MATH 421/510, 2019WT2

Homework set 8 – due March 13

Problem 1. Let $1 and let <math>\ell^p$ be the space of complex sequences such that $\sum_{j=1}^{\infty} |z_n|^p < \infty$. Note that $\ell^q \simeq (\ell^p)^*$ whenever (p,q) are dual indices (why?). Let $(z^n)_{n\in\mathbb{N}}$ be a sequence in ℓ^p . Prove that $z^n \rightharpoonup z$ if and only if $(z^n)_{n\in\mathbb{N}}$ is bounded and $z_j^n \rightarrow z_j$ as $n \rightarrow \infty$ for all $j \in \mathbb{N}$.

Problem 2. Let V be a real normed vector space. Let $(v_n)_{n \in \mathbb{N}}$ be a weakly convergent sequence to v in V. Prove *Mazur's theorem*: There is a sequence $(w_j)_{j \in \mathbb{N}}$ in V such that $w_j \to v$ strongly and each w_j is a finite convex combination of $\{v_n : n \in \mathbb{N}\}$, namely

$$w_j = \sum_{n=1}^{N_j} \alpha_n^j v_n, \qquad \alpha_n^j \ge 0, \ \sum_{n=1}^{N_j} \alpha_n^j = 1.$$

Problem 3. Let V be a real normed vector space and $X \subset V$ be a closed convex subset. Let $F: X \to \mathbb{R}$ be strongly continuous and convex. Prove that F is weakly sequentially lower semicontinuous.

Hint: Use Problem 2.

Problem 4. Let $0 < \epsilon < 1$ and let $T_{\epsilon} \in L^{\infty}((0,1))^*$ be defined by

$$T_{\epsilon}f = \frac{1}{\epsilon} \int_0^{\epsilon} f dx.$$

Prove that $\{T_{\epsilon} : 0 < \epsilon < 1\}$ is bounded in $L^{\infty}((0,1))^*$, but that it is not weakly-* sequentially compact. Interpret your result in view of the Banach-Alaoglu theorem. *Hint:* Consider the function $f = \sum_{n=1}^{\infty} (-1)^n \chi_{[\epsilon_{n+1},\epsilon_n]}(x)$.

Problem 5. Let $1 and <math>f, g \in L^p(\Omega)$. Use Hanner's inequality

$$2^{p}(\|f\|_{p}^{p} + \|g\|_{p}^{p}) \ge (\|f + g\|_{p} + \|f - g\|_{p})^{p} + \left\|\|f + g\|_{p} - \|f - g\|_{p}^{p}\right|^{p}$$

to show that if $f_n \rightharpoonup f$ in $L^p(\Omega)$ and $||f_n||_p \rightarrow ||f||_p$, then $||f_n - f||_p \rightarrow 0$ as $n \rightarrow \infty$.