MATH 421/510, 2019WT2

Homework set 5 – due February 14

Problem 1. Show that the space C of all convergent sequences of complex numbers and the space C_0 of all sequences that converge to zero are Banach spaces with respect to the norm

$$||(z_n)_{n\in\mathbb{N}}|| = \sup\{|z_n|: n\in\mathbb{N}\}.$$

Problem 2. Let $(\Omega, \mathcal{F}, \mu)$ be a measure space and let $(f_n)_{n \in \mathbb{N}}$ be a sequence of complex-valued measurable functions on Ω .

(i) Assume that $||f_n||_{\infty} < \infty$ for all $n \in \mathbb{N}$. Prove that $(f_n)_{n \in \mathbb{N}}$ converges w.r.t. $|| \cdot ||_{\infty}$ iff there is a set E of measure zero such that $f_n \to f$ uniformly on $\Omega \setminus E$.

(ii) Assume now that μ is a finite measure. Assume that $f_n(x) \to f(x)$, μ -almost everywhere. Let $\epsilon > 0$. Prove that there is R_{ϵ} with $\mu(R_{\epsilon}) > \mu(\Omega) - \epsilon$ such that $f_n \to f$ uniformly on R_{ϵ} .

Problem 3. (i) Let K be a measurable, complex-valued function on $(0, \infty) \times (0, \infty)$ such that $K(\lambda x, \lambda y) = \lambda^{-1}K(x, y)$ for any $\lambda > 0$. Assume that there is $1 \le p \le \infty$ such that $\int_0^\infty |K(x, 1)| x^{-1/p} = C < \infty$. Prove that for any $f \in L^p((0, \infty))$

$$(Tf)(y) = \int_0^\infty K(x, y) f(x) dx < \infty$$

defines a bounded linear transformation from $L^p((0,\infty))$ to itself with $||T|| \leq C$. (ii) Let $1 \leq p < \infty$ and r > 0. Use (i) to prove that for any measurable function $h: (0,\infty) \to [0,\infty)$,

$$\int_0^\infty \frac{1}{y^{1+r}} \Big(\int_0^y h(x) dx\Big)^p dy \le \left(\frac{p}{r}\right)^p \int_0^\infty \frac{1}{x^{1+r-p}} h(x)^p dx.$$

Problem 4. Let $1 and let <math>f, g \in L^p(\Omega)$. Prove that $\mathbb{R} \ni t \mapsto N(t) = ||f + tg||_p^p$ is differentiable and that

$$N'(0) = \frac{p}{2} \int_{\Omega} |f|^{p-2} \left(\bar{f}g + f\bar{g}\right) d\mu.$$