MATH 421/510, 2019WT2

Homework set 7 - due March 06

Problem 1. This is an optional exercise. It will not be graded.
Let V be a real normed vector space, and let A, B be non empty, disjoint and convex subsets of V. Assume that A is open.
(i) Let $a_{0} \in A, b_{0} \in B$ and $x_{0}=b_{0}-a_{0}$. Let $C=A-B+x_{0}=\left\{a-b+x_{0}: a \in A, b \in B\right\}$. Prove that C is convex, open and $0 \in C, x_{0} \notin C$.
(ii) Define the Minkowski functional as the map $p: V \rightarrow \mathbb{R}$

$$
p(x)=\inf \{\lambda>0: x \in \lambda C\} .
$$

Prove that there is $M>0$ such that $p(x) \leq M\|x\|$ and that $C \subset\{x \in V: p(x)<1\}$.
(iii) Prove that p is convex. Hint. Show first that $p(\alpha x)=\alpha p(x)$ for $\alpha>0$.
(iv) Prove that there is $\ell \in V^{*}$ and $\lambda \in \mathbb{R}$ such that

$$
\ell(a)<\lambda \leq \ell(b)
$$

for all $a \in A, b \in B$. Hint. Let $f: \operatorname{span}\left\{x_{0}\right\} \rightarrow \mathbb{R}$ be defined by $f\left(t x_{0}\right)=t$. Use Hahn-Banach. Assume now that A is compact and B is closed.
(v) Prove that there is $\ell \in V^{*}$ and $\lambda \in \mathbb{R}$ such that

$$
\sup \{\ell(a): a \in A\}<\lambda<\inf \{\ell(b): b \in B\} .
$$

In other words, the convex sets A, B can be separated by the hyperplane $\{x \in V: \ell(x)=\lambda\}$.
Problem 2. Let V be a vector space and let $\|\cdot\|_{1},\|\cdot\|_{2}$ be two norms on V such that $\|v\|_{1} \leq c\|v\|_{2}$ for all $v \in V$. Prove that if V is complete with respect to both norms, then they are equivalent.

Problem 3. Let V, W be two Banach spaces with norms $\|\cdot\|_{V},\|\cdot\|_{W}$. Let $T \in \mathcal{L}(V, W)$ be such that $\operatorname{Ran}(T)$ is closed and $\operatorname{dim} \operatorname{Ker}(T)<\infty$. Let $\|\cdot\|$ denote another norm on V such that $\|x\| \leq M\|x\|_{V}$ for all $x \in V$. Prove that there exists $C>0$ such that

$$
\|x\|_{V} \leq C\left(\|T x\|_{W}+\|x\|\right)
$$

for all $x \in V$. Hint. Argue by contradiction.
Problem 4. Let $V=\left\{z \in \ell^{1}: \sum_{n=1}^{\infty} n\left|z_{n}\right|<\infty\right\}$.
(i) Prove that V is a proper dense subspace of ℓ^{1}
(ii) Let $T: V \rightarrow \ell^{1}$ be defined by $(T z)_{n}=n z_{n}$. Prove that T is unbounded and closed.
(iii) Prove that $S=T^{-1}: \ell^{1} \rightarrow V$ is bounded and surjective but not open.

Problem 5. Let V, W be Banach spaces and let $D \subset V$ be a dense subspace. Let $T: D \rightarrow W$ be a bounded linear transformation. Prove that there is a unique extension $\tilde{T}: V \rightarrow W$ such that $\|\tilde{T}\|_{\mathcal{L}(V, W)}=\|T\|_{\mathcal{L}(D, W)}$.

Problem 6. Let V be an infinite-dimensional normed linear space.
(i) Let $\ell_{1}, \ldots, \ell_{n} \in V^{*}$. Prove that there is $v_{0} \in V, v_{0} \neq 0$ such that $\ell_{j}\left(v_{0}\right)=0$ for $1 \leq j \leq n$.
(ii) Show that the weak closure of the unit sphere $\{v \in V:\|v\|=1\}$ is the closed unit ball $\{v \in V:\|v\| \leq 1\}$.
(iii) Show that the open unit ball $\{v \in V:\|v\|<1\}$ is not weakly open.

