MATH 421/510, 2019WT2

Homework set 6 – due February 28

Problem 1. Consider the Banach spaces of convergent sequences C, C_0 defined on sheet 5, and denote the norm defined there by $||z||_{\infty}$. Moreover, let ℓ^1 be the space of absolutely convergent sequences. It is a normed vector space equipped with the norm $||z||_1 = \sum_{n=1}^{\infty} |z_n|$. (i) Prove that $(C_0)^* \simeq \ell^1$

(ii) Characterize the dual of C.

Hint. $z \mapsto \lim_{n \to \infty} z_n$ is a bounded linear functional on C that is zero on C_0 .

Problem 2. Let X be a Banach space and $A \subset X$. Let

$$A^{\perp} = \{ F \in X^* : F(x) = 0 \text{ for all } x \in A \}.$$

- (i) Show that A^{\perp} is a closed linear subspace of X^* .
- (ii) Let now A be a linear subspace, and let $J: X^*/A^{\perp} \to A^*$ by

$$J([F]) = F \restriction_A$$

where $F \upharpoonright_A$ is the restriction of F to A. Show that J is a well-defined isometric isomorphism.

Problem 3. Let V, W be normed vector spaces and let $T \in \mathcal{L}(V, W)$. The *adjoint* $T^{\times} : W^* \to V^*$ of T is the map defined by

$$(T^{\times}g)(x) = g(T(x)) \qquad x \in V.$$

- (i) Prove that $T^{\times} \in \mathcal{L}(W^*, V^*)$ such that $||T^{\times}|| = ||T||$.
- (ii) Prove that $\operatorname{Ker}(T^{\times}) = \operatorname{Ran}(T)^{\perp}$.
- (iii) Prove that $\operatorname{Ker}(T) = {}^{\perp}(\operatorname{Ran}(T^{\times})).$

Remark. Here, $\bot S = \{x \in V : \ell(x) = 0 \text{ for all } \ell \in S\}.$

(iv) Prove that if $S \in \mathcal{L}(W, X)$, then $(ST)^{\times} = T^{\times}S^{\times}$ and that if T is invertible, then so is T^{\times} with $(T^{\times})^{-1} = (T^{-1})^{\times}$.

Problem 4. Let V be a normed vector space, $W \subset V$ a subspace and let $v \in V \setminus W$. Let $d = \inf\{||w - v|| : w \in W\}$ be the distance between v and W. Prove that there is $\ell \in V^*$ such that $\|\ell\|_{V^*} \leq 1, \ \ell(v) = d$ and $\ell(w) = 0$ for all $w \in W$.