MATH 421/510, 2019WT2

Homework set 1 — Solution

Problem 1. (i) By definition O N X C X so that Tx € P(X). @ € T implies §) € Tx, and S € T implies
X =SNX € Tx. The finite intersection property holds in Tx since N7_;(0; N X) = (N}_;0;) N X and
the finite intersection property in 7. The arbitrary union property follows similarly from U,er(Oq N X) =
(UaerOq) U X.

(ii) Since A is a subset of X, A = AN X so that A € T = A € Tx. Reciprocally, if A € Tx, there exists
O € T such that A = 0N X, showing that A € T since both O, X € T.

(iii) Here, A C X implies that X\ A = X N(S\ 4). Hence if A is closed in S, then X \ A € Tx. Reciprocally,
if A is closed in X, there exists O € T such that X \ A =X N0 = X \ (X \ O), namely A = X \ O, and
further A = (S'\ O) N X. Therefore, A is the intersection of two closed sets in .S, hence it is closed itself
(indeed, if Cy,Cy are closed then C; NCy = (S\ O1)N(S\ Oz) =5\ (01 UOy) is closed).

Problem 2. (i) Clearly, M € 7. Let x € N}_;0;, with O; € T. There exists r; such that B,(r;) C O;
and hence By(ro) C N}_;0;, where ro = min{r; : 1 < j < n} > 0 proving the finite intersection property. If
now & € UaerOy, there is ag such that © € O, and hence 7 such that B, (x) C On, C UaerOq, proving
the arbitrary union property.

(ii) Let « € M. Then {By(z) : ¢ € Q} is a countable set. Let N, be a neighbourhood of z, namely
x € N2. Since N2 is open, B,(x) C N2 C N, for some r > 0 and hence all ¢ € Q with 0 < ¢ < r. Hence,
{By(z) : ¢ € Q} is a countable neighbourhood base for =, and M is first countable since x is arbitrary.

(iii) It suffices to show that separable implies second countable. Let D C M be a countable dense set. Then
B = {B,(z) : ¢ € Q,x € D} is countable base, so that M is second countable. Indeed, let O be open and
y € O. We show that there is B € B such that y € B. Clearly, B,(y) C O for some r > 0. For any € > 0 there
is x € D such that y € B.(z) by density. It follows that there is 0 < § € Q such that y € Bs(z) C B,(y) C O.
(iv) Let z,y € M be distinct. Then 3r := d(z,y) > 0. Then B,.(z) N B,(y) = 0, proving the claim.

Problem 3. (i) ) € 7 and S\ S = 0 is finite, hence S € 7. If Y; € T for 1 < j < n, then S\ (N}_,Y;) =
7_1(5\'Y;) is finite, being a finite union of finite sets, hence N}_;Y; € 7. Similarly, Y, € 7 for all a € I,

then S\ (UaerYa) = Nacr(S\ Ya) is finite, being the intersection of finite sets, hence U,erY,. Hence T is

a topology, called the cofinite topology.

(ii) By definition, S\ X and S\ Y are finite, and hence so is their union S\ (X NY). Since S is infinite,

this implies that X NY is not empty (in fact, it is infinite).

(iii) Let M, = {N; : j € N} be a countable base at z. Let y # x. Then S\ {y} is an open neighbourhood

of z and hence x € N7 C S\ {y} for some jo. Hence y ¢ N32;N?, and hence N3, N = {z}. But

S\ {z} = U, (S \ Ny) is countable, since it is a countable union of finite sets. This is in contradiction of

the uncountablility of S.

(iv) Let € S be arbitrary and let O € T be such that x € O. Then S\ O is finite, and since (z,)nen

does not take the same value twice, we conclude that x, € O for all n > n, for some n,. Hence z,, — z as

n — oo.

Problem 4. (i) Let  be a cluster point, and let N, be a countable neighbourhood base of x, such that
N; C N;j_1. For each j, let x,, € N;. Then (xnj )jen converges to x. Indeed, let M, be a neighbourhood of
x and let Ny C M. Then z,, € Nj C N for all j > k. Reciprocally, if (mnj )jen converges to x, then for
any neighbourhood N, of z, z,,; € N, for all j > jo. Hence z is a cluster point since {j > jo} is infinite.
(ii) (a) Since S'\ [0,1) = {1} is finite, [0, 1) is open. Hence S = [0,1) U {1} is smallest closed set containing
[0,1). (b) The set V := S\ {z, : n € N} of values of the sequence is open and 1 € V, so that it is a
neighbourhood of 1. But x,, ¢ V for all n € N, showing that (x,),en does not converge to 1. In particular,
([0,1),7) is not first countable.



Problem 5. (i) S is disconnected if and only if there are disjoint, open U,V # ) such that S\ V = U, which
is equivalent to U being both open and closed and U # S since V # 0.

(ii) Let &€ = UperEq. If € is disconnected, there are disjoint, nonempty, open (in &) sets U,V such that
& =U U V. By assumption, there exists * € NperE,, w.lo.g 2 € U. For y € V, we have y € E,, for some
ag € I. Of course, z € E,,. Hence, Eo, NU # 0 as well as E,, NV # (), which is in contradiction with the
fact that E,, is connected.

(iii) Assume that X is disconnected, namely X = U UV, with U,V nonempty open and closed in X. If X
is connected, then either X NU = () or X NV = (), say the second one, namely X C U. Taking the closure
in X yields X C U, namely V = (), which is a contradiction.

(iv) We declare z ~ y if there is a connected set containing both z,y. Then ~ is an equivalence relation:
indeed, if x ~ y and y ~ z, then the union of the corresponding connected sets is connected by (ii). Let
C, be the equivalence class of z, which is connected and maximal by construction. But C, C C, which is
connected by (iii), and hence by maximality C,, = C,;, proving that it is closed.



