MATH 421/510, 2019WT2

Homework set 6 - due February 28

Problem 1. Consider the Banach spaces of convergent sequences C, C_{0} defined on sheet 5 , and denote the norm defined there by $\|z\|_{\infty}$. Moreover, let ℓ^{1} be the space of absolutely convergent sequences. It is a normed vector space equipped with the norm $\|z\|_{1}=\sum_{n=1}^{\infty}\left|z_{n}\right|$.
(i) Prove that $\left(C_{0}\right)^{*} \simeq \ell^{1}$
(ii) Characterize the dual of C.

Hint. $z \mapsto \lim _{n \rightarrow \infty} z_{n}$ is a bounded linear functional on C that is zero on C_{0}.
Problem 2. Let X be a Banach space and $A \subset X$. Let

$$
A^{\perp}=\left\{F \in X^{*}: F(x)=0 \text { for all } x \in A\right\} .
$$

(i) Show that A^{\perp} is a closed linear subspace of X^{*}.
(ii) Let now A be a linear subspace, and let $J: X^{*} / A^{\perp} \rightarrow A^{*}$ by

$$
J([F])=F \upharpoonright_{A}
$$

where $F \upharpoonright_{A}$ is the restriction of F to A. Show that J is a well-defined isometric isomorphism.
Problem 3. Let V, W be normed vector spaces and let $T \in \mathcal{L}(V, W)$. The adjoint $T^{\times}: W^{*} \rightarrow V^{*}$ of T is the map defined by

$$
\left(T^{\times} g\right)(x)=g(T(x)) \quad x \in V .
$$

(i) Prove that $T^{\times} \in \mathcal{L}\left(W^{*}, V^{*}\right)$ such that $\left\|T^{\times}\right\|=\|T\|$.
(ii) Prove that $\operatorname{Ker}\left(T^{\times}\right)=\operatorname{Ran}(T)^{\perp}$.
(iii) Prove that $\operatorname{Ker}(T)={ }^{\perp}\left(\operatorname{Ran}\left(T^{\times}\right)\right)$.

Remark. Here, ${ }^{\perp} S=\{x \in V: \ell(x)=0$ for all $\ell \in S\}$.
(iv) Prove that if $S \in \mathcal{L}(W, X)$, then $(S T)^{\times}=T^{\times} S^{\times}$and that if T is invertible, then so is T^{\times}with $\left(T^{\times}\right)^{-1}=\left(T^{-1}\right)^{\times}$.

Problem 4. Let V be a normed vector space, $W \subset V$ a subspace and let $v \in V \backslash W$. Let $d=\inf \{\|w-v\|: w \in W\}$ be the distance between v and W. Prove that there is $\ell \in V^{*}$ such that $\|\ell\|_{V^{*}} \leq 1, \ell(v)=d$ and $\ell(w)=0$ for all $w \in W$.

