Homework set 2 - due January 24

Problem 1. Let $\left(X, \mathcal{T}_{X}\right),\left(Y, \mathcal{T}_{Y}\right)$ be topological spaces.
(i) Prove that if $f: X \rightarrow Y$ is continuous then $\lim _{n \rightarrow \infty} x_{n}=x \Rightarrow \lim _{n \rightarrow \infty} f\left(x_{n}\right)=f(x)$.
(ii) Assume that X is first countable. Prove that $\lim _{n \rightarrow \infty} x_{n}=x \Rightarrow \lim _{n \rightarrow \infty} f\left(x_{n}\right)=f(x)$ implies $f: X \rightarrow Y$ is continuous.

Problem 2. Let $\left(S_{1}, \mathcal{T}_{1}\right)$ and $\left(S_{2}, \mathcal{T}_{2}\right)$ be topological spaces.
(i) Prove that if S_{1} is connected and $f: S_{1} \rightarrow S_{2}$ is continuous, then $f\left(S_{1}\right)$ is connected.
(ii) The set S_{1} is called arcwise connected if for each $x, y \in S_{1}$, there exists a continuous function $f:[0,1] \rightarrow S_{1}$ such that $f(0)=x$ and $f(1)=y$. Prove that every arcwise connected space is connected.
(iii) Let $S=\left\{(s, t) \in \mathbb{R}^{2}: s \neq 0, t=\sin (1 / s)\right\} \cup\{(0,0)\}$ equipped with the relative topology inherited from \mathbb{R}^{2}. Prove that S is connected but not arcwise connected.

Problem 3. Let S be a Hausdorff space that is not compact. The one-point compactification of S is $X=S \cup\{\infty\}$ with ∞ being a single point and with the collection \mathcal{T} of open sets for X being defined as follows. Let $Y \subset X$. If $\infty \notin Y$, then $Y \in \mathcal{T}$ if and only if Y is an open subset of S. If $\infty \in Y$, then $Y \in \mathcal{T}$ if and only if $X \backslash Y$ is a compact subset of S.
(i) Prove that \mathcal{T} is a topology.
(ii) Prove that S is dense in X.
(iii) Prove that X is compact.
(iv) Prove that, if S is locally compact, then X is Hausdorff.
(v) Let $f: S \rightarrow \mathbb{R}$ be continuous. Find a necessary and sufficient condition on f under which it has a continuous extension to X. Hint: Define $\lim _{x \rightarrow \infty} f(x)$

Problem 4. (i) Let X, Y be topological spaces with Y Hausdorff. Let $f, g: X \rightarrow Y$ be continuous. Prove that if f and g agree on a dense subset of X then they agree on all of X.
(ii) Let Y be equipped with the trivial topology $\mathcal{T}=\{\emptyset, Y\}$. Prove that any function $\mathbb{R} \rightarrow Y$ is continuous.
(iii) Use (ii) with $Y=\{0,1\}$ to construct a counterexample to the statement of part (i). Explain why this is possible.

Remark. 'Prove that (S, \mathcal{T}) is compact if and only if S has the finite intersection property.' is a short exercise in Boole-Morgan's laws.

