Homework set 9 - due March 20

Problem 1. Let V be a Banach space and Ω an open subset of \mathbb{C}.
A function $f: \Omega \rightarrow V$ is called analytic at z_{0} if the following limit exists:

$$
f^{\prime}\left(z_{0}\right)=\lim _{z \rightarrow z_{0}} \frac{f(z)-f\left(z_{0}\right)}{z-z_{0}} .
$$

It is called weakly analytic if the function $F_{\ell}: \Omega \rightarrow \mathbb{C}$ given by $F_{\ell}(z)=\ell(f(z))$ is analytic at z_{0} for any $\ell \in V^{*}$.
(i) Prove that f is analytic in Ω if and only if f is weakly analytic in Ω.

Hint. Show that $\left(f\left(z_{n}\right)-f\left(z_{0}\right)\right) /\left(z_{n}-z_{0}\right)$ is Cauchy. Use Cauchy's integral formula for $F_{\ell}(z)$.
(ii) Prove that if f is analytic in Ω and $K \subset \Omega$ is compact, then $\|f(z)\|$ is bounded on K.
(iii) Let f be analytic in Ω. Let $w \in \Omega$ and let γ be a positively oriented simple closed C^{2}-path in Ω whose interior contains w. Show that

$$
f(w)=\frac{1}{2 \pi \mathrm{i}} \oint_{\gamma} \frac{f(z)}{z-w} d z .
$$

Hint. Use ordinary complex analysis. You are allowed to commute integrals and linear functionals without justification.
(iv) Let f be analytic in Ω, let $z_{0} \in \Omega$ and let $r>0$ be such that $B_{r}\left(z_{0}\right) \subset \Omega$. Prove that f has a unique power series representation

$$
f(z)=\sum_{n=0}^{\infty} A_{n}\left(z-z_{0}\right)^{n}, \quad A_{n} \in \mathcal{L}(V)
$$

where the series is convergent as a norm limit of its partial sums.
Problem 2. Let V be a Banach space and let $T \in \mathcal{L}(V)$. The resolvent set of T is defined as

$$
\rho(T)=\{\lambda \in \mathbb{C}: \lambda 1-T \text { is invertible }\}
$$

while the spectrum is $\sigma(T)=\mathbb{C} \backslash \rho(T)$.
(i) Prove that $\rho(T)$ is open
(ii) Prove that the function $\lambda \mapsto(\lambda 1-T)^{-1} \in \mathcal{L}(V)$ is analytic on $\rho(T)$.
(iii) Let $\lambda \in \rho(T)$. Prove that

$$
\left\|(\lambda 1-T)^{-1}\right\| \geq d^{-1}
$$

where $d=\operatorname{dist}(\lambda, \sigma(T))$.
(iv) Prove that $\sigma(T)$ is closed, bounded and nonempty.

Hint. Use the geometric series of $(\lambda 1-T)^{-1}$ for large λ. Compute $\oint \zeta^{k}(\zeta 1-T)^{-1} d \zeta$.
(v) Prove that $r(T)=\max \{|\lambda|: \lambda \in \sigma(T)\}$.

Problem 3. This exercise will be part of HW 10. Its solution does not need to be submitted with the other two problems.
Let V be a Banach space and let $T \in \mathcal{L}(V)$. Let $\Omega \supset \sigma(T)$ and let f be analytic in Ω. Let γ be a positively oriented simple closed C^{2}-path in $\Omega \cap \rho(T)$ whose interior contains $\sigma(T)$. Define

$$
f(T)=\frac{1}{2 \pi \mathrm{i}} \oint_{\gamma}(z 1-T)^{-1} f(z) d z
$$

(i) Let $P(z)=\sum_{j=1}^{N} a_{j} z^{j}$ be a polynomial. Prove that $P(T)=\sum_{j=1}^{N} a_{j} T^{j}$.
(ii) Prove that the (holomorphic) functional calculus $f \mapsto f(T)$ is a homomorphism between the algebra of functions analytic in Ω into the algebra $\mathcal{L}(V)$.

Hint. Express $(z 1-T)^{-1}(w 1-T)^{-1}$ as a difference. You are allowed to commute integrals without justification.
(iii) Show that $\sigma(f(T))=f(\sigma(T))$.

