MATH 421/510, 2019WT2

Homework set 7 – due March 06

Problem 1. This is an optional exercise. It will not be graded.

Let V be a real normed vector space, and let A, B be non empty, disjoint and convex subsets of V. Assume that A is open.

(i) Let $a_0 \in A, b_0 \in B$ and $x_0 = b_0 - a_0$. Let $C = A - B + x_0 = \{a - b + x_0 : a \in A, b \in B\}$. Prove that C is convex, open and $0 \in C, x_0 \notin C$.

(ii) Define the Minkowski functional as the map $p: V \to \mathbb{R}$

$$p(x) = \inf\{\lambda > 0 : x \in \lambda C\}.$$

Prove that there is M > 0 such that $p(x) \leq M ||x||$ and that $C \subset \{x \in V : p(x) < 1\}$. (iii) Prove that p is convex. *Hint*. Show first that $p(\alpha x) = \alpha p(x)$ for $\alpha > 0$. (iv) Prove that there is $\ell \in V^*$ and $\lambda \in \mathbb{R}$ such that

 $\ell(a) < \lambda \le \ell(b)$

for all $a \in A, b \in B$. *Hint*. Let $f : \text{span}\{x_0\} \to \mathbb{R}$ be defined by $f(tx_0) = t$. Use Hahn-Banach. Assume now that A is compact and B is closed.

(v) Prove that there is $\ell \in V^*$ and $\lambda \in \mathbb{R}$ such that

$$\sup\{\ell(a): a \in A\} < \lambda < \inf\{\ell(b): b \in B\}.$$

In other words, the convex sets A, B can be separated by the hyperplane $\{x \in V : \ell(x) = \lambda\}$.

Problem 2. Let V be a vector space and let $\|\cdot\|_1, \|\cdot\|_2$ be two norms on V such that $\|v\|_1 \leq c \|v\|_2$ for all $v \in V$. Prove that if V is complete with respect to both norms, then they are equivalent.

Problem 3. Let V, W be two Banach spaces with norms $\|\cdot\|_V, \|\cdot\|_W$. Let $T \in \mathcal{L}(V, W)$ be such that $\operatorname{Ran}(T)$ is closed and $\operatorname{dimKer}(T) < \infty$. Let $\|\cdot\|$ denote another norm on V such that $\|x\| \leq M \|x\|_V$ for all $x \in V$. Prove that there exists C > 0 such that

$$||x||_V \le C(||Tx||_W + ||x||)$$

for all $x \in V$. *Hint*. Argue by contradiction.

Problem 4. Let $V = \{z \in \ell^1 : \sum_{n=1}^{\infty} n |z_n| < \infty\}$. (i) Prove that V is a proper dense subspace of ℓ^1 (ii) Let $T : V \to \ell^1$ be defined by $(Tz)_n = nz_n$. Prove that T is unbounded and closed. (iii) Prove that $S = T^{-1} : \ell^1 \to V$ is bounded and surjective but not open.

Problem 5. Let V, W be Banach spaces and let $D \subset V$ be a dense subspace. Let $T : D \to W$ be a bounded linear transformation. Prove that there is a unique extension $\tilde{T} : V \to W$ such that $\|\tilde{T}\|_{\mathcal{L}(V,W)} = \|T\|_{\mathcal{L}(D,W)}$.

Problem 6. Let V be an infinite-dimensional normed linear space.

(i) Let $\ell_1, \ldots, \ell_n \in V^*$. Prove that there is $v_0 \in V, v_0 \neq 0$ such that $\ell_j(v_0) = 0$ for $1 \leq j \leq n$.

(ii) Show that the weak closure of the unit sphere $\{v \in V : ||v|| = 1\}$ is the closed unit ball $\{v \in V : ||v|| \le 1\}$.

(iii) Show that the open unit ball $\{v \in V : ||v|| < 1\}$ is not weakly open.