MATH 421/510, 2019WT2

Homework set 9 – due March 20

Problem 1. Let V be a Banach space and Ω an open subset of \mathbb{C} . A function $f: \Omega \to V$ is called *analytic* at z_0 if the following limit exists:

$$f'(z_0) = \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0}$$

It is called *weakly analytic* if the function $F_{\ell} : \Omega \to \mathbb{C}$ given by $F_{\ell}(z) = \ell(f(z))$ is analytic at z_0 for any $\ell \in V^*$.

(i) Prove that f is analytic in Ω if and only if f is weakly analytic in Ω .

Hint. Show that $(f(z_n) - f(z_0))/(z_n - z_0)$ is Cauchy. Use Cauchy's integral formula for $F_{\ell}(z)$. (ii) Prove that if f is analytic in Ω and $K \subset \Omega$ is compact, then ||f(z)|| is bounded on K.

(iii) Let f be analytic in Ω . Let $w \in \Omega$ and let γ be a positively oriented simple closed C^2 -path in Ω whose interior contains w. Show that

$$f(w) = \frac{1}{2\pi i} \oint_{\gamma} \frac{f(z)}{z - w} dz.$$

Hint. Use ordinary complex analysis. You are allowed to commute integrals and linear functionals without justification.

(iv) Let f be analytic in Ω , let $z_0 \in \Omega$ and let r > 0 be such that $B_r(z_0) \subset \Omega$. Prove that f has a unique power series representation

$$f(z) = \sum_{n=0}^{\infty} A_n (z - z_0)^n, \qquad A_n \in \mathcal{L}(V),$$

where the series is convergent as a norm limit of its partial sums.

Problem 2. Let V be a Banach space and let $T \in \mathcal{L}(V)$. The resolvent set of T is defined as

$$\rho(T) = \{\lambda \in \mathbb{C} : \lambda 1 - T \text{ is invertible}\}\$$

while the spectrum is $\sigma(T) = \mathbb{C} \setminus \rho(T)$.

(i) Prove that $\rho(T)$ is open

(ii) Prove that the function $\lambda \mapsto (\lambda 1 - T)^{-1} \in \mathcal{L}(V)$ is analytic on $\rho(T)$.

(iii) Let $\lambda \in \rho(T)$. Prove that

$$\|(\lambda 1 - T)^{-1}\| \ge d^{-1}$$

where $d = \operatorname{dist}(\lambda, \sigma(T))$.

(iv) Prove that $\sigma(T)$ is closed, bounded and nonempty.

Hint. Use the geometric series of $(\lambda 1 - T)^{-1}$ for large λ . Compute $\oint \zeta^k (\zeta 1 - T)^{-1} d\zeta$. (v) Prove that $r(T) = \max\{|\lambda| : \lambda \in \sigma(T)\}.$ **Problem 3.** This exercise will be part of HW 10. Its solution does not need to be submitted with the other two problems.

Let V be a Banach space and let $T \in \mathcal{L}(V)$. Let $\Omega \supset \sigma(T)$ and let f be analytic in Ω . Let γ be a positively oriented simple closed C^2 -path in $\Omega \cap \rho(T)$ whose interior contains $\sigma(T)$. Define

$$f(T) = \frac{1}{2\pi i} \oint_{\gamma} (z1 - T)^{-1} f(z) dz.$$

(i) Let $P(z) = \sum_{j=1}^{N} a_j z^j$ be a polynomial. Prove that $P(T) = \sum_{j=1}^{N} a_j T^j$. (ii) Prove that the *(holomorphic) functional calculus* $f \mapsto f(T)$ is a homomorphism between the algebra of functions analytic in Ω into the algebra $\mathcal{L}(V)$.

Hint. Express $(z1 - T)^{-1}(w1 - T)^{-1}$ as a difference. You are allowed to commute integrals without justification.

(iii) Show that $\sigma(f(T)) = f(\sigma(T))$.