left\{B_{q}(x): q \in \mathbb{Q}\right\}$ is a countable set. Let N_{x} be a neighbourhood of x, namely $x \in N_{x}^{o}$. Since N_{x}^{o} is open, $B_{r}(x) \subset N_{x}^{o} \subset N_{x}$ for some $r>0$ and hence all $q \in \mathbb{Q}$ with $0<q<r$. Hence, $\left\{B_{q}(x): q \in \mathbb{Q}\right\}$ is a countable neighbourhood base for x, and M is first countable since x is arbitrary.
(iii) It suffices to show that separable implies second countable. Let $D \subset M$ be a countable dense set. Then $\mathcal{B}=\left\{B_{q}(x): q \in \mathbb{Q}, x \in D\right\}$ is countable base, so that M is second countable. Indeed, let O be open and $y \in O$. We show that there is $B \in \mathcal{B}$ such that $y \in B$. Clearly, $B_{r}(y) \subset O$ for some $r>0$. For any $\epsilon>0$ there is $x \in D$ such that $y \in B_{\epsilon}(x)$ by density. It follows that there is $0<\delta \in \mathbb{Q}$ such that $y \in B_{\delta}(x) \subset B_{r}(y) \subset O$. (iv) Let $x, y \in M$ be distinct. Then $3 r:=d(x, y)>0$. Then $B_{r}(x) \cap B_{r}(y)=\emptyset$, proving the claim.

Problem 3. (i) $\emptyset \in \mathcal{T}$ and $S \backslash S=\emptyset$ is finite, hence $S \in \mathcal{T}$. If $Y_{j} \in \mathcal{T}$ for $1 \leq j \leq n$, then $S \backslash\left(\cap_{j=1}^{n} Y_{j}\right)=$ $\cup_{j=1}^{n}\left(S \backslash Y_{j}\right)$ is finite, being a finite union of finite sets, hence $\cap_{j=1}^{n} Y_{j} \in \mathcal{T}$. Similarly, $Y_{\alpha} \in \mathcal{T}$ for all $\alpha \in I$, then $S \backslash\left(\cup_{\alpha \in I} Y_{\alpha}\right)=\cap_{\alpha \in I}\left(S \backslash Y_{\alpha}\right)$ is finite, being the intersection of finite sets, hence $\cup_{\alpha \in I} Y_{\alpha}$. Hence \mathcal{T} is a topology, called the cofinite topology.
(ii) By definition, $S \backslash X$ and $S \backslash Y$ are finite, and hence so is their union $S \backslash(X \cap Y)$. Since S is infinite, this implies that $X \cap Y$ is not empty (in fact, it is infinite).
(iii) Let $\mathcal{N}_{x}=\left\{N_{j}: j \in \mathbb{N}\right\}$ be a countable base at x. Let $y \neq x$. Then $S \backslash\{y\}$ is an open neighbourhood of x and hence $x \in N_{j_{0}}^{o} \subset S \backslash\{y\}$ for some j_{0}. Hence $y \notin \cap_{j=1}^{\infty} N_{j}^{o}$, and hence $\cap_{j=1}^{\infty} N_{j}^{o}=\{x\}$. But $S \backslash\{x\}=\cup_{j=1}^{\infty}\left(S \backslash N_{j}^{o}\right)$ is countable, since it is a countable union of finite sets. This is in contradiction of the uncountablility of S.
(iv) Let $x \in S$ be arbitrary and let $O \in \mathcal{T}$ be such that $x \in O$. Then $S \backslash O$ is finite, and since $\left(x_{n}\right)_{n \in \mathbb{N}}$ does not take the same value twice, we conclude that $x_{n} \in O$ for all $n \geq n_{x}$ for some n_{x}. Hence $x_{n} \rightarrow x$ as $n \rightarrow \infty$.

Problem 4. (i) Let x be a cluster point, and let \mathcal{N}_{x} be a countable neighbourhood base of x, such that $N_{j} \subset N_{j-1}$. For each j, let $x_{n_{j}} \in N_{j}$. Then $\left(x_{n_{j}}\right)_{j \in \mathbb{N}}$ converges to x. Indeed, let M_{x} be a neighbourhood of x and let $N_{k} \subset M_{x}$. Then $x_{n_{j}} \in N_{j} \subset N_{k}$ for all $j \geq k$. Reciprocally, if $\left(x_{n_{j}}\right)_{j \in \mathbb{N}}$ converges to x, then for any neighbourhood N_{x} of $x, x_{n_{j}} \in N_{x}$ for all $j \geq j_{0}$. Hence x is a cluster point since $\left\{j \geq j_{0}\right\}$ is infinite.
(ii) (a) Since $S \backslash[0,1)=\{1\}$ is finite, $[0,1)$ is open. Hence $S=[0,1) \cup\{1\}$ is smallest closed set containing $\left[0,1\right.$). (b) The set $V:=S \backslash\left\{x_{n}: n \in \mathbb{N}\right\}$ of values of the sequence is open and $1 \in V$, so that it is a neighbourhood of 1 . But $x_{n} \notin V$ for all $n \in \mathbb{N}$, showing that $\left(x_{n}\right)_{n \in \mathbb{N}}$ does not converge to 1 . In particular, $([0,1), \mathcal{T})$ is not first countable.

Problem 5. (i) S is disconnected if and only if there are disjoint, open $U, V \neq \emptyset$ such that $S \backslash V=U$, which is equivalent to U being both open and closed and $U \neq S$ since $V \neq \emptyset$.
(ii) Let $\mathcal{E}=\cup_{\alpha \in I} E_{\alpha}$. If \mathcal{E} is disconnected, there are disjoint, nonempty, open (in \mathcal{E}) sets U, V such that $\mathcal{E}=U \cup V$. By assumption, there exists $x \in \cap_{\alpha \in I} E_{\alpha}$, w.l.o.g $x \in U$. For $y \in V$, we have $y \in E_{\alpha_{0}}$ for some $\alpha_{0} \in I$. Of course, $x \in E_{\alpha_{0}}$. Hence, $E_{\alpha_{0}} \cap U \neq \emptyset$ as well as $E_{\alpha_{0}} \cap V \neq \emptyset$, which is in contradiction with the fact that $E_{\alpha_{0}}$ is connected.
(iii) Assume that \bar{X} is disconnected, namely $\bar{X}=U \cup V$, with U, V nonempty open and closed in \bar{X}. If X is connected, then either $X \cap U=\emptyset$ or $X \cap V=\emptyset$, say the second one, namely $X \subset U$. Taking the closure in \bar{X} yields $\bar{X} \subset U$, namely $V=\emptyset$, which is a contradiction.
(iv) We declare $x \sim y$ if there is a connected set containing both x, y. Then \sim is an equivalence relation: indeed, if $x \sim y$ and $y \sim z$, then the union of the corresponding connected sets is connected by (ii). Let C_{x} be the equivalence class of x, which is connected and maximal by construction. But $C_{x} \subset \overline{C_{x}}$ which is connected by (iii), and hence by maximality $C_{x}=\overline{C_{x}}$, proving that it is closed.

